111 research outputs found

    Occlusion-Robust MVO: Multimotion Estimation Through Occlusion Via Motion Closure

    Full text link
    Visual motion estimation is an integral and well-studied challenge in autonomous navigation. Recent work has focused on addressing multimotion estimation, which is especially challenging in highly dynamic environments. Such environments not only comprise multiple, complex motions but also tend to exhibit significant occlusion. Previous work in object tracking focuses on maintaining the integrity of object tracks but usually relies on specific appearance-based descriptors or constrained motion models. These approaches are very effective in specific applications but do not generalize to the full multimotion estimation problem. This paper presents a pipeline for estimating multiple motions, including the camera egomotion, in the presence of occlusions. This approach uses an expressive motion prior to estimate the SE (3) trajectory of every motion in the scene, even during temporary occlusions, and identify the reappearance of motions through motion closure. The performance of this occlusion-robust multimotion visual odometry (MVO) pipeline is evaluated on real-world data and the Oxford Multimotion Dataset.Comment: To appear at the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). An earlier version of this work first appeared at the Long-term Human Motion Planning Workshop (ICRA 2019). 8 pages, 5 figures. Video available at https://www.youtube.com/watch?v=o_N71AA6FR

    Video foreground extraction for mobile camera platforms

    Get PDF
    Foreground object detection is a fundamental task in computer vision with many applications in areas such as object tracking, event identification, and behavior analysis. Most conventional foreground object detection methods work only in a stable illumination environments using fixed cameras. In real-world applications, however, it is often the case that the algorithm needs to operate under the following challenging conditions: drastic lighting changes, object shape complexity, moving cameras, low frame capture rates, and low resolution images. This thesis presents four novel approaches for foreground object detection on real-world datasets using cameras deployed on moving vehicles.The first problem addresses passenger detection and tracking tasks for public transport buses investigating the problem of changing illumination conditions and low frame capture rates. Our approach integrates a stable SIFT (Scale Invariant Feature Transform) background seat modelling method with a human shape model into a weighted Bayesian framework to detect passengers. To deal with the problem of tracking multiple targets, we employ the Reversible Jump Monte Carlo Markov Chain tracking algorithm. Using the SVM classifier, the appearance transformation models capture changes in the appearance of the foreground objects across two consecutives frames under low frame rate conditions. In the second problem, we present a system for pedestrian detection involving scenes captured by a mobile bus surveillance system. It integrates scene localization, foreground-background separation, and pedestrian detection modules into a unified detection framework. The scene localization module performs a two stage clustering of the video data.In the first stage, SIFT Homography is applied to cluster frames in terms of their structural similarity, and the second stage further clusters these aligned frames according to consistency in illumination. This produces clusters of images that are differential in viewpoint and lighting. A kernel density estimation (KDE) technique for colour and gradient is then used to construct background models for each image cluster, which is further used to detect candidate foreground pixels. Finally, using a hierarchical template matching approach, pedestrians can be detected.In addition to the second problem, we present three direct pedestrian detection methods that extend the HOG (Histogram of Oriented Gradient) techniques (Dalal and Triggs, 2005) and provide a comparative evaluation of these approaches. The three approaches include: a) a new histogram feature, that is formed by the weighted sum of both the gradient magnitude and the filter responses from a set of elongated Gaussian filters (Leung and Malik, 2001) corresponding to the quantised orientation, which we refer to as the Histogram of Oriented Gradient Banks (HOGB) approach; b) the codebook based HOG feature with branch-and-bound (efficient subwindow search) algorithm (Lampert et al., 2008) and; c) the codebook based HOGB approach.In the third problem, a unified framework that combines 3D and 2D background modelling is proposed to detect scene changes using a camera mounted on a moving vehicle. The 3D scene is first reconstructed from a set of videos taken at different times. The 3D background modelling identifies inconsistent scene structures as foreground objects. For the 2D approach, foreground objects are detected using the spatio-temporal MRF algorithm. Finally, the 3D and 2D results are combined using morphological operations.The significance of these research is that it provides basic frameworks for automatic large-scale mobile surveillance applications and facilitates many higher-level applications such as object tracking and behaviour analysis

    Camera Planning and Fusion in a Heterogeneous Camera Network

    Get PDF
    Wide-area camera networks are becoming more and more common. They have widerange of commercial and military applications from video surveillance to smart home and from traffic monitoring to anti-terrorism. The design of such a camera network is a challenging problem due to the complexity of the environment, self and mutual occlusion of moving objects, diverse sensor properties and a myriad of performance metrics for different applications. In this dissertation, we consider two such challenges: camera planing and camera fusion. Camera planning is to determine the optimal number and placement of cameras for a target cost function. Camera fusion describes the task of combining images collected by heterogenous cameras in the network to extract information pertinent to a target application. I tackle the camera planning problem by developing a new unified framework based on binary integer programming (BIP) to relate the network design parameters and the performance goals of a variety of camera network tasks. Most of the BIP formulations are NP hard problems and various approximate algorithms have been proposed in the literature. In this dissertation, I develop a comprehensive framework in comparing the entire spectrum of approximation algorithms from Greedy, Markov Chain Monte Carlo (MCMC) to various relaxation techniques. The key contribution is to provide not only a generic formulation of the camera planning problem but also novel approaches to adapt the formulation to powerful approximation schemes including Simulated Annealing (SA) and Semi-Definite Program (SDP). The accuracy, efficiency and scalability of each technique are analyzed and compared in depth. Extensive experimental results are provided to illustrate the strength and weakness of each method. The second problem of heterogeneous camera fusion is a very complex problem. Information can be fused at different levels from pixel or voxel to semantic objects, with large variation in accuracy, communication and computation costs. My focus is on the geometric transformation of shapes between objects observed at different camera planes. This so-called the geometric fusion approach usually provides the most reliable fusion approach at the expense of high computation and communication costs. To tackle the complexity, a hierarchy of camera models with different levels of complexity was proposed to balance the effectiveness and efficiency of the camera network operation. Then different calibration and registration methods are proposed for each camera model. At last, I provide two specific examples to demonstrate the effectiveness of the model: 1)a fusion system to improve the segmentation of human body in a camera network consisted of thermal and regular visible light cameras and 2) a view dependent rendering system by combining the information from depth and regular cameras to collecting the scene information and generating new views in real time

    Taming Crowded Visual Scenes

    Get PDF
    Computer vision algorithms have played a pivotal role in commercial video surveillance systems for a number of years. However, a common weakness among these systems is their inability to handle crowded scenes. In this thesis, we have developed algorithms that overcome some of the challenges encountered in videos of crowded environments such as sporting events, religious festivals, parades, concerts, train stations, airports, and malls. We adopt a top-down approach by first performing a global-level analysis that locates dynamically distinct crowd regions within the video. This knowledge is then employed in the detection of abnormal behaviors and tracking of individual targets within crowds. In addition, the thesis explores the utility of contextual information necessary for persistent tracking and re-acquisition of objects in crowded scenes. For the global-level analysis, a framework based on Lagrangian Particle Dynamics is proposed to segment the scene into dynamically distinct crowd regions or groupings. For this purpose, the spatial extent of the video is treated as a phase space of a time-dependent dynamical system in which transport from one region of the phase space to another is controlled by the optical flow. Next, a grid of particles is advected forward in time through the phase space using a numerical integration to generate a flow map . The flow map relates the initial positions of particles to their final positions. The spatial gradients of the flow map are used to compute a Cauchy Green Deformation tensor that quantifies the amount by which the neighboring particles diverge over the length of the integration. The maximum eigenvalue of the tensor is used to construct a forward Finite Time Lyapunov Exponent (FTLE) field that reveals the Attracting Lagrangian Coherent Structures (LCS). The same process is repeated by advecting the particles backward in time to obtain a backward FTLE field that reveals the repelling LCS. The attracting and repelling LCS are the time dependent invariant manifolds of the phase space and correspond to the boundaries between dynamically distinct crowd flows. The forward and backward FTLE fields are combined to obtain one scalar field that is segmented using a watershed segmentation algorithm to obtain the labeling of distinct crowd-flow segments. Next, abnormal behaviors within the crowd are localized by detecting changes in the number of crowd-flow segments over time. Next, the global-level knowledge of the scene generated by the crowd-flow segmentation is used as an auxiliary source of information for tracking an individual target within a crowd. This is achieved by developing a scene structure-based force model. This force model captures the notion that an individual, when moving in a particular scene, is subjected to global and local forces that are functions of the layout of that scene and the locomotive behavior of other individuals in his or her vicinity. The key ingredients of the force model are three floor fields that are inspired by research in the field of evacuation dynamics; namely, Static Floor Field (SFF), Dynamic Floor Field (DFF), and Boundary Floor Field (BFF). These fields determine the probability of moving from one location to the next by converting the long-range forces into local forces. The SFF specifies regions of the scene that are attractive in nature, such as an exit location. The DFF, which is based on the idea of active walker models, corresponds to the virtual traces created by the movements of nearby individuals in the scene. The BFF specifies influences exhibited by the barriers within the scene, such as walls and no-entry areas. By combining influence from all three fields with the available appearance information, we are able to track individuals in high-density crowds. The results are reported on real-world sequences of marathons and railway stations that contain thousands of people. A comparative analysis with respect to an appearance-based mean shift tracker is also conducted by generating the ground truth. The result of this analysis demonstrates the benefit of using floor fields in crowded scenes. The occurrence of occlusion is very frequent in crowded scenes due to a high number of interacting objects. To overcome this challenge, we propose an algorithm that has been developed to augment a generic tracking algorithm to perform persistent tracking in crowded environments. The algorithm exploits the contextual knowledge, which is divided into two categories consisting of motion context (MC) and appearance context (AC). The MC is a collection of trajectories that are representative of the motion of the occluded or unobserved object. These trajectories belong to other moving individuals in a given environment. The MC is constructed using a clustering scheme based on the Lyapunov Characteristic Exponent (LCE), which measures the mean exponential rate of convergence or divergence of the nearby trajectories in a given state space. Next, the MC is used to predict the location of the occluded or unobserved object in a regression framework. It is important to note that the LCE is used for measuring divergence between a pair of particles while the FTLE field is obtained by computing the LCE for a grid of particles. The appearance context (AC) of a target object consists of its own appearance history and appearance information of the other objects that are occluded. The intent is to make the appearance descriptor of the target object more discriminative with respect to other unobserved objects, thereby reducing the possible confusion between the unobserved objects upon re-acquisition. This is achieved by learning the distribution of the intra-class variation of each occluded object using all of its previous observations. In addition, a distribution of inter-class variation for each target-unobservable object pair is constructed. Finally, the re-acquisition decision is made using both the MC and the AC

    Algorithms for trajectory integration in multiple views

    Get PDF
    PhDThis thesis addresses the problem of deriving a coherent and accurate localization of moving objects from partial visual information when data are generated by cameras placed in di erent view angles with respect to the scene. The framework is built around applications of scene monitoring with multiple cameras. Firstly, we demonstrate how a geometric-based solution exploits the relationships between corresponding feature points across views and improves accuracy in object location. Then, we improve the estimation of objects location with geometric transformations that account for lens distortions. Additionally, we study the integration of the partial visual information generated by each individual sensor and their combination into one single frame of observation that considers object association and data fusion. Our approach is fully image-based, only relies on 2D constructs and does not require any complex computation in 3D space. We exploit the continuity and coherence in objects' motion when crossing cameras' elds of view. Additionally, we work under the assumption of planar ground plane and wide baseline (i.e. cameras' viewpoints are far apart). The main contributions are: i) the development of a framework for distributed visual sensing that accounts for inaccuracies in the geometry of multiple views; ii) the reduction of trajectory mapping errors using a statistical-based homography estimation; iii) the integration of a polynomial method for correcting inaccuracies caused by the cameras' lens distortion; iv) a global trajectory reconstruction algorithm that associates and integrates fragments of trajectories generated by each camera

    Person Detection, Tracking and Identification by Mobile Robots Using RGB-D Images

    Get PDF
    This dissertation addresses the use of RGB-D images for six important tasks of mobile robots: face detection, face tracking, face pose estimation, face recognition, person de- tection and person tracking. These topics have widely been researched in recent years because they provide mobile robots with abilities necessary to communicate with humans in natural ways. The RGB-D images from a Microsoft Kinect cameras are expected to play an important role in improving both accuracy and computational costs of the proposed algorithms for mobile robots. We contribute some applications of the Microsoft Kinect camera for mobile robots and show their effectiveness by doing realistic experiments on our mobile robots. An important component for mobile robots to interact with humans in a natural way is real time multiple face detection. Various face detection algorithms for mobile robots have been proposed; however, almost all of them have not yet met the requirements of accuracy and speed to run in real time on a robot platform. In the scope of our re- search, we have developed a method of combining color and depth images provided by a Kinect camera and navigation information for face detection on mobile robots. We demonstrate several experiments with challenging datasets. Our results show that this method improves the accuracy and computational costs, and it runs in real time in indoor environments. Tracking faces in uncontrolled environments has still remained a challenging task be- cause the face as well as the background changes quickly over time and the face often moves through different illumination conditions. RGB-D images are beneficial for this task because the mobile robot can easily estimate the face size and improve the perfor- mance of face tracking in different distances between the mobile robot and the human. In this dissertation, we present a real time algorithm for mobile robots to track human faces accurately despite the fact that humans can move freely and far away from the camera or go through different illumination conditions in uncontrolled environments. We combine the algorithm of an adaptive correlation filter (David S. Bolme and Lui (2010)) with a Viola-Jones object detection (Viola and Jones (2001b)) to track the face. Furthermore,we introduce a new technique of face pose estimation, which is applied after tracking the face. On the tracked face, the algorithm of an adaptive correlation filter with a Viola-Jones object detection is also applied to reliably track the facial features including the two external eye corners and the nose. These facial features provide geometric cues to estimate the face pose robustly. We carefully analyze the accuracy of these approaches based on different datasets and show how they can robustly run on a mobile robot in uncontrolled environments. Both face tracking and face pose estimation play key roles as essential preprocessing steps for robust face recognition on mobile robots. The ability to recognize faces is a crucial element for human-robot interaction. Therefore, we pursue an approach for mobile robots to detect, track and recognize human faces accurately, even though they go through different illumination conditions. For the sake of improved accuracy, recognizing the tracked face is established by using an algorithm that combines local ternary patterns and collaborative representation based classification. This approach inherits the advantages of both collaborative representation based classification, which is fast and relatively accurate, and local ternary patterns, which is robust to misalignment of faces and complex illumination conditions. This combination enhances the efficiency of face recognition under different illumination and noisy conditions. Our method achieves high recognition rates on challenging face databases and can run in real time on mobile robots. An important application field of RGB-D images is person detection and tracking by mobile robots. Compared to classical RGB images, RGB-D images provide more depth information to locate humans more precisely and reliably. For this purpose, the mobile robot moves around in its environment and continuously detects and tracks people reliably, even when humans often change in a wide variety of poses, and are frequently occluded. We have improved the performance of face and upper body detection to enhance the efficiency of person detection in dealing with partial occlusions and changes in human poses. In order to handle higher challenges of complex changes of human poses and occlusions, we concurrently use a fast compressive tracker and a Kalman filter to track the detected humans. Experimental results on a challenging database show that our method achieves high performance and can run in real time on mobile robots

    Coopération de réseaux de caméras ambiantes et de vision embarquée sur robot mobile pour la surveillance de lieux publics

    Get PDF
    Actuellement, il y a une demande croissante pour le déploiement de robots mobile dans des lieux publics. Pour alimenter cette demande, plusieurs chercheurs ont déployé des systèmes robotiques de prototypes dans des lieux publics comme les hôpitaux, les supermarchés, les musées, et les environnements de bureau. Une principale préoccupation qui ne doit pas être négligé, comme des robots sortent de leur milieu industriel isolé et commencent à interagir avec les humains dans un espace de travail partagé, est une interaction sécuritaire. Pour un robot mobile à avoir un comportement interactif sécuritaire et acceptable - il a besoin de connaître la présence, la localisation et les mouvements de population à mieux comprendre et anticiper leurs intentions et leurs actions. Cette thèse vise à apporter une contribution dans ce sens en mettant l'accent sur les modalités de perception pour détecter et suivre les personnes à proximité d'un robot mobile. Comme une première contribution, cette thèse présente un système automatisé de détection des personnes visuel optimisé qui prend explicitement la demande de calcul prévue sur le robot en considération. Différentes expériences comparatives sont menées pour mettre clairement en évidence les améliorations de ce détecteur apporte à la table, y compris ses effets sur la réactivité du robot lors de missions en ligne. Dans un deuxiè contribution, la thèse propose et valide un cadre de coopération pour fusionner des informations depuis des caméras ambiant affixé au mur et de capteurs montés sur le robot mobile afin de mieux suivre les personnes dans le voisinage. La même structure est également validée par des données de fusion à partir des différents capteurs sur le robot mobile au cours de l'absence de perception externe. Enfin, nous démontrons les améliorations apportées par les modalités perceptives développés en les déployant sur notre plate-forme robotique et illustrant la capacité du robot à percevoir les gens dans les lieux publics supposés et respecter leur espace personnel pendant la navigation.This thesis deals with detection and tracking of people in a surveilled public place. It proposes to include a mobile robot in classical surveillance systems that are based on environment fixed sensors. The mobile robot brings about two important benefits: (1) it acts as a mobile sensor with perception capabilities, and (2) it can be used as means of action for service provision. In this context, as a first contribution, it presents an optimized visual people detector based on Binary Integer Programming that explicitly takes the computational demand stipulated into consideration. A set of homogeneous and heterogeneous pool of features are investigated under this framework, thoroughly tested and compared with the state-of-the-art detectors. The experimental results clearly highlight the improvements the different detectors learned with this framework bring to the table including its effect on the robot's reactivity during on-line missions. As a second contribution, the thesis proposes and validates a cooperative framework to fuse information from wall mounted cameras and sensors on the mobile robot to better track people in the vicinity. Finally, we demonstrate the improvements brought by the developed perceptual modalities by deploying them on our robotic platform and illustrating the robot's ability to perceive people in supposed public areas and respect their personal space during navigation

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance
    corecore