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3-D Models and Dynamic Context

Jong Taek Lee, Ph.D.

The University of Texas at Austin, 2012

Supervisor: J. K. Aggarwal

This dissertation describes two distinctive methods for human-vehicle

interaction recognition: one for ground level videos and the other for aerial

videos. For ground level videos, this dissertation presents a novel methodol-

ogy which is able to estimate a detailed status of a scene involving multiple

humans and vehicles. The system tracks their configuration even when they

are performing complex interactions with severe occlusion such as when four

persons are exiting a car together. The motivation is to identify the 3-D states

of vehicles (e.g. status of doors), their relations with persons, which is nec-

essary to analyze complex human-vehicle interactions (e.g. breaking into or

stealing a vehicle), and the motion of humans and car doors to detect atomic

human-vehicle interactions. A probabilistic algorithm has been designed to

track humans and analyze their dynamic relationships with vehicles using a

dynamic context. We have focused on two ideas. One is that many simple

events can be detected based on a low-level analysis, and these detected events

must contextually meet with human/vehicle status tracking results. The other
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is that the motion clue interferes with states in the current and future frames,

and analyzing the motion is critical to detect such simple events. Our ap-

proach updates the probability of a person (or a vehicle) having a particular

state based on these basic observed events. The probabilistic inference is made

for the tracking process to match event-based evidence and motion-based evi-

dence. For aerial videos, the object resolution is low, the visual cues are vague,

and the detection and tracking of objects is less reliable as a consequence.

Any method that requires accurate tracking of objects or the exact matching

of event definition are better avoided. To address these issues, we present

a temporal logic based approach which does not require training from event

examples. At the low-level, we employ dynamic programming to perform fast

model fitting between the tracked vehicle and the rendered 3-D vehicle mod-

els. At the semantic-level, given the localized event region of interest (ROI),

we verify the time series of human-vehicle relationships with the pre-specified

event definitions in a piecewise fashion. With special interest in recognizing

a person getting into and out of a vehicle, we have tested our method on a

subset of the VIRAT Aerial Video dataset [37] and achieved superior results.
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Chapter 1

Introduction

Over the last decade, considerable effort has been devoted to recogni-

tion of human activities. However, it still remains a challenging problem in

computer vision due to errors in low-level processing, scene changes by the

camera viewpoints, and the complexity of semantic representations [1, 53]. In

addition to simple human (e.g. single person) activity recognition, researchers

have proposed methodologies for the recognition of human-human (person-to-

person) interactions [38, 44], human-object interactions [33], and group ac-

tivities [43]. Human-vehicle interactions may be categorized as human-object

interactions.

The problem of the recognition of human-vehicle interactions has not

received the same level of attention as other interactions, but it is now of signif-

icant interest in many applications, such as automated surveillance, abnormal

activity detection, video annotation, and crime detection. Vehicle-related ac-

tivity recognition is a challenging problem in computer vision. In the study of

most human-object interactions recognition, objects are smaller than humans

(e.g. books, cups, phone, and so on [33]). These interactions are simple such

that people carry objects or stand near objects. On the other hand, most ve-
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hicles are larger than humans in general, and humans can easily be occluded

by vehicles. The occlusion varies significantly as the viewpoint of a camera

changes. Furthermore, a person may change the appearance (i.e. shape) of a

vehicle by opening and/or closing its doors, and the motion of the same human

action looks very different due to the change of the location and orientation of

the corresponding vehicle. These characteristics of human interactions with a

vehicle make the problem more challenging.

Even for the same objective such as recognizing human-vehicle interac-

tions, the solution can differ significantly because different filming condition

restricts the applicable approaches. This dissertation explains two distinctive

methods for human-vehicle interaction recognition: one for ground level videos

and the other for aerial videos. For the ground level videos, we usually have

higher quality imagery and a background model from stationary cameras. Fur-

thermore, a number of training samples are available and real-time processing

is not mandatory. On the other hand, for the aerial videos, we have the oppo-

site situation. Namely, training samples are difficult to obtain. We introduce

these two methods in the following separate subsections.

1.1 Human-vehicle interaction recognition from ground
view

The automated and continuous analysis of humans, objects, and their

status has been a long-time goal of artificial intelligence, robotics, and com-

puter vision. Particularly, in the field of computer vision, the detection and
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tracking of humans from closed circuit television (CCTV) videos recorded in

various environments have been studied in the last several decades, and nu-

merous promising approaches have been proposed.

However, human tracking itself is insufficient to analyze interactions

between humans and vehicles: in order to annotate and retrieve videos con-

taining activities involving humans and vehicles, complex movements of hu-

mans/vehicles and their relationships in a dynamic environment (e.g. a crowded

parking lot) must be analyzed. The system must be able to identify detailed

3-D status and motion of all objects appearing in each frame. Such an analysis

is particularly essential for the construction of many important applications

including surveillance and military systems.

This dissertation presents a novel methodology which is able to esti-

mate a detailed status of the scene involving multiple humans and vehicles.

The system tracks their configuration even when they are performing complex

interactions with severe occlusion such as when four persons are exiting a car

together. The motivation is to identify the 3-D states of vehicles (e.g. status

of doors), their relations with persons, which is necessary to analyze complex

human-vehicle interactions (e.g. breaking or stealing a vehicle), and the mo-

tion of humans and car doors to detect atomic human-vehicle interactions. In

addition, our methodology aims to identify the regions where each person en-

ters the vehicle (e.g. the driver’s seat or passenger seat), anticipating his/her

role and position even when the person is invisible. The challenges are derived

from significant human-human occlusion, human-vehicle occlusion, which ear-
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lier human tracking systems had difficulties handling, and motion changes due

to the camera view. Fig.1.1 illustrates the difficulties which appearance only

based human-vehicle interaction recognizing systems can have.

A probabilistic algorithm has been designed to track humans and an-

alyze their dynamic relationships with vehicles using a dynamic context. We

have focused on two ideas. One is that many simple events can be detected

based on a low-level analysis, and these detected events must contextually

meet with human/vehicle status tracking results. That is, simple events (e.g.

a person approaching a vehicle) detected during the interactions can be used

as key features (e.g. it may be an indication of the person opening the nearby

door) for more robust tracking. The other is that the motion clue interferes

with states in the current and future frames, and analyzing the motion is crit-

ical to detect such simple events. Our approach updates the probability of a

person (or a vehicle) having a particular state based on these basic observed

events. The probabilistic inference is made for the tracking process to match

event-based evidence and motion-based evidence. The event influences an in-

terval of states, making a certain set of states more probabilistically favorable

than the others for each time frame. For example, tracking a person occluded

by a door is difficult without any contextual knowledge, but the detection of

the event ‘a person opening the door and going into the car’ may help the

system analyze his/her movements in these frames.

Even though there have been previous attempts to process videos of hu-

mans and vehicles, they have focused on recognition of simple human-vehicle

4



Fig. 1.1: Example 3-D scene models of two different image frames. Detailed
analysis of configurations of humans and vehicles using event context must be
performed, correctly distinguishing states of two images with similar appear-
ances.
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interactions. Instead of performing detailed scene analysis in a complex en-

vironment, they either assumed that the interactions are performed in sim-

ple environments which have no (or little) occlusion [22, 49], or assumed that

human-manual corrections of tracking objects [24] are provided. The system

proposed by Lee et al. [28] was able to perform view-independent recogni-

tion of a single person getting out of (or into) a vehicle, but it was limited

in processing crowded human-vehicle interactions with two or more people.

This is due to their inability to analyze states of scenes composed of multiple

objects, failing to process complex events composed of several fundamental

human-vehicle movements (e.g. ‘door open,’ ‘person get in,’ or ‘person get

out’).

Our tracking problem is formulated as a Bayesian inference of finding

the sequence of scene states with the maximum posterior probability. The

scene state includes individual object states (humans and vehicles), object-

object occlusions, and specific parameters of objects (e.g. door position and

status). Our system estimates and tracks scene states frame-by-frame using

Markov Chain Monte Carlo (MCMC), measuring the appearance similarity

between hypothetical 3-D scene models and the observed image. The ap-

pearance of the scene state is described in terms of joint 3-D models and its

projection is compared with the real image. In addition, as mentioned above,

our probabilistic framework uses event-based and motion-based cues to update

the prior probability of object states, tracking highly occluded human-vehicle

interactions (e.g. a person opening a door) reliably. In order to handle an

6



Fig. 1.2: A raw image of a vehicle (left) and its matching synthetic 3-D vehicle
model (right). The 3-D model is used for 1) the shape based matching by a
vehicle-only model (black color), 2) extraction of regions-of-interest (ROIs) by
four door regions (rectangular shape), and 3) transformation of motion features
by the direction of door opening/closing on each door (double arrows).

event which is only detected ‘after’ its occurrence, we propose an algorithm to

correct past frames by traversing past time frames. The motion-based cue is

view-dependent in the human-vehicle interactions. To solve these difficulties,

our approach uses synthetic 3-D vehicle models for detecting vehicle location,

orientation, and door regions, and estimating patterns of motion represented

in the optical flow field (see Fig. 1.2). The transformation is accomplished by

measuring the direction of a door opening or closing that fits the optical flow

field. As a result, our system is able to extract view-independent features. We

train a Support Vector Machine (SVM) [9] classifier with the view-independent

features for the classification of interactions.

This view-independent system recognizes complex human-vehicle inter-

actions using 3-D vehicle models. The system processes a dataset taken from

7



various viewpoints. The proposed approach has several benefits over previous

approaches. First, our approach is able to extract view-independent features

from human motion. Consequently, the system requires less training data

from various viewpoints to achieve the same performance as previous systems

which use view-dependent features. Second, our approach is able to reduce

computation time and to recognize multiple occurrences of interactions. This

advantage is possible because we specify ROIs based on localization of vehicles

and their fitted 3-D models, while most of the previous approaches specified

ROIs based on detection of humans.

1.2 Human-vehicle interaction recognition from aerial
view

Recognizing human-vehicle interactions from an aerial view is a chal-

lenging problem in computer vision. It is of increasing interest in security,

automated surveillance, and military operations. For example, the detection

of a person getting into a vehicle may provide the first level alert of abnormal

events. The discovery of frequent human-vehicle interactions from aerial videos

may help pinpoint a warehouse or signify the migration of a group of people.

As shown in Fig. 1.3, due to limited image resolution, air turbulence, cloud

coverage, objects temporarily out of field of view, and the constantly moving

aerial vehicle, the recognition of human-vehicle interactions from aerial views

is a much more challenging task than those in normal scenarios. In this work,

we propose a general framework to recognize human-vehicle interactions from

8



(a) (b)

Fig. 1.3: (a) The aerial image of a person approaching the front door of a vehi-
cle. The bounding box of the person is magnified to illustrate this challenging
scenario. (b) The snapshots of a vehicle taken from an UAV (Unmanned Aerial
Vehicle) in every 5 seconds.

an aerial video. More specifically, we illustrate our framework using the cases

of recognizing a person getting into and out of a vehicle.

With careful and sometimes repeated inspections, a human observer

can recognize human-vehicle interactions from aerial videos without seeing

any examples from the same setup. This is because humans are capable of

constantly tracking objects in low quality imagery and are proficient at rea-

soning about the underlying event without seeing it in its entirety. However,

there are two major difficulties for machine vision to perform the similar task

as people do. First, most machine learning algorithms require a sufficient num-

ber of training samples to perform reliable recognition; however, the cost is

high for taking aerial videos and annotating example sequences. Second, the

key moments of human-vehicle interactions always happen when persons are

in close proximity to the vehicle; as a result, a human tracker is easily subject

to drift due to overlapped object structures in blurry low-resolution imagery.
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Our method is a temporal logic based approach which does not re-

quire the tracking of human objects nor event-level training examples. Our

system starts with processing the bounding box sequences of the tracked ve-

hicles. To estimate the location and the orientation of a vehicle, we train

SVM classifiers with samples rendered from 3-D vehicle models and ray trac-

ing. Then we search for the optimal solution of vehicle states in a sequence

of frames using dynamic programming under a Markovian assumption. Given

the aligned 3-D vehicle models, we use the localized door (or trunk) regions

together with local human detection results to reason about their interactions

over time. We define the temporal flow of a human-vehicle interaction based on

the sub-events of particular changes in their spatial relationships. Weights are

manually assigned to the interaction associated sub-events according to their

relative importance to the composition of the interaction. The likelihood of

individual interactions is computed by matching an observation sequence with

the formal event representations and binning the weighted votes of matched

sub-events.

1.3 Dissertation outline

The rest of the dissertation is organized as follows: Chapter 2 discusses

the relevant previous works. Chapter 3 and Chapter 4 present methodologies

for human-vehicle interactions from ground level videos. Chapter 3 explains

Bayesian formulation of scene states with event-based context and Chapter

4 extends the framework with motion-based context. We introduce a very
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distinctive human-vehicle interaction method exclusively for aerial videos in

Chapter 5. We conclude in Chapter 6.
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Chapter 2

Related work

2.1 Vehicle detection and tracking

There has been a considerable amount of research related to the spe-

cial tasks of vehicle detection and tracking. Vehicle detection and tracking

has been done using a stationary single camera [20, 21, 25, 48, 51], stationary

multiple cameras [26], a moving single camera [5, 6, 41], and moving multiple

cameras [4]. The systems for vehicle detection and tracking using station-

ary cameras are the most typical, and our first approach falls into this cate-

gory. The systems for vehicle detection with moving cameras [4–6] use various

methods such as template matching, temporal differencing, and specific pat-

terns searching instead of using a background model. Our second approach

falls into this category. Rajagopalan and Chellappa [41] applied an image sta-

bilization algorithm to detect motion regions. After stabilizing the images,

they applied thresholding and morphological operations to detect motion re-

gions. Gupte et al. [21] tracked blobs for vehicle tracking using an association

graph to connect objects in continuous frames. They used Kalman filtering to

predict the position of a vehicle in each consecutive frame. Sun et al. [50] pre-

sented a review of the problem of vehicle detection and integrating detection

with tracking. Jun et al. [25] and Tamersoy and Aggarwal [51] proposed sys-
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Fig. 2.1: Collected vehicle training samples.

tems that detect vehicles in order to count the number of vehicles in highway

traffic. Jun et al. [25] proposed a method of segmentation for vehicles un-

der severe occlusions. Their system first finds feature points of vehicles using

scale-invariant feature transform (SIFT) and tracks those features to compute

motion vectors. Oversegmented image fragments are then clustered based on

motion vectors of the fragments, and occluded vehicles are separated finally.

Tamersoy and Aggarwal [51] proposed SVM training with positive and nega-

tive training sets which can be obtained in an unsupervised manner and an

efficient tracking solution by a simplified multi-hypothesis approach. Recently,

Feris et al. [17] proposed a generic vehicle detection approach. They imple-

mented a semi-automatic data collection system. From collected videos, they

manually define one or more regions-of-interest for training (see Fig.2.1). Syn-

thetic generation of occluded vehicles scene improves the detection of vehicles

in crowded scenes. Large-scale learning is performed with Haar-like features

and a cascade of Adaboost classifiers.

Background subtraction has most widely been used for foreground de-

tection with one or multiple stationary cameras. In background subtraction,

it is desirable to obtain good background models. Many papers address this
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problem using an adaptive background mixture model [49] which works well in

outdoor environments. Zivkovic [59, 60] proposed an improved adaptive back-

ground mixture model for background subtraction. The algorithm provides

decent performance in various environments, which works especially well for

shadow removal. Morphological operations are performed on the foreground to

reduce errors in foreground and background models after processing [13]. We

use the methods from [13, 59, 60] for successful low-level processing of videos

taken by a stationary camera.

Specialized vehicle activities, such as detection of illegally parked ve-

hicles, had not been studied in depth with one possible exception of [34] that

presents a system that detects and warns of an illegally parked vehicle. In

2007, however, the i-Lids vehicle detection challenge dataset was released,

and a large number of papers provided distinctive solutions on this challenge:

Bevilacqua and Vaccari [7], Boragno et al. [8], Guler et al. [19], Lee et al.

[29], and Porikli [40], and Venetianer et al. [54]. Lee et al. [30] presented a

novel system to detect illegally parked vehicles using 1-D transformation and

compared the system with state-of-art systems. Specialized vehicle activities,

particularly the detection of illegally parked vehicles has been intensely studied

since 2007, when the i-Lids vehicle detection challenge dataset was released.

Several researchers have tried to use 3-D models to recognize more com-

plex activities from arbitrary viewpoints. The usage of 3-D models is focused

on human representations for human recognition [31] or object representa-

tions for object detection [26, 47]. Kim and Malik [26] used a semi 3-D vehicle
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Fig. 2.2: The car model. HL and HR are the left and right lines, V0, . . . , V1
are the vertical lines, B is the base line, and S is the shadow line. w and di
are in the world coordinates

Fig. 2.3: An example detection result. The view is very limited.
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model (see Fig. 2.2) and proposed a probabilistic line feature based vehicle

description to detect vehicles in limited views (see Fig. 2.3). To track ve-

hicles in three cameras, they proposed Zero-mean cross-correlation matching

based tracking. Song and Nevatia [47] developed a methodology to detect

and track vehicles using 3-D models from various viewpoints. They extracted

2-D silhouette shape templates from 3-D models and matched the templates

with observed foregrounds. They formed a hypothesis for vehicle information

and refined it by a data driven MCMC process. Their approach relies on the

distinctiveness of the vehicle shape cue, which is viable for side-view cameras.

For front-view or rear-view cameras, it might not work well as shown in their

experiments. They also used Kalman filtering for tracking detected vehicles.

Yang et al. [56] proposed a vehicle detection and tracking system with low-

angle cameras. They used two semi 3-D vehicle models (sedan and bus, see

Fig. 2.4). Windshield and other feature points are detected, and they fused

these detections to improve the vehicle detection rates. They classified the

type of vehicles and implemented Markov chain Monte Carlo based vehicle

tracking. We present a comparison among the distinctive vehicle detection

and tracking approaches in Table 2.1

2.2 Bayesian framework for tracking

In previous tracking solutions following a Bayesian framework, trajecto-

ries of objects are modeled as a sequence of scene states describing the location

of objects [6, 14, 57, 58]. Zhao et al. [58] presented a model-based approach for
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Table 2.1: Comparison of vehicle detection and/or tracking approaches
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Fig. 2.4: two vehicle models (left: sedan, right: bus)

the segmentation and tracking of humans in crowded situations following a

Bayesian framework. They computed prior probabilities and joint likelihoods

using 3-D human models and calculated the posterior probability. Because

of the enormous complexity of the solution space, they used a data-driven

MCMC for efficient sampling of the posterior probability to search for the

optimal solution.

Ryoo and Aggarwal [42] presented a new paradigm for optimal tracking

under severe occlusion. The limitation of most of the previous human track-

ing systems following the hypothesis-and-test paradigm [14, 58] is that they

are required to maintain an exponentially growing number of hypotheses over

frames if they do not apply pruning. Under severe occlusion, pruning can re-

sult in significant tracking performance reduction, and the system was able to

overcome such limitations. However, the system only tracks humans without
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considering any other objects or their relations. The system was unable to

analyze interactions between humans and vehicles.

2.3 Human-vehicle interaction recognition

There have been several attempts to analyze human and vehicle inter-

actions. Ivanov and Bobick [23] developed an automatic surveillance which

consists of two levels, independent probabilistic temporal event detectors and

stochastic context-free grammar parsers. In the surveillance application, their

system recognizes human activities involving vehicles. Joo and Chellappa [24]

recognized activities in a parking lot such as picking up and dropping off a per-

son. The activities of “dropping off” and “picking up” are similar to “getting

out of a car” and “getting into a car”. For the recognition of such activities,

they used attribute grammars to represent the activities. Their contribution

was on the representation of specific activities using the attribute grammars,

not on the accurate detection of objects or motions. Therefore, their system

was neither fully automatic nor view-independent. Similarly, Tran and Davis

[52] proposed an approach using Markov logic networks to recognize vehicle-

related events for surveillance by integrating common sense reasoning with

uncertainty from computer vision algorithms. However, these works have fo-

cused on the detection of simple events rather than analyzing complex scenes

with severe occlusion. Park and Trivedi [39] presented an approach to analyze

moving-object interactions between humans and vehicles by using planar ho-

mography domain and semantic event grammar, but the scenes they analyzed
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were limited to simple interactions with little occlusion as well.

Lee et al. [30] proposed a system to recognize human-vehicle interac-

tions such as exiting and entering. Shape-based matching with a 3-D vehicle

model is performed to detect a vehicle, and regions-of-interest(ROIs) are ex-

tracted from four door regions of the detected vehicle next. Under the assump-

tion that the interactions occur in the ROIs, their system extracts motion and

shape features in ROIs and analyzes them to classify interactions. However,

since they did not consider spatial organizations (e.g. occlusion) between door

ROIs, their system was unable to process interactions such as ‘two persons

coming out of the car from doors on the same side’. Furthermore, similar to

[22, 24, 52], they did not attempt to analyze detailed scene configurations of

objects. They did not take advantage of event context and were unable to

analyze human-vehicle interactions in complex environments.

The descriptors based on the histogram of oriented gradient (HOG)

and histogram of oriented optical flow (HOOF) have popularly been used for

object recognition and action classification [10, 15, 32]. Dalal and Triggs [15]

used a dense grid of HOG to detect humans. Chaudhry et al. [10] recognized

10 basic human actions including running, galloping sideways, waving, and

jumping by classifying a HOOF time-series. Training sets of both systems

[10, 15] are, however, taken from the limited viewpoints (front-and-back views

or side views). Marszalek et al. [32] recognized 12 complex human actions from

various viewpoints by using a variety of descriptors. The labeled actions consist

of “getting out of a car,” “driving a car,” “shaking hands,” and “hugging a
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person.” The descriptors include HOG, HOOF, SIFT, and 3-D/2-D Harris

detectors. The problem with their system was that the recognition rate of

“getting out of car” is about 15 %, which is lower than the recognition rates

of other actions. They identified scene classes and combined them with the

descriptors in order to improve performance. The precision of the recognition

of “getting out of a car” did not improve.

2.4 Human activity recognition from aerial view

There has been an emerging interest in recognizing human activities

from aerial views in the past few years. The pioneer work by Efros et al.

[16] characterizes human actions at a distance by using an optical flow based

descriptor. They use the rectified optical flow components to describe the mo-

tion patterns between pairs of figure-centric bounding boxes and a k-nearest-

neighbor classifier to perform action recognition and synthesis. On the same

subject, Chen and Aggarwal [11] present a joint feature action descriptor,

which combines features selected from human poses and motion in a super-

vised manner. They represented poses and movements by continuous frames

of HOG and HOOF, respectively. Supervised Principle Component Analysis

(SPCA) is used to reduce the dimension of feature space and SVM classifier is

trained to classify actions. Later in their work [12], they propose a novel rep-

resentation called an action spectrogram, which characterizes human activities

using both local video content and the occurrence likelihood spectra of body

parts’ movements. Their method has been shown to further the recognition
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accuracy on two low-resolution human activity datasets [37, 45].

The approaches [22, 24, 28, 46, 52] mentioned in Section 2.3 are mostly

not applicable to the analysis of aerial videos, where the interactions are filmed

from a moving platform and the accurate characterization of object contours

and motion is not possible. For the evaluation of human activity and human-

object interaction recognition algorithms, the newly published VIRAT Video

Dataset [37] includes videos collected from stationary ground cameras as well

as unmanned aerial vehicles (UAV). This large-scale benchmark dataset fea-

tures 6 types of human-vehicle interactions in both camera settings.
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Chapter 3

Human-vehicle interaction recognition using

event context

In order to recognize human-vehicle interactions in crowded conditions,

we design a probabilistic algorithm to track humans and analyze their dynamic

relationships with vehicles using event context. Our tracking problem is for-

mulated as a Bayesian inference of finding the sequence of scene states with

the maximum posterior probability. The scene state includes individual object

states (humans and vehicles), object-object occlusions, and specific parameters

of objects, e.g. door position and status. Our system estimates and tracks

scene states frame-by-frame using MCMC, measuring the appearance simi-

larity between hypothetical 3-D scene models and the observed image. The

appearance of the scene state is described in terms of joint 3-D models and its

projection is compared with the real image. In addition, as mentioned above,

our probabilistic framework uses event-based cues to update the prior prob-

ability of object states, tracking highly occluded human-vehicle interactions

(e.g. a person opening a door) reliably. In order to handle an event which is

only detected ‘after’ its occurrence, we propose an algorithm to correct past

frames by traversing past time frames.
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Fig. 3.1: Example scene state transitions of ‘a person entering a car’. Each
Si is a scene state, and (Ai, Ei) corresponds to an observed image frame. The
goal of our system is to identify a sequence of states correctly describing the
video.

3.1 Definition of scene states

In this section, we define the ‘state’, S, of each scene. A state is a

complete description of object’s locations, their internal parameters, and re-

lationships among them in each scene image. The level of detail in the scene

state definition directly influences the system’s level of understanding image

frames, and is important for constructing a scene analysis system. Throughout

this work, our system interprets a video as an observation generated by a par-

ticular sequence of scene states (Fig. 3.1), and searches for the sequence that

best describes the dynamics of objects and their relationships in the video.

In many of the previous tracking paradigms (e.g. [14, 57]), each state is

modeled as a set of independent objects (with particular parameters) present

at each frame. Recently, the tracking paradigm has been extended to explicitly

consider occlusion among humans [42, 58]. However, these previous systems

only consider relative depth-ordering among humans, limiting themselves on

analyzing detailed states of human-vehicle interactions such as “one car is
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parked in a parking lot, its front left door is fully opened, and a person is in

the middle of getting out of the car through the door.”

In our approach, we extend the definition of the scene state so that it

can describe scene conditions more specifically. A scene state, S, is composed

of the term C describing individual object states and the term R specifying

object-object spatial relationships: S = (C,R). The object state C is a set

of cks, each describing the object class, tracking ID., and the class-specific

parameters of the kth object: ck = (clsk, idk, paramk) where clsk is the class

of the object and idk is its ID. Because there are two classes of objects (i.e. a

human and a vehicle) and they have different object properties, the parame-

ters for two classes (paramk) are defined differently. R is defined as a spatial

relationship of all objects in C. R is composed of multiple rs, each describ-

ing the spatial relationship between two different objects (i.e. whether they

are occluded, they are close to each other, or they have any spatial relation-

ships): R = ∪ci 6=cjr(i,j) = ∪ci 6=cj(type, ci, cj). For example, r(1,2) = (occ, c1, c2)

illustrates that the object c2 is occluded by c1. As a result, our scene state

not only describes the locations of individual objects but also specifies their

relative dynamics.
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3.2 Bayesian formulation

We formulate the tracking process of human-vehicle interactions as a

Bayesian inference of computing the posterior probabilities of scene states:

Smax
(1,2,...) = argmaxS(1,...,n)

P (S(1,...,n)|O(1,...,n)),

where Si is a scene state at frame i, Oi is an observation at frame i, and

n is the number of frames observed. That is, we want to compute the op-

timum sequence of scene states that matches with the observations best.

P (S(1,...,n)|O(1,...,n)) can further be enumerated as the multiplication of prior

probability and image likelihood:

P (S(1,...,n)|O(1,...,n)) ∝ P (O(1,...,n)|S(1,...,n)) · P (S(1,...,n)). (3.1)

For an efficient searching of the maximum-a-posteriori (MAP) of a scene state

in all frames, Smax
(1,...,n), we make a Markov assumption:

P (O(1,...,n)|S(1,...,n)) · P (S(1,...,n))

= P (O1, ..., On|S1, ..., Sn) · P (S1, ...Sn)

= P (On|Sn) · P (O1, ..., On−1|S1, ..., Sn−1) (3.2)

· P (Sn|Sn−1) · P (S1, ...Sn−1)(refer Appendix I for the details)

(3.3)

= P (On|Sn) · P (Sn|Sn−1)

· P (O(1,...,n−1)|S(1,...,n−1)) · P (S(1,...,n−1)) (3.4)
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Therefore,

argmaxS(1,...,n)
P (S(1,...,n)|O(1,...,n))

= {argmaxSnP (On|Sn) · P (Sn|Sn−1),

argmaxS(1,...,n−1)
P (S(1,...,n−1)|O(1,...,n−1)) (3.5)

From Equation 3.5, P (On|Sn) · P (Sn|Sn−1) needs to be calculated to search

MAP scene state in frame n. Intuitively, P (On|Sn) is the likelihood between

the observed image and the scene state at frame n, and P (Sn|Sn−1) describes

the transition probability.

We further extend our Bayesian formulation to take advantage of ‘event

context’ for reliable and detailed tracking of scene states. As mentioned in

the previous sections, event detection results can be treated as an important

feature that benefits the tracking process greatly. The state tracking problem

must be formulated so that it takes into account the fact that occurrences of

events must meet with the states of the scenes during the event. For example,

if the event of the person getting out of the car is clearly occurring, then there

is little possibility that the person was out of the scene during this event.

While an observation O corresponds only to an image appearance A in

most of the previous systems, we extend the Bayesian tracking formula so that

certain events between a vehicle and a human change the prior probabilities

of objects. Therefore, observation O is defined to include both appearance A
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and event E.

P (On|Sn) · P (Sn|Sn−1) = P (An, En|Sn) · P (Sn|Sn−1)

= P (An|Sn) · P (En|Sn) · P (Sn|Sn−1)

∝ P (An|Sn) · P (Sn|En) · P (Sn|Sn−1) (3.6)

That is, we assume P (En) is uniformly distributed. In Equation 3.6, P (An|Sn)

represents the similarity between an input image and an object model. P (Sn|En)

represents the prior probability of an image frame n in a particular state Sn,

given an occurrence of an event E. If object states are assumed to be in-

dependent on events as in previous systems, P (Sn|En) is the same as P (Sn).

P (Sn|Sn−1) shows the conditional probability of scene states in continuous two

frames.

By solving the formulated Bayesian inference problem, we are able to

estimate the most probable sequence of scene states. Each of the probability

terms described in this section is modeled more explicitly in the following

sections.

3.3 Probabilistic modeling

In this section, we present the method to compute Bayesian probability

‘given’ each scene state and image frame (e.g. Fig. 3.2). We present a 3-D scene

(human and vehicle) model which is used for calculating appearance likelihood,

and introduce our ‘event context’ that influences states’ prior probabilities for

contextual inference. The methodology to search for the optimal scene state
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based on these models will be discussed in Section 3.4.

3.3.1 Appearance likelihood, P (An|Sn)

Our comprehensive definition of a scene state enables the system to

construct a virtual appearance of the scene given its state. We use a 3-D

model of a human (or a vehicle) to represent an appearance of each individual

object ck. The motivation is to estimate the optimal appearance of an indi-

vidual object ck in the scene as a 2-D projection of its 3-D model, so that it

can be compared with the real image to measure the appearance likelihood.

Furthermore, the appearance of multiple overlapped objects are modeled by

considering the spatial relationship of the objects R. Fig. 3.2 shows an exam-

ple 2-D projection of a 3-D scene model consists of several 3-D human and

vehicle models. We take advantage of such appearance model to compare it

with a real image to measure the state likelihood. The camera parameters for

the projection are assumed to be known.

3.3.1.1 3-D vehicle model

Our system assigns a 3-D model for each vehicle appearing in the scene.

Based on the parameters of the vehicle state, a snapshot of the 3-D vehicle

model is computed at each frame to obtain its virtual appearance. A vehicle is

described with the following parameters: (x, y, size, orient, tilt, type, door).

x and y are the center xy-coordinates of the vehicle, size is the resize factor
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Fig. 3.2: An example appearance of a projected 3-D scene state (right image)
corresponding to an input image (left one). The 3-D scene model is constructed
based on Sn, and is used for the appearance likelihood computation.

of an 3-D template image, orient is the orientation of the vehicle, tilt is the

tilt angle of the vehicle, type is the type of the vehicle (e.g. sedan and sport

utility vehicle), and door is the parameters of all doors to describe how far the

doors are open (closed, partially opened, and fully opened). The orientation

and tilt angle of a vehicle are quantized and sampled for 5 degrees. Sample

2-D projection images of a 3-D vehicle model with an opened door are shown

Fig. 3.3(a).

3.3.1.2 3-D human model

Similar to our 3-D vehicle model, a 3-D model is assigned per person

in the scene. A human is described with the following parameters: (x, y, size,

orient, tilt, type, color histogram, velocity). x, y, size, orient, and tilt of a

human are defined similar to those of a vehicle. Two types of human models
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(a)

(b)

Fig. 3.3: (a) 2-D projections of 3-D vehicle models representing door opening
states. (b) 2-D projections of 3-D human models. The left four images are
from a standing model and the right four images are from a walking model.

are used: walking and standing. In addition to the 3-D human shape model, a

color histogram is used to detect and distinguish human objects [58] in order

to handle non-rigid human appearances. For human objects, we calculate

color histogram on three regions of humans such as a head, an upper body,

and a lower body. The velocity is also calculated for tracked human objects

to be applied in Kalman filtering. The orientation and tilt angle of a human

are digitized and sampled for 90 degrees and 5 degrees, respectively. Each 3-D

human model at a frame is generated based on these parameters. Sample 3-D

human models of two types are presented in Fig. 3.3(b).
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3.3.1.3 Human-vehicle joint model

A human-vehicle joint model is constructed per scene by considering the

spatial relationship (e.g. occlusion) R of humans and vehicles. We construct

a complete 3-D scene model composed of multiple 3-D object models, so that

its 2-D projection may be compared with the real image. A 3-D scene model

essentially is a set of 3-D human and vehicle models whose relative spatial

relationships are described with R.

The process to obtain a projection of a joint scene model (given a

particular scene state) is as follows: 1) Build a blank canvas whose size is

the same as the real image for representing a scene model. 2) Choose object

ck which does not occlude any non-chosen object, based on R. 3) Draw the

2-D projection of the object ck. 4) Repeat 2) and 3) until all objects are

drawn. That is, we are essentially drawing all objects into a blank image

in a particular order so that an occluded object is drawn before the object

occluding it. Drawing each object can be done using the 3-D human/vehicle

individual models. Note that spatial relationship R specifies which object is

occluded by which, enabling the overall joint model projection process.

To construct a complete projection of a 3-D scene model, object-object

spatial relationship (R) should be calculated. The spatial relationship between

humans or between vehicles can be obtained based on xy-coordinates of the

objects. Based on the following criteria, we build R for each Sn using its C

value. The two criteria for deciding relations of human-human occlusion and

vehicle-vehicle occlusion are: 1) If the feet of person cpk1 are located under
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Fig. 3.4: Example occlusion types generated based on the simulation. Rep-
resentative occlusion types describing relationships among human, door, and
vehicle body are presented.

the feet of person cpk2 and two people are overlapped in an image, person cpk1

occludes person cpk2. 2) If the center of vehicle cvk1 is under the center of vehicle

cvk2, vehicle cvk1 occludes vehicle cvk2. Human-vehicle occlusion is more complex

to process compared to the other two types of occlusion, due to the existence

of doors. A relation between an overlapped human and vehicle (i.e. which is

occluding which) is estimated by comparing C with several simulated occlusion

types. As shown in Fig. 3.4, we construct several representative occlusion types

with a rough simulation, and compare which occlusion type matches the given

C of the scene Sn best. The depth order of the best matching occlusion type

is chosen to be the relation between the human and the vehicle.

3.3.1.4 Joint image likelihood

Here, we present how we actually compute the appearance likelihood

based on the projection of the joint model described above. We compare

the expected appearance (i.e. 2-D projection) generated from the 3-D scene

model with a real image. We measure the distance between the image and

the model for each object ck, and sum them to compute the state-image dis-
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tance. That is, assuming conditional independence among appearances of non-

occluded object regions given the 3-D scene model, we can calculate P (An|Sn)

as
∏

ck
P (An|M(ck)), where M(ck) is a non-occluded region of object ck ob-

tained in the previous section. P (An|M(ck)) can be measured by calculating

the ratio of the number of foreground pixels of M(ck) to the number of fore-

ground pixels on the region (P (FLk |M(ck))) and pixel-wise color distances

(P (CLk |M(ck))). Thus, P (An|Sn) can be calculated as shown in Equation 3.7.

P (An|Sn) =
∏
ck

P (An|(ck, R)) =
∏
ck

P (An|M(ck))

=
∏
ck

{P (FLk |M(ck)) · P (CLk |M(ck))} (3.7)

3.3.2 Dynamics Likelihoods, P (Sn|En) · P (Sn|Sn−1)

In this subsection, we model two probability terms that influence the

posterior probability, P (Sn|En) and P (Sn|Sn−1). Intuitively, the former corre-

sponds to the probability of the ‘event context’ supporting the states, and the

latter specifies the influence of the previous frame state to the current state.

We discuss how we model each of these terms describing scene dynamics.

3.3.2.1 Event Context, P (Sn|En)

As we have formulated in Section 3.2, the probability of the scene in a

particular state Sn is highly dependent on its event context. The occurrence

of an event at a particular time interval (i.e. a pair of a starting time and
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an ending time) suggests that the states within the interval must follow a

particular distribution; the state sequence must contextually agree with the

event. Here, we model such probabilistic distribution of the interval’s states

for each event class (i.e. type). The goal is to assign scene states that match

event detection results with higher probability values.

Let a pair (ts, te) be a time interval of an event e. Then, we model the

distribution P (Sn|En = e) for all states of ts < n < te to have a distribution

learned from training examples of the event e. Similar to the case of appearance

likelihood computation, we assume conditional independence among objects

in the scene as follows:

P (Sn|En = e) =
∏
ci

P (ci|En = e) ·
∏
cj

P (cj|En = null) (3.8)

where ci are the objects involved in the event e, and cj are the other objects.

We assume that the event time intervals do not overlap, meaning that there’s

only one (or no) event going on at a particular time frame.

We model each P (ci|En = e) based on training data. We assume that

all states within the event’s interval show an identical probability distribu-

tion, ignoring their temporal order. Given a set of example state sequences

corresponding to the event intervals, P (ci|En = e) is learned by considering all

observed ground truth states to be sampled from the same distribution. More

specifically, we model P (ci|En = e) to have a 3-dimensional distribution where

the first dimension specifies whether the object ci is in the scene and the other

two dimensions specify the relative XY-coordinates of the object. As a result,
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the system makes certain spatial locations more probabilistically preferable

than others for the object during the event interval. Our event context has

an effect of narrowing down the state search space, making the scene state

tracking process more efficient and reliable.

In principle, our proposed methodology is able to cope with any number

of events as long as their state distributions can be learned. However, in this

work, we have chosen the three events which most effectively benefits the

scene tracking process for computational efficiency. The defined events are 1)

a person gets out of a vehicle, 2) a person approaches and opens a door of

a vehicle, and 3) a person is sitting inside a car. For example, in the case

of the third event, the distribution of the locations of the person ck during

the event’s time interval will be modeled to be centered at the seat. Thus,

our event context consideration process will update all P (Sn|En) within the

interval so that it penalizes the states representing the location of the ck to

be somewhere else. All of this is done by learning the distributions based on

training examples.

We discuss more about how we actually detect events’ time intervals

and take advantage of them in Section 3.4.

3.3.2.2 Previous State, P (Sn|Sn−1)

The term P (Sn|Sn−1) describes the probability of the objects (i.e. hu-

mans and vehicles) in a certain scene state Sn, given their state at the previous

frame n − 1. Our system’s consideration on the previous state is done in a
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straight forward fashion. Similar to previous tracking algorithms [42, 58], our

system assumes linear movements of objects. Based on the XY velocity of the

object, the distribution of P (Sn|Sn−1) is modeled to have a Gaussian distri-

bution centered at the expected location using the previous state.

3.4 MAP searching by MCMC

In this section, we present an algorithm to search the scene state Smax
n

providing the highest posterior probability at time frame n. What we presented

in Section 3.3 is a method to compute the posterior probability of each scene

state Sn, and we now search for the optimum state among them. A trivial

approach is to perform brute force searching. However, the high dimensionality

of our solution space requires a fast maximum-a-posteriori (MAP) searching

algorithm. Markov Chain Monte Carlo (MCMC) has been widely used in

complex tracking systems for efficient MAP searching. We apply the following

three procedures to search MAP.

3.4.1 Markov Chain Monte Carlo Dynamics

Our MCMC algorithm searches for the best scene state at each frame.

It randomly applies one of the predefined moves to Sn, iteratively updating

the Sn for hundreds of rounds while searching for the one with the highest

probability. We have adopted a Metropolis-Hastings algorithm with reversible

jumps [18]. At each iteration, our Metropolis-Hastings algorithm applies a

randomly selected move to an individual object state ck of Sn to obtain S ′,

37



which will either be discarded or accepted as the new Sn. The initial value

for Sn is set to be Sn−1, and is iteratively updated. The prior probability of

selecting a human as ck to update is 0.9 and that of selecting a vehicle is 0.1.

The list of MCMC sampling moves are as follows:

1. Object addition hypothesis. Randomly select a vehicle or person

to be added in the scene. All parameters of an object are randomly

chosen from prior object parameter distribution, except for the position

(x, y). The center position of an object will be randomly located on the

foreground pixels.

2. Object update hypothesis. Change parameters of objects based on

their prior probability distributions. For human objects, the values of

x, y, size, type, and orient are updated. The other parameters are

automatically calculated using the knowledge of the camera model and

the ground plane. For vehicle objects, the values of x, y, size, orient,

type, and door are updated as well.

3. Object removal hypothesis. Randomly select a vehicle or a person

to be removed from the scene.

At every iteration of the dynamics, the system updates object-object

spatial relationship (R) from the updated individual object states (C). There-

fore, the system can obtain a new scene state (S ′) and calculate P (On|S ′) ·

P (S ′|Sn−1). We accept the scene state S ′ for Sn if the P (On|S ′) ·P (S ′|Sn−1) is
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Fig. 3.5: Example candidate scene states, S ′, obtained during our MCMC
iteration. Various MCMC sampling moves have been sequentially applied to
search for an optimal scene state, Smax

n .

larger than P (On|Sn)·P (Sn|Sn−1). The experimental results are obtained after

200 iterations. Fig. 3.5 shows an example iteration of our MCMC process.

3.4.2 Event Detection

In order to search for the scene state providing the maximum poste-

rior probability, events occurring during human-vehicle interactions must be

detected. The detected events will enable the computation of the dynamics

likelihood probability using event context (i.e. Section 3.3.2), making our sys-

tem able to track detailed scene states. In principle, any of the existing activity

recognition methodologies can be adopted for the detection of events. In our

implementation, events are recognized using a rule-based elementary detector

with a simple criterion; our elementary detector is activated (i.e. it detects

an event) by checking whether the previous state Sn−1 satisfies the encoded

rules of the event. That is, we say that the event is occurring if the rules are
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satisfied and use this information as an event context to compute the state

probabilities.

Note that the detector is activated at a particular time point, instead

of fully providing events’ intervals. In general, the detector is activated either

at a starting time or an ending time of the event depending on its character-

istics. No exact time interval is provided, and most events are detected ‘after’

the event has occurred. This implies that the probability computation using

the event context presented in Section 3.3.2 is difficult in a standard forward

inference process. It is not capable of recalculating the past states even if the

system later finds that an event has occurred in the past frames. This situa-

tion occurs commonly for the detectors which are difficult to compute exact

occurring time intervals (e.g. traditional hidden Markov models), and hence

we present a forward/backward probability updating process in the following

subsection. The motivation is to dynamically update future (or past) frames

that are expected to be within the time interval until the event conditions are

violated.

The detailed detection criteria of our three events, “a person getting

out of a car,” “a person approaching and opening a door of a vehicle,” and “a

person sitting inside a car” are as follows:

1. A person getting out of a car. The event of “a person getting out

of a car” is detected at time te, which is the ending frame of the event’s

time interval. The detection rules are 1) a new person appears near a
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door d and 2) the door d is open. That is, we assume that the new

person came out from the door.

2. A person approaching and opening a door of a vehicle. The event

of “a person approaching and opening a door of a vehicle” is detected

at time ts, which is the starting time frame of the event’s time interval.

The detection rules are 1) a person from outside the scene boundary

approaches a door d (i.e. their distance becomes small) and 2) the door

d was closed at ts. The event continues until the person disappears or

the distance between the person and the vehicle becomes larger than a

threshold.

3. A person sitting inside a car. The event of “a person sitting inside

a car” is detected at frame ts (i.e. starting time), when the following

conditions are satisfied: 1) a person ck disappears near a door d at frame

ts and 2) the door d was opened at frame ts. The event continues until

the person reappears from the door.

3.4.3 Updates with Backward Tracking

As mentioned in the previous subsection, many events tend to be de-

tected ‘afterwards’, making the MCMC-based MAP state computation with

event context difficult. What we present in this subsection is a methodology

to support our event context-based scene state tracking by compensating for

such late detections using a backward re-tracking process.
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We say that an event has a forward characteristic if it is detected at its

starting time, and has a backward characteristic if it is detected at its ending

time. Basically, unless an event having a backward characteristic occurs, our

system progresses the computation of MAP states in a forward direction using

the MCMC-based algorithm presented in Section 3.4.1. This process is similar

to hidden Markov models or other sequential state models. The system as-

sumes that no event is going on, if no forward event has been detected (it may

later correct it if an event with a backward character is detected afterwards).

If a forward event e is detected at frame ts, the system records that the event

is starting to occur from the frame ts and considers the event context for each

frame n such that ts < n. This event context consideration (i.e. En = e) is

applied for future frames, as long as the conditions of the event are satisfied,

influencing P (Sn|En).

The backward probability update process is described as follows. Once

a backward event is detected, our system initiates the tracking process in the

backward direction, starting from the frame te where the event is detected.

That is, we update (or re-estimate) the scene states of frame n such that

n < te. Leaving non-related objects cjs unchanged, the system recalculates

P (ci|En = e) for event related objects cis at frame n and recomputes P (Sn|On)

to search for the MAP state. This backward traversal process is continued

until the event conditions are violated. For example, in the case of the event

‘a person getting out of a vehicle’, the backward traversal is continued until

the person disappears in the backward tracking process (i.e. until the system
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Fig. 3.6: An example backward tracking process initiated by the event ‘a
person exiting a car’. The event triggers the backward tracking, successfully
correcting previous scene states to contextually agree with the event.

reaches the frame where he/she comes out of the vehicle for the first time).

Fig. 3.6 shows an example backward tracking process. For computational

efficiency, we concatenate the backward process for a certain amount of frames

(i.e. delays the initiation of the backward tracking mode), so that the backward

updates can be done at once without having a duplicate update process.

3.5 Experimental results

We tested the system’s ability to track scene states from videos of hu-

mans interacting with a vehicle. We generated a dataset of 20 video sequences

for our experiments. Each video sequence includes one vehicle and one to four

interacting persons. Each person either enters into or gets out of the car (or

both) in a video at least once. The videos were filmed at 12.5 frames per sec-

ond with the resolution of 360 by 240 pixels. Five different actors participated
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in the experiment, and a total of 2535 frames have been collected.

In each sequence, an actor interacts with a vehicle at least once and

at most twice. In the first 12 sequences, each actor appearing in the scene

(note that there can be 1 to 4 actors) performs both ‘entering’ and ‘exiting’

interactions. In the other 8 sequences, only one interaction is performed per

actor. Among 20 sequences, 6 videos were taken with a single actor, another

6 videos contain two actors, and the other 8 videos were taken with four

actors. As a result, a total of 36 entering and 35 exiting interactions are

performed. The videos with four actors are particularly challenging, since

multiple persons participate in the interaction with the vehicle body and doors,

occluding each other as we can observe from Fig. 3.7 (c). We have measured

the tracking accuracies of all persons appearing in the videos. For each person,

the system estimates his/her trajectory using our approach and compares it

with its ground truth trajectory. The tracking process at each time frame is

said to be correct if the tracked bounding box of the person overlaps more than

75% of the ground truth bounding box. For each estimated trajectory, we find

the longest interval in which the object is correctly tracked. We define the

tracking accuracy as the length of this longest interval divided by the length

of the entire ground truth trajectory. The tracking accuracies of persons are

averaged to measure the mean accuracy of our system.

We have compared our system, scene state with event context (SSEC),

with a baseline system similar to [58], which considers occlusion among persons

and uses MCMC to solve the tracking problem. This system does not take
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Table 3.1: Tracking accuracy results

Scene Avg. Tracking Accuracy Number of

condition Baseline* SSEC Frames

1 person 85.4 % 92.0 % 852

2 persons 85.2 % 93.3 % 788

4 persons 67.5 % 81.5 % 895

Total 79.1 % 88.7% 2535

Table 3.2: *Baseline: MCMC based human tracking using only 3D human
model. SSEC: Scene state with event context

advantage of a 3-D vehicle model or event context, and tracks objects purely

in terms of human models. The objective of this implementation is to compare

our system with others to confirm the advantage of our new system using event

context.

Table 3.2 shows the overall tracking accuracies of the two systems. Our

approach clearly outperforms the baseline. The previous method performed

particularly worse for videos with four persons. This is due to its inability to

analyze detailed scene states with severe human-vehicle occlusion. We are able

to observe that the use of 3-D scene state models and event context benefits

the system greatly. The tracking accuracy of one-person scenes and that of

two-person scenes are observed to be similar. This result is because of the fact

that the occlusions in two-person scenes are not severe: each of them usually

gets in or out of the car from a different direction. Therefore, the difficulty

of tracking humans in one-person scenes was similar to the one in two-person

scenes. Fig. 3.7 shows example tracking results of human-vehicle interaction
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videos. Actors appearing in the videos are tracked very accurately by our

improved tracking system. Tracking of one person in Fig. 3.7 (c) failed at the

beginning of his appearance, but the system was able to recover quickly.

In addition to measuring tracking performance, We have compared the

activity recognition rate of our previous approach - ROI / view-independent

features (ROI/VIF) [30] and this approach - scene state and event context

(SSEC). Three more exiting sequences are added (39 exiting, 36 entering).

Total of 75 sequences are temporally segmented and each sequence contains

one action of getting into or getting out of a car. True negatives are not

counted in this experiment.

Table 3.8 and Table 3.9 show the interaction recognition results of

ROI/VIF and SSEC, respectively. SSEC approach performed 78.6% overal

accuracy rate and ROI/VIF approach performed 54.0% overal accuracy rate.

Fig. 3.10 and Fig. 3.11 show comparison results of our two methods,

ROI/VIF and SSEC. “Person getting into” activity shows more accurate re-

sults than the other activity. ROI/VIF method shows low precision due to

false positives from overlapped door regions.
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Fig. 3.7: An example of tracking results on humans interacting with a vehicle
in various environments: (a) one person exits and enters a car, (b) two people
enter a car, and (c) four people exit a car.
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Fig. 3.8: Human-vehicle interaction recognition results of ROI / view-
independent features approach

Fig. 3.9: Human-vehicle interaction recognition results of scene state with
event context approach
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Fig. 3.10: Comparison results of ROI / view-independent features approach
and scene state with event context approach in each activity.

Fig. 3.11: Comparison results of ROI / view-independent features approach
and scene state with event context approach on accuracy rate, precision, and
recall.
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Chapter 4

Human-vehicle interaction recognition using

dynamic context

In this chapter, we design a probabilistic algorithm to track humans

and analyze their dynamic relationships with vehicles using dynamic context

including motion context and event context. We also present a robust vehicle

alignment method. The motion of interactions between humans and a vehicle

cannot be analyzed without reliable vehicle alignment. Furthermore, we ex-

tract view-independent features which allow for the system to analyze motion

context with a lower number of training samples.

4.1 Bayesian formulation

We have formulated the tracking process of human-vehicle interactions

as a Bayesian inference of computing the posterior probabilities of scene states

in Section 3.2:

Smax
(1,2,...) = argmaxS(1,...,n)

P (S(1,...,n)|O(1,...,n)),

where Si is a scene state at frame i, Oi is an observation at frame i, and n

is the number of frames observed. Again, we want to compute the optimum

sequence of scene states that matches with the observations best.
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Here, we extend our Bayesian formulation to take advantage of not only

‘event context’ but also ‘motion context’ for reliable and detailed tracking of

scene states. As mentioned in the previous sections, motion analysis results can

be treated as an important feature that benefits the tracking process greatly.

While our previous formulation described in Chapter 3 is not able to

integrate motion analysis and event context to the framework, we extend the

Bayesian tracking formula as shown in Equation 4.2 so that certain events

between a vehicle and a human and their motion/action change the prior

probabilities of objects. Furthermore, event detection results can be proba-

bilistically integrated. Observation O is defined to include appearance (A)

and dynamics (D) from motion(M) and event(E). We make a second-order

Markov assumption for dynamic context:

P (On|S1, ..., Sn) · P (Sn|Sn−1) (4.1)

= P (An|Sn, Sn−1) · P (Dn|Sn, Sn−1) · P (Sn|Sn−1)

= P (An|Sn) · P (Sn|Dn, Sn−1) · P (En|Sn−1) (4.2)

In Equation 4.2, P (An|Sn) represents the similarity between an input image

and an object model. P (Sn|Dn, Sn−1) represents the probability of an current

frame n in a particular state Sn, given an occurrence of dynamics Dn and a

previous frame n− 1 in a scene state Sn−1. P (En|Sn−1) shows the conditional

probability of an event En given a previous scene state Sn−1 (refer Appendix

I for the details).

By solving the formulated Bayesian inference problem, we are able to
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estimate the most probable sequence of scene states. New or modified prob-

ability terms from our previous formulation are described more explicitly in

the following sections.

4.2 Appearance likelihood, P (An|Sn)

Calculating an accurate appearance likelihood for ‘a vehicle’ is one of

the important steps in human-vehicle interaction recognition. Without robust

vehicle alignment, our system can easily fail to recognize any interactions be-

tween humans and a vehicle. Here, we present the proposed vehicle alignment

methods without shadows and with shadows in the scene.

4.2.1 Vehicle alignment without shadow

After a blob is classified as a vehicle, we extract its geometric param-

eters and type by the shape based matching of 3-D vehicle models. We build

synthetic 3-D vehicle models of a sedan and an SUV (sports utility vehicle),

then extract 2-D templates from the 3-D models. We adopt Song and Nevatia’s

approach [47]. They extracted 2-D images for 72 bins from a 360◦ orientation

and 19 bins from a 90◦ tilt angle for optimal processing. Each 3-D vehicle

model has 1368 extracted 2-D templates. Sample images of 2-D templates

from our 3-D vehicle models are shown in Fig. 4.1.

For the shape based matching, the system scales the 2-D vehicle tem-

plates to have a similar size as the foreground blob. The system calculates an

area matching score and a contour matching score. The area matching score
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Fig. 4.1: Extracted 2-D templates from a 3-D vehicle model (sedan)

is the number of overlapped pixels of blobs and 2-D templates. The contour

matching score is obtained by chamfer matching [3] on edges of blobs and

contours of 2-D templates. The system calculates the final matching score by

multiplying the two matching scores. The geometrical parameters and type

of a vehicle can be extracted from the 2-D template which has the maximum

value of the final matching score. The detection of an SUV from eight different

orientations is shown in Fig. 4.2.

Vehicle blobs are tracked through frames. In general, the orientation,

tilt angle, and class of the vehicle blobs do not change abruptly. We use this

knowledge in order to improve the match process. While a vehicle blob is
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Fig. 4.2: A vehicle from various viewpoints is detected, and its silhouettes are
marked by white color lines. The silhouettes are generated by a 3-D vehicle
model (SUV).

detected and tracked, our system calculates a match score on each frame and

the transient cost on continuous frames. We find a solution that maximizes the

summation of the match score and minimizes the summation of the transition

cost through the frames. Dynamic programming produces an optimal solution

without excessive computation.
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4.2.2 Vehicle alignment with shadow

If a video is taken in a cloudy day or indoor, the effect of shadows is

minimal as shown in Fig. 4.2. However, the existence of vehicle shadows can

sometimes be a serious problem in vehicle alignment because a silhouette of

vehicle blob changes significantly as shown in the Fig. 4.3. In this circum-

stance, shape based matching of 2-D vehicle templates in Section 4.2.1 can be

no longer successful. Surveillance videos often provide metadata such as time,

weather, and so on. Based on a given metadata, we model the sun light on our

vehicle models and generate synthetic shadow casted on a ground as shown in

Fig. 4.4. Our shape based matching introduced in the previous subsection can

become more accurate with this new templates. Examples vehicle alignment

results with original vehicle templates and shadow-casted vehicle templates

are shown in 4.5.

4.3 Dynamics likelihoods, P (Sn|Dn, Sn−1) · P (En|Sn−1)

In this section, we model two probability terms that influence the pos-

terior probability, P (Sn|Dn, Sn−1) and E(Sn|Sn−1). Intuitively, the former

corresponds to the probability of the ‘dynamic context from event context and

motion context’ supporting the states, and the latter specifies the chance of

an event occurrence given the previous frame state. We discuss how we model

each of these terms by describing the scene dynamics.
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Fig. 4.3: (a) Source images of cars with shadows on the ground (b) Its
foreground blob detected by background subtraction. Because of the casted
shadow, the shape of vehicle blobs changed

4.3.1 Dynamic context, P (Sn|Dn, Sn−1)

In this subsection, we will describe a methodology to calculate the dy-

namic context. P (Sn|Dn, Sn−1) is proportional to P (Sn|En, Sn−1)·P (Sn|Mn, Sn−1)

(refer Appendix I for the details). Since the event context (P (Sn|En, Sn−1)) is

explained in Chapter 3, we will explain the motion context (P (Sn|En, Sn−1))

of our new framework in the following.

4.3.1.1 View-independent feature extraction

The extraction of appropriate features is an important step that en-

ables the system to operate fast and robustly. We extract view-independent
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Fig. 4.4: Given light condition, shadows are synthetically generated with vehi-
cle templates, and we can apply shape based matching with this new templates
on a blob of a vehicle with a shadow.

Fig. 4.5: (a) Vehicle detection using 2D templates from 3D vehicle models
without shadow (b) Vehicle detection using 2D templates from 3D vehicle
models with shadow.
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features after a vehicle is correctly localized. By using 3-D vehicle models,

regions-of-interest (ROIs) are specified. On each ROI, we extract the optical

flow and gradient. The optical flow field is not view-independent. To make

it view-independent, the system transforms it using 3-D vehicle models. The

transformation is accomplished by measuring the direction of a door opening

or closing that fits the optical flow field. We illustrate these processes below.

The careful specification of regions is an important step in ROI analysis. In

the human-vehicle interactions of “a person getting into/out of a vehicle,” a

vehicle is parked so it does not change its location and orientation. Therefore,

the system specifies ROIs only once in a human-vehicle interaction. People

can get in or out of a vehicle through specific regions (door regions). Thus,

the extraction of features on the ROIs can be enough for the recognition of

interactions. By maintaining multiple ROIs, the system is also able to recog-

nize several interactions simultaneously (e.g. a driver and a passenger getting

out of a vehicle at the same time). We can specify ROIs of a vehicle using 3-D

vehicle models with movable doors after accurate localization of a vehicle. The

ROIs are correctly sized and located on the vehicle by using the 3-D vehicle

models as shown in Fig. 4.6.

4.3.1.2 Transformation of the optical flow field

To recognize human-vehicle interactions, it is critical to understand the

motion of humans. Because we use optical flow to detect and analyze motion,

accurate optical flow calculation is important for motion analysis. Ogale and
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Fig. 4.6: ROI extraction. The regions of four doors are extracted separately.

Aloimonos [35, 36] proposed an advanced optical flow detection algorithm and

presented its implementation. We apply their implementation to extract the

optical flow accurately. However, relying on the raw extracted optical flows

may cause problems because the optical flow field appears different as the

viewpoint changes. Particularly, the raw optical flow field cannot distinguish

whether a human opens or shuts a door.

We propose an approach to transform the optical flow field, so the

system is able to extract view-independent features. Using the transformation,

the system makes the direction of optical flow vectors extracted from the same

interaction occurrences similar, regardless of its viewpoint. The direction of

the optical flow ranges from 0 to 2π. By transformation, we normalize the
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Fig. 4.7: 2-D templates from various viewpoints including door open-
ing/closing directions and their graphs representing the range of direction.
Optical flow is remapped by the direction of a vehicle. When a driver side
door is opened (closed), optical flow vectors on the ROI are transformed so
their angles range from 0◦ to 90◦ (from 180◦ to 270◦).
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range of direction of the optical flow on opening (or closing) a door to be from

0 to π/2 (or from π to π·3/2). In order to do that, we estimate the direction

of a door opening (or closing) using 3-D vehicle models. In the 3-D vehicle

models, we draw a curved line for each door to represent the direction. As

we change the orientation of the vehicle models, the shape of the curved line

changes also as shown in Fig. 4.7. We can estimate the range of direction for a

door opening (or closing) from the selected 2-D templates (from Section 4.2.1)

of the 3D models as shown in Fig. 4.8. Let [θ1, θ2] (or [θ3, θ4]) be the range of

direction for door opening from an assigned viewpoint. We can now transform

the direction of the optical flow vectors by using the following equation:

Θ′ =
π

2
·
(

mod(Θ− θi, 2π)

mod(θi+1 − θi, 2π)
+ (i− 1)

)
(4.3)

if {θi ≤ Θ ≤ θi+1} or {θi+1 ≤ θi & (Θ ≤ θi+1‖θi ≤ Θ)}

for i = 1, 2, 3, 4 (θ5 = θ1)

As a result, the system obtains a set of optical flow vectors whose

direction is transformed to be view-independent. Using our 3-D vehicle model,

the system adaptively transforms the vectors depending on the viewpoint.

4.3.1.3 Histogram of transformed & oriented optical flow and his-
togram of oriented gradient

We build two histograms to reduce the dimension of features. One

histogram is of the optical flow field for analyzing motion and the other his-

togram is of the gradient field for analyzing shape. Both transformed optical
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Fig. 4.8: Estimated direction of opening a driver’s door from all orientation
and tilt angles of a vehicle (θ1, θ2).
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flow and raw image gradients are used to construct the histograms: motion is

significantly dependent on viewpoints, while the shape of humans is not.

We classify sub-events (SA
n ) from the motion context (EM) and the

known vehicle state (SV
n−1). We extract parameters (geometric parameters

and a type), optical flow field (opfl), and gradient field (grad). After specifi-

cation of ROIs and transformation of the optical flow field, we can obtain the

transformed optical flow field (T-opfl) and gradient field on ROI. For dimen-

sionality reduction, we build a histogram of transformed & oriented optical

flow (T-HOOF) and a histogram of oriented gradient (HOG).

P(SA
n | EM , SV

n−1) ≈ P(SA
n | param, I)

≈ P(SA
n | param, opfl(I), grad(I))

≈ P(SA
n | T -opfl(ROI), grad(ROI))

≈ P(SA
n | T-HOOF(ROI), HOG(ROI)) (4.4)

Here, SA
n refers to the sub-event of a human in frame n and param

are the geometric parameters and type of vehicle. opfl (I ) and grad (I ) are

the optical flow field and gradient field on image I, respectively. To build a

histogram of transformed & oriented optical flow (T-HOOF), we create 9 bins

for each direction (opening, closing, and the two others) so that we have 36

bins in 360◦ for the histogram. Each optical flow vector is weighted by its

magnitude and is smoothed by Gaussian filter. To make the T-HOOF scale-
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invariant, each bin is divided by the area of the ROI. Examples of T-HOOF

and HOOF representations are shown in Fig. 4.9.

The second feature is HOG on ROIs. T-HOOF is a strong feature for

detecting motion. However, the system may not distinguish the sub-event of

“a person opening a door” from the sub-event of “a person appearing from a

vehicle.” To overcome this difficulty, we calculate the gradient field on pixels

where the magnitude of the optical flow vectors is not zero. Because the

shape of humans is more complex than the shape of doors (more edges), the

magnitude of the gradient on humans is generally higher than the magnitude

of the gradient on doors. We use the same number of bins for the HOG as the

ones from the calculation of the T-HOOF.

4.3.1.4 Training human actions

When a person gets into or out of a vehicle, the person performs several

distinguishable actions. In order to get in a vehicle, a person gets close to

the vehicle, opens a door, disappears into the vehicle, and closes the door.

Similarly, in order to get out of a vehicle, a person opens a door, appears from

the vehicle, closes the door, and steps away from the vehicle. To represent

these sub-events, we define six classes of actions as follows: “person appearing

into / disappearing from a vehicle,” “person opening / closing a door,” “person

walking around a vehicle,” and “no movements.”

We train an SVM classifier to classify these six sub-events (SA
n ) by using

the motion context (EM) and vehicle state (SV
n−1). Several researchers [10, 32]

64



Fig. 4.9: Representations of HOOF and T-HOOF. (a) and (b) represent the
same sub-event, “a person opens a door,” but they are taken from different
viewpoints.
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used an SVM classifier with HOOF and/or HOG features, and they showed

that an SVM classifier performs well with these features. Instead of training

P(param, opfl(I), grad(I) | SA
n ), we train P(T-HOOF(ROI), HOG(ROI) | SA

n )

after extracting T-HOOF and HOG features. We use an SVM classifier with

a RBF kernel to train the features simultaneously. We classify the six classes

of actions on ROIs robustly using those two features in various viewpoints.

More details on the classification results of these sub-events are presented in

Section 4.4.

4.3.2 Event detection, P (En|Sn−1)

Once our system is trained for six sub-events, our system is able to

detect event based on the classification of actions in every frame. Temporal

filtering is performed to improve initial sub-event classification performance

and to cluster video frames which are classified as the same sub-event. Thus,

we can have a series of sub-events which are composed of consecutive frames.

Ryoo and Aggarwal [44] proposed a general methodology for complex

human activity recognition using Allen’s event presentation [2]. Compared

with their system, our system does not require the recognition of general hu-

man activities to solve the problem. All the actions are represented by one

interval of temporal logic, “before.” The representations of actions that a per-

son gets into or out of a vehicle are as follows, where Cp denotes a person

object and Cv denotes a vehicle object.
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person getting out of vehicle(Cp, Cv) = (

list( def(o, open door(Cp, Cv)),

list( def(a, appear from vehicle(Cp, Cv)))),

and( before(o, a) )

);

person sitting inside vehicle(Cp, Cv) = (

list( def(o, open door(Cp, Cv)),

list( def(d, disappear into vehicle(Cp, Cv)))),

and( before(o, a) )

);

We represent the probability P (En|Sn−1) by using the detection of these

six actions, Acti under the assumption of conditional independency among

actions:

P (En|Sn−1) =
∏
i

P (Acti|Cp, Cv)

Acti indicates whether the action i occurred or not. P (Acti|Cp, Cv) can be

estimated by averaging the probability of Acti (from Section 4.3.1.4) among

clustered frames from the temporal filtering.
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4.4 Experimental results

In order to compare overall performance of our methods with other

methods, we implemented a baseline method which uses space-time interest

points in the bag of words framework. The classification is done using SVM s

(STIP-BOW-SVM) [27]. We tested this method (STIP-BOW-SVM) and our

two methods, Scene State with Event Context (SSEC) and Scene State with

Dynamic Context (SSDC) on the new challenging dataset. The new dataset

includes 15 sequences of “a person hiding near a car”, 15 sequences of “a person

appearing abnormally from a car (not from inside)”, and 28 sequences of “A

person getting into / out of one of two parallel cars”. In total, 186 sequences of

human-vehicle interactions are labeled as getting into (78 sequences), getting

out of (78 sequences), hiding (15 sequences), and appearing abnormally (15

sequences).

Fig. 4.10, Fig. 4.11, and Fig. 4.12 show the ROC curves and confusion

matrices of three approaches ( STIP-BOW-SVM, SSEC, and SSDC, respec-

tively) on our human-vehicle interaction dataset. In general, “getting into a

vehicle” activity recognition rate is higher than other classes of activity recog-

nition. While STIP-BOW-SVM approach shows ac accuracy rate of 50.5%,

SSEC approach has an accuracy rate of 77.4%, and SSDC approach shows an

accuracy rate of 80.6%.

As shown in Fig. 4.13 and Fig. 4.14, our approaches, SSDC and SSEC,

showed superior results than the other approach. Furthermore, our improved

approach using both motion context and event context show better results
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Fig. 4.10: ROC curves and a confusion matrix of STIP-BOW-SVM approach
on human-vehicle interaction recognition. Class 1: get into, class 2: get out
of, class 3: hide, class 4: appear abnormally. Percentiles in green color is from
correct classification instances, and Percentiles in red color is from incorrect
classification instances
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Fig. 4.11: ROC curves and a confusion matrix of scene state with event context
approach on human-vehicle interaction recognition.

Fig. 4.12: ROC curves and a confusion matrix of scene state with dynamic
context approach on human-vehicle interaction recognition.
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than our approach using only event context.

We also test the performance of our view-independent features (T-

HOOF) compared to basic features (HOOF) in human-vehicle interactions

such as “a person getting into a vehicle” and “a person getting out of a ve-

hicle.” We generated two video datasets for our experiments. Each dataset

includes four executions of two interactions performed by a driver from eight

different views. Thus, each dataset has 64 human-vehicle interactions. We use

32 interactions for training and the other 96 interactions for testing. Vehicles

used in the dataset are a sedan and an SUV. The videos were taken at 12.5

frames per second with the resolution of 720 * 480.

We present accuracy rates for the classification of actions to compare

T-HOOF with HOOF as shown in Fig. 4.15 and Fig. 4.16. T-HOOF performed

superior to HOOF in all provided conditions. The performance of HOOF and

T-HOOF is improved by adding a feature, HOG and by processing temporal

filtering.
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Fig. 4.13: ROC curves of three approaches on person getting into vehicle ac-
tivity. Red, green, and blue curves indicate a result from scene state with
dynamic context, scene state with event context, and STIP/BOW/SVM ap-
proaches, respectively.
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Fig. 4.14: ROC curves of three approaches on person getting out of vehicle
activity. Red, green, and blue curves indicate a result from scene state with
dynamic context, scene state with event context, and STIP/BOW/SVM ap-
proaches, respectively.
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Fig. 4.15: Overall accuracy rates for the classification of actions to compare T-
HOOF with HOOF. ‘only,’ ‘+HOG,’ and ‘+HOG +TF’ denote that HOOF/T-
HOOF is used without additional features or processing, with the HOG feature,
and with the HOG feature followed by temporal filtering, respectively.
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Fig. 4.16: Comparison results of T-HOOF with HOOF according to training
data.
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Chapter 5

Human-vehicle interaction from aerial view

In this chapter, we propose a method to recognize human-vehicle inter-

actions from low resolution UAV videos. In this scenario, the object resolution

is low, the visual cues are vague, and the detection and tracking of objects are

less reliable as a consequence. Any methods that require the accurate tracking

of objects or the exact matching of event definition are better avoided. To ad-

dress these issues, we present an alignment method of 3-D vehicle model with

synthetically generated training samples and a temporal logic based approach

which does not require training from event examples.

5.1 Alignment of 3-D vehicle model

The robust alignment of a 3-D vehicle model is essential for the system

to extract event ROI and to estimate the human-vehicle spatial relationship. In

this section, we propose a novel and generic approach for the optimal search of

vehicles states by the alignment of 3-D vehicle models. In the following subsec-

tions, we explain the details of our methodology from 1) 3-D model rendering,

2) localization of a vehicle centroid, 3) estimation of vehicle orientation, and

4) the optimal search of vehicle states using dynamic programming.
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Fig. 5.1: A ray tracer with 3-D scene including a vehicle.
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Fig. 5.2: Positive vehicle training sample generation.

5.1.1 3-D vehicle model

Collecting training samples for vehicle detection is a tedious task, and it

is impractical to collect them in all possible view points. Therefore, we use ray

tracing with 3-D vehicle models to generate controlled training images with

detailed annotations. In order for our ray tracer to generate synthetic training

samples, we create the scene of vehicles using the following descriptions: we

place a vehicle model in the center of a 3-D space and a ground plane model

below the vehicle model. Then, four point light sources are placed on the front,

rear, left, and right of the vehicle model, respectively. Finally, a scene camera

is added and controlled by the system as shown in Fig. 5.1. By adjusting the

position and direction of the camera, our ray tracer can generate the projected

images of a 3-D vehicle in different orientations.

Without loss of generality, our ray tracer disables reflection and refrac-

tion. It is not possible for the system to simulate the detailed characteristics

of the texture of vehicles and the ground from most aerial video data due to

low resolution scenes and compression errors.
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Fig. 5.3: Negative vehicle training samples.
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5.1.2 Vehicle location detection

In this subsection, we explain the probabilistic approach to localize the

centroid of the vehicle. Here, we assume that a vehicle is completely visible

in the scene. We train an SVM classifier with the Histogram of Oriented

Gradient (HOG) [15] features extracted from positive and negative vehicle

sample images from 3-D vehicle models. The positive sample images have a

vehicle at the center of the image and the negative sample images either have

a vehicle near the boundary of the image or do not have a vehicle. Therefore,

the trained binary SVM classifier can estimate the probability of the vehicle

located at the center of a testing image.

The positive sample set has 720 images from 360 degree orientations

and 2 vehicle types. The size of the projected image of a vehicle varies with

respect to the camera views. These training samples are uniformly resized

with a minimal margin as shown in Fig.5.2. In this process, we measure the

maximum length of the height and width of a vehicle for all orientations, crop

the margin, and resize the cropped image.

The negative sample set is generated from the positive sample set. For

every positive set sample, we generate four negative samples by relocating the

vehicle image of the positive sample. For the generality of the negative sample

set, the relocation is processed randomly in x and y direction. The system

chooses the sample if the center of the relocated vehicle is far enough from the

center of the image. Fig.5.3 shows negative vehicle training samples.
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Fig. 5.4: The configuration of our HOG descriptors.

Extracting reliable features from the generated training samples is as

important as generating robust training samples. The HOG descriptor has

shown its excellence in detecting humans and vehicles. Here, we compute

HOG descriptors from square image patches using 4x4 cell rectangular blocks,

9 orientation bins, and an unsigned gradient as shown in Fig. 5.4.

We train an SVM classifier with the HOG descriptor of generated pos-

itive and negative sample images. The classifier has two classes: 1) positive,

a vehicle is located in the center of an image and 2) negative, a vehicle is not

located at the center of an image [51].

In order to correct vehicle location in the given image with a tracked

vehicle presence, we scan the image by sliding a window to extract the HOG

and calculating the probability of vehicle existence in the center of the window
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by the SVM classifier. The center of a window with the highest probability

of vehicle existence ideally indicates the centroid of the vehicle in the given

image.

5.1.3 Vehicle orientation estimation

Accurate vehicle orientation estimation enables the extraction of regions-

of-interest (ROI) such as door regions after the vehicle location detection. This

subsection explains the method to estimate 360 degree vehicle orientation in

the order of 10 degree. The method of vehicle orientation estimation is similar

to the method of vehicle location detection in that both methods use gener-

ated images from a ray tracer with 3-D vehicle models and extract the HOG

descriptor from the synthetic images.

We train an SVM vehicle orientation classifier with the 720 images and

their HOG descriptors from positive samples of vehicle location detection. The

classifier has 36 classes for every 10 degrees so that each class has 20 training

images.

Then, the SVM classifier estimates the probabilities of vehicle orienta-

tions in the testing images. Our SVM classifier can perform correctly if the

vehicle is located in the center of testing images (Fig.5.5 (a)). If a vehicle is

not correctly located (Fig. 5.5 (b)), or does not exist in the testing images

(Fig.5.5 (c)), the estimation of our classifier cannot be valid. Therefore, we

need to combine the results of vehicle location detection and vehicle orientation

estimation for the valid estimation of a vehicle states.
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Fig. 5.5: Vehicle orientation estimation results.

5.1.4 Dynamic programming for the optimal search

In this subsection, we explain the method for the optimal search of ve-

hicle states (location and orientation) in a sequence of frames using dynamic

programming. For the event ROI extraction in Section 5.2, searching both

the correct location and orientation of a vehicle is required. We first formu-

late the joint probability of vehicle location and orientation in a single frame

under the assumption that vehicle location and orientation are conditionally

independent. Then, we formulate the transition probability of vehicle states

in two consecutive frames. With the formulated probability model and our

dynamic programming solution, we are able to effcienly search the optimal

vehicle states in every frame.

The joint probability of vehicle location (l) and orientation (o) given an

image (I), P (l, o|I), is represented as a product of the probability of vehicle

location, P (l|I), and vehicle orientation given vehicle location, P (o|l, I) as

shown in Equation 5.1. The estimation of P (l|I) and P (o|l, I) are explained
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Fig. 5.6: (a) The illustration of our human detection process. (b) Our sys-
tem extracts interaction associated sub-events from a labeled human-vehicle
sequence using a two-sided sliding window. The sliding window detects
Meets(IR,NE), which contributes a weighted vote to the interaction of a person
getting into a vehicle.

in Subsection 5.1.2 and 5.1.3.

P (l, o|I) =
P (l, o, I)

P (I)
=
P (l, I)

P (I)
· P (l, o, I)

P (l, I)

= P (l|I) · P (o|l, I) (5.1)

We formulate the joint probability model of a sequence of the vehicle states

given a sequence of corresponding images, P (l{1,t}, o{1,t}|I{1,t}), under the Marko-

vian assumption. Subscripts in equations indicate frame number(s) of vari-

ables. Let S = {l, o}, which indicates a vehicle state composed of l and o.

Then, P (l{1,t}, o{1,t}|I{1,t}) can be simplified as P (S{1,t}|I{1,t}). P (S{1,t}|I{1,t})

is expanded by using Bayes’ Theorem as shown in Equation 5.2

P (S{1,t}|I{1,t}) =
P (S{1,t}, I{1,t})

P (I{1,t})

=
P (St|S{1,t−1}, I{1,t})P (S{1,t−1}, I{1,t})

P (I{1,t})
(5.2)

In Equation 5.2, the term P (S{1,t−1}, I{1,t}) can be expanded as P (S{1,t−1}, I{1,t−1})·

P (It) , and the term P (St|S{1,t−1}, I{1,t}) can be simplified as P (St|St−1, It) by

84



the Markovian assumption. Also, P (It) and P (I{1, t}) are counted as con-

stants given a sequence of images. Therefore,

P (S{1,t}|I{1,t})

∝ P (St|St−1, It)P (S{1,t−1}, I{1,t−1}) (5.3)

In Equation 5.3, the left term can be expanded as the following by using the

Bayes’ Theorem:

P (St|St−1, It)

= P (St|St−1)P (St|It)
P (St)

P (It)P (St−1)
(5.4)

The right term can also be expanded as the following by using the Bayes’

Theorem:

P (S{1,t−1}, I{1,t−1})

= P (S{1,t−1}|I{1,t−1})P (I{1,t−1}) (5.5)

Under the assumption of the uniform prior probability distribution for S,

Equation 5.3 can be represented as in Equation 5.6 by Equation 5.4 and Equa-

tion 5.5.

P (S{1,t}|I{1,t})

∝ P (St|St−1)P (St|It)P (S{1,t−1}|I{1,t−1}) (5.6)

By induction, Equation 5.6 can be the product of a sequence of terms as shown
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in Equation 5.7.

P (S{1,t}|I{1,t})

= P (S1|I1)
k=t∏
k=2

[P (Sk|Sk−1)P (Sk|Ik)] (5.7)

By replacing back S by l and o, we can derive the following equation:

P (l{1,t}, o{1,t}|I{1,t})

= P (l1, o1|I1)
k=t∏
k=2

[P (lk, ok|lk−1, ok−1)P (lk, ok|Ik)] (5.8)

P (lk, ok|lk−1, ok−1) implies the transition probability of vehicle states in two

consecutive frames, k and k−1. P (lk, ok|Ik) is derived from Equation 5.1. We

assume that the transition probability model has an exponential distribution

as follows:

P (lk, ok|lk−1, ok−1)

= λl · λo · exp(−λl · ‖lk, lk−1‖ − λo · ‖ok, ok−1‖) (5.9)

After all, the problem of searching for an optimal sequence of vehicle

states can be modeled as a Markov decision process. In order to have a finite

set of states, locations are downsampled by every 5 pixels x 5 pixels windows,

orientations are downsampled by every 10 degrees, and the original dataset

with 30 fps (framesec) is downsampled in time to 2.5 fps.

Finding optimal states can be determined by a value iteration, V as

follows:
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Initialize V (Sk) arbitrarily

loop for frame k

loop for states at k, Sk = (lk, ok)

loop for states at k − 1, Sk−1

V (Sk) = maxSk−1
{ SP (l1, o1|I1)·∏k=t

k=2(P (lk, ok|lk−1, ok−1) · P (lk, ok|Ik)) }

end loop

end loop

end loop

Through dynamic programming, the optimal search improves with each

frame. When real-time processing is required, our system provides the optimal

solution in the current frame. Without the time constraints, the optimal

vehicle states in previous frames can be updated using a backward search.

5.2 Temporal logic for human-vehicle interaction recog-
nition

In this section, we introduce our temporal logic based approach, which

derives the most likely human-vehicle interaction from low-level information.

The low-level processing results include the localized event ROI and the lo-

cations of detected human objects, which are assigned with object states and

parsed with modified temporal logic for interaction analysis.
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5.2.1 Human Detection

After the process of 3-D vehicle model alignment, we perform human

detection on the event ROI. As shown in Fig.5.6 (a), for the recognition of a

person getting into and out of a vehicle, our 3-D vehicle alignment provides

the binary masks of the vehicle and its door regions. We dilate both types

of masks and apply the vehicle mask to the bounding box so that arbitrary

image content around the vehicle will contribute less to the human detector.

The door mask after dilation is marked with a different color to indicate the

peripheral of the ROI, which is used to capture a person’s approach of ROI.

We use HOG to characterize human objects in low-resolution imagery.

Our SVM based human detector is trained with HOG features extracted from

manually cropped figure-centric bounding boxes and negative samples from

patches around the figures. To save computation, the SVM window classifier

only performs detection on grid locations of the event ROI. We train linear

SVM to compute calibrated likelihood values [55], which are thresholded to

indicate the likely grid locations of human presence. However, the detection

accuracy inevitably suffers from the blurry low-resolution imagery as in Fig.5.6

(a). Therefore, instead of taking the risk of missing true detections, a low

threshold (< 0.5) is used to allow a certain amount of false positives. We

perform connected component analysis on the detection grid coordinate to

label the detected persons and remove unlikely blobs by area.

To identify the human-vehicle spatial relationship in each bounding

box, the dilated mask of event ROI is applied to the mask of human blobs.
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Getting into Vehicle

Non-Exist Outside ROI Inside ROI Non-Exist

Getting out of Vehicle

Non-Exist Inside ROI Outside ROI Non-Exist

Fig. 5.7: The formal event representation of a person getting into and out of
vehicle.

Based on the overlapped mask, our system estimates whether the person is

inside the ROI (IR), outside the ROI (OR), or does not exist (NE) in the

image patch. The specific permutations of these three event states are defined

as the constituent sub-events of interactions.

5.2.2 Piecewise temporal logic

In Allen and Ferguson’s classic temporal interval representation of events

[2], an event is defined as having occurred if and only if the sequence of obser-

vations matches the formal event representation and satisfies the pre-defined

temporal constraints. Temporal logic based approaches have been successfully

applied for the recognition of human activities, human-human interactions,

human-object interactions, and group activities [1]. Most importantly, instead

of learning events from training examples, temporal logic allows the direct en-

coding of human knowledge. However, the recognition of interaction related
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sub-events from aerial video is far less accurate than that in regular scenarios.

Therefore, capturing human-vehicle interactions by matching them against

their complete event representation is rarely a success in our experiments.

We adopt a modified temporal logic approach to mine the pieces of

event evidence embedded in a human-vehicle sequence. We name our method

piecewise temporal logic (PTL), which is different from the classic temporal

logic in two major aspects. First, our interaction representation is defined

based on event states, from which the higher level interaction associated sub-

events are derived. Second, our method recognizes interactions by comparing

the weighted sums of detected sub-events, the temporal relationships among

which are not taken into account.

We found that in a human-vehicle sequence, the moments of interaction

related primitive actions are not always observable and cannot be reliably

recognized. Therefore, we define human-vehicle interactions in terms of the

event states that lead to them. Fig.5.7 shows the formal event representation

of a person getting into and out of a vehicle. Given the temporal flows of event

states, interaction associated sub-events are defined in terms of the alternations

of specific states. The set of predicates we used to describe the temporal

relationships of event states include Meets, Starts, and Finishes. These sub-

events are manually assigned with weights based on their relative importance

to the actual occurrence of the interaction. For example, in Fig.5.6 (b), the

alternation of event states from IR to NE is more informative than the change

from NE to OR for the detection of a person getting into a vehicle. Table 5.1
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shows the interaction associated sub-events and their corresponding weights.

Note that the exact values of sub-event weights cause much less effect on the

system performance than their relative values.

It is a difficult task to extract instances of sub-events from a noisy

event state sequence such as Fig.5.6 (b). We propose to use a two-sided slid-

ing window to detect interaction associated sub-events. As shown in Fig.5.6

(b), the sub-event Meets(IR,NE) extracted from rear and front sliding windows

is compared with the human encoded list in Table 5.1. The matched sub-event

contributes a weighted vote to the corresponding bin of an event histogram.

We use the sum of absolute sub-event weights in an event histogram to deter-

mine if any of the two interactions have ever occurred. The normalized event

histogram indicates the occurrence likelihood of interactions.

5.3 Experimental results

We test our methodology with the challenging VIRAT Aerial Video

dataset [37]. The videos were taken in 30 frames per second with the resolution

of 720 by 480 pixels. As shown in Fig.5.8, the challenges posed by this dataset

include low image resolution, vague object appearance and motion (due to

air turbulence and video compression artifacts), time-varying views, changing

weather conditions, salient shadow, and cluttered backgrounds.

There are a number of human-vehicle sequences in this dataset. How-

ever, we can only find 7 instances of a person getting into and out of a vehicle.

We manually select 20 other types of human-vehicle interaction sequences, in
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Fig. 5.8: The snapshots of four true positive (TP), two true negative (TN),
one false negative (FN), and one false positive (FP) sequence are shown. We
treat the subject human-vehicle interactions (getting into vehicle, getting out
of vehicle) as the positive class and all other events (others) as the negative
class.
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Interaction Sub-event Weight 

Getting 
into 

vehicle 

Meets(IR,NE) 2 

Meets(OR,IR) 1 

Meets(OR,NE) 0.5 

Finishes(IR) -2 

Getting 
out of 
vehicle 

Meets(NE,IR) 2 

Meets(IR,OR) 1 

Meets(NE,OR) 0.5 

Starts(IR) -2 

 
Table 5.1: Interaction associated sub-events and their corresponding weights.
IR, OR, and NE are shorts for human inside the ROI, outside the ROI, and
does not exist (NE) in the image bounding box, respectively. Meets, Starts,
and Finishes are the temporal predicates used to define their relationships.

which a person may be passing by or (un)loading the vehicle. Therefore, in

our evaluation set, there are 4 sequences of a person getting into a vehicle, 3

sequences of a person getting out of a vehicle, and 20 other types of human-

vehicle sequences. We use the same set of parameters for vehicle alignment

and interaction analysis without any event-level training. Fig. 5.8 shows the

snapshots of our testing sequences. Despite the differences in the types of ve-

hicles, viewpoints, and interactions, our system is able to correctly detect the

subject human-vehicle interactions from sequences such as the TP examples

in Fig. 5.8. The FP and FN examples in Fig. 5.8 show the cases when our

method fails. In the sequence of “Getting into vehicle, FN”, the approach of

the person from the left was partially occluded by the building, and in the
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sequence of “Others, FP” the departure of the person from the ROI misled

the system.

Our system demonstrates superior results on the search of the opti-

mal vehicle states. In 20 sequences out of 27 testing sequences (74.1%), both

the orientation and location of vehicles are correctly estimated. In the 6 is-

ntances out of 7 incorrect sequences (22.2%), the locations of the vehicles are

correctly detected but the vehicle orientations are 180◦ reversed. In spite of

that, the ROI in those sequences were correctly located because of the sym-

metry of vehicle shape. In the other 1 instance (3.7%), the estimation of the

vehicle orientations is incorrect. For interaction recognition, we analyze sub-

events in every 4-second long two-sided sliding window. The system classifies a

sequence as the subject human-vehicle interactions if its sum of absolute sub-

event weights exceeds 1 and there is no tie in the event histogram. A sequence

is recognized as other events if the sum of absolute sub-event weights is less

than 1 or there is a tie in its event histogram. Fig. 5.9 shows the confusion

matrix. By treating the subject human-vehicle interactions as the positive

class and all other events as the negative class, the accuracy of our method

on this evaluation set is 77.78% ((TP + TN) / (TP + TN + FP + FN)), the

precision is 53.85% (TP / (TP + FP)), and the recall is 100.0% (TP / (TP +

FN)).
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Fig. 5.9: The confusion matrix of our method on a subset of the VIRAT Aerial
Video dataset.
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Chapter 6

Conclusion

We presented a methodology for analyzing a sequence of scene states

from videos of human-vehicle interactions. We developed a probabilistic frame-

work for scene state tracking using 3-D scene models, identifying detailed

configurations of humans and vehicles appearing in videos. Furthermore, we

introduced the concept of event context which benefits the scene state analy-

sis process greatly. Interplays between event detection and state tracking are

explored probabilistically, providing better results in the experiments.

Furthermore, we extended the methodology to recognize complex human-

vehicle interactions with a high degree of accuracy. The proposed methodol-

ogy analyzes motion and actions from various viewpoints and improves the

recognition rates of event detection. The main contributions of our work are:

integration of motion based context with event based context to the frame-

work, the extraction of view-independent features using 3-D vehicle models,

and more reliable system requiring less training data. We showed that our

approach is superior to the previous approaches.

Finally, we propose a general framework for the recognition of human-

vehicle interactions from aerial view. Our method offers three major advan-
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tages to better resolve the challenges posed in this scenario. First, we adopt

a temporal logic based approach to avoid the cost of manually collecting and

labeling the training examples. Second, we employ a dynamic programming

based 3-D vehicle model alignment technique, which accurately locates event

ROI with the consideration of the previous alignment results. Third, based on

classic temporal logic, we introduce the concept of PTL, which significantly

improves the recognition performance in our problem. PTL detects inter-

action sub-events by checking the temporal relationships between the event

states. However, at the semantic-level, the temporal logics among the sub-

events are not verified to induce the robustness against sequences of noisy

sub-events. Furthermore, the proposed method can be generalized to recog-

nize any kinds of human-vehicle interactions with the proper encoding and

weighting of the temporal logics between event states. Most importantly, our

method demonstrates high recognition accuracy on the challenging VIRAT

Aerial Video dataset.
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Appendix 1

Derivations of equations

We present details of derivations of our fomulae in the appendix.

From Equation 3.2 in Chapter 3, the left term, P (O(1,...,n)|S(1,...,n)) can

be expanded as follows.

P (O(1,...,n)|S(1,...,n)) =
P (O(1,...,n) · S(1,...,n))

P (S(1,...,n))

=
P (On, Sn|O(1,...,n−1), S(1,...,n−1)) · P (O(1,...,n−1), S(1,...,n−1))

P (Sn|S(1,...,n−1)) · P (S(1,...,n−1))
(1.1)

=
P (On, Sn|O(1,...,n−1), S(1,...,n−1))

P (Sn|S(1,...,n−1))
·
P (O(1,...,n−1), S(1,...,n−1))

P (S(1,...,n−1))

=
P (On, Sn|S(1,...,n−1))

P (Sn|S(1,...,n−1))
· P (O(1,...,n−1)|S(1,...,n−1)) (1.2)

=
P (On, Sn|S(1,...,n−1)) · P (S(1,...,n−1))

P (Sn|S(1,...,n−1)) · P (S(1,...,n−1))
· P (O(1,...,n−1)|S(1,...,n−1))

=
P (On, S(1,...,n))

P (S(1,...,n))
· P (O(1,...,n−1)|S(1,...,n−1)) (1.3)

= P (On|S(1,...,n)) · P (O(1,...,n−1)|S(1,...,n−1)) (1.4)

∝ P (On|Sn) · P (O(1,...,n−1)|S(1,...,n−1))

Equations 1.1, 1.2, 1.3, and 1.4 can be derived by using Bayes’ Theorem.

From Equation 3.2 in Chapter 3, the right term, P (O(1,...,n)|S(1,...,n)) can
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be expanded as follows.

P (S(1,...,n)) = P (Sn|S(1,...,n−1)) · P (S(1,...,n−1))

= P (Sn|Sn−1) · P (S(1,...,n−1)) (1.5)

Equation 1.5 can be derived by first order Markov assumption. There-

fore, we derive Equation 3.3.

From Equation 4.1, we derive Equation 4.2 as follows.

P (On|S1, ..., Sn) · P (Sn|Sn−1) = P (An, Dn|S1, ..., Sn) · P (Sn|Sn−1)

= {P (An|S1, ..., Sn) · P (Dn|S1, ..., Sn)} · P (Sn|Sn−1) (1.6)

= {P (An|Sn) · P (Dn|Sn−1, Sn)} · P (Sn|Sn−1)

= P (An|Sn) · P (Dn, Sn−1, Sn)

P (Sn−1, Sn)
· P (Sn−1, Sn)

P (Sn−1)
(1.7)

= P (An|Sn) · P (Dn, Sn−1, Sn)

P (Sn−1, Dn)
· P (Sn−1, Dn)

P (Sn−1)

= P (An|Sn) · P (Sn|Sn−1, Dn) · P (Dn|Sn−1) (1.8)

∝ P (An|Sn) · P (Sn|Sn−1, Dn) · P (En|Sn−1)

Equation 1.6 is derived by the assumption that appearance (A) and

dynamics (D) are independent given scene states (S). Equation 1.7 is derived

by the first-order Markov assumption for appearance (A) and the second-

order Markov assumption for dynamics (D). Equations 1.7 and Equation 1.8

is derived by using Bayes’ Theorem.

The following shows how dynamic context can be mathematically mod-

eled by motion context and event context.
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P (Sn|Sn−1, Dn) = P (Sn|Sn−1,Mn, En)

=
P (Sn, Sn−1,Mn, En)

P (Sn−1,Mn, En)
=
P (Mn, En|Sn, Sn−1) · P (Sn, Sn−1)

P (Mn, En|Sn−1) · P (Sn−1)
(1.9)

' P (Mn|Sn, Sn−1) · P (En|Sn, Sn−1) · P (Sn, Sn−1)

P (Mn|Sn−1) · P (En|Sn−1) · P (Sn−1)
(1.10)

=
P (Mn, Sn, Sn−1) · P (En, Sn, Sn−1) · P (Sn, Sn−1)

3

P (Mn, Sn−1) · P (En, Sn−1) · P (Sn−1)3
(1.11)

= P (Sn|Mn, Sn−1) · P (Sn|En, Sn−1)P (Sn|Sn−1)
3 (1.12)

∝ P (Sn|Mn, Sn−1) · P (Sn|En, Sn−1)

Equations 1.9, 1.11, and 1.12 can be derived by using Bayes’ Theorem.

Equation 1.10 can be derived by the conditional independence assumption of

motion (M) and event (E).
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