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ABSTRACT OF DISSERTATION

Camera Planning and Fusion in a Heterogeneous Camera Network

Wide-area camera networks are becoming more and more common. They have wide-
range of commercial and military applications from video surveillance to smart home
and from traffic monitoring to anti-terrorism. The design of such a camera network
is a challenging problem due to the complexity of the environment, self and mutual
occlusion of moving objects, diverse sensor properties and a myriad of performance
metrics for different applications. In this dissertation, we consider two such challenges:
camera planing and camera fusion. Camera planning is to determine the optimal
number and placement of cameras for a target cost function. Camera fusion describes
the task of combining images collected by heterogenous cameras in the network to
extract information pertinent to a target application.

I tackle the camera planning problem by developing a new unified framework
based on binary integer programming (BIP) to relate the network design parameters
and the performance goals of a variety of camera network tasks. Most of the BIP
formulations are NP hard problems and various approximate algorithms have been
proposed in the literature. In this dissertation, I develop a comprehensive framework
in comparing the entire spectrum of approximation algorithms from Greedy, Markov
Chain Monte Carlo (MCMC) to various relaxation techniques. The key contribution
is to provide not only a generic formulation of the camera planning problem but also
novel approaches to adapt the formulation to powerful approximation schemes in-
cluding Simulated Annealing (SA) and Semi-Definite Program (SDP). The accuracy,
efficiency and scalability of each technique are analyzed and compared in depth. Ex-
tensive experimental results are provided to illustrate the strength and weakness of
each method.

The second problem of heterogeneous camera fusion is a very complex problem.
Information can be fused at different levels from pixel or voxel to semantic objects,
with large variation in accuracy, communication and computation costs. My focus
is on the geometric transformation of shapes between objects observed at different
camera planes. This so-called the geometric fusion approach usually provides the
most reliable fusion approach at the expense of high computation and communication
costs. To tackle the complexity, a hierarchy of camera models with different levels
of complexity was proposed to balance the effectiveness and efficiency of the camera



network operation. Then different calibration and registration methods are proposed
for each camera model. At last, I provide two specific examples to demonstrate the
effectiveness of the model: 1)a fusion system to improve the segmentation of human
body in a camera network consisted of thermal and regular visible light cameras and
2) a view dependent rendering system by combining the information from depth and
regular cameras to collecting the scene information and generating new views in real
time.
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tation, Multi-camera Fusion
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Chapter 1 Introduction

For human beings, vision is one of the most important perceptions of outside world.

Visual perception collects information from surroundings by the effect of visible light

reaching the eyes. For centuries, scientists and engineers have been working on build-

ing sensors which can mimic human vision. Today, sensor technology has advanced far

beyond the capacity of human vision: video cameras that can generate images similar

to human vision; thermal cameras are used to obtain the surface temperature of an

object; gamma and X-ray cameras are used in medical diagnosis. Recent advances in

depth cameras also make the direct perception of 3D geometry more plausible. The

dissertation generalizes the term camera as those sensors which generate images by

collecting rays of electromagnetic (EM) radiation of all frequencies. Unlike antennas,

cameras usually use much higher frequency( ≥ 3 THz) EM radiations in order to

limit the diffraction effect, which increases resolution.

At the same time, recent advances in sensor networking and distributed process-

ing make it possible for cameras to work jointly on large scale applications. The

widespread deployment of such networks with heterogeneous cameras poses an im-

portant design problem. Not only does it determine the coverage of surveillance, it

also has a direct impact on the appearance of objects in the cameras which dictates

the performance of all subsequent processes. Furthermore, due to the variety of sen-

sors in the network, a distributed fusion algorithm has to be carefully designed to

combine all the information available in order to achieve performance goals.

1



1.1 Camera Network

1.1.1 Introduction to Camera Network

A camera network refers to a network of distributed camera nodes [1]. Each camera

node has its own processing capacity, but the network itself can perform much more

sophisticated tasks by aggregating and fusing the information from individual sensors.

The emergence of camera network has significant impact on a wide range of appli-

cations. The applications mentioned in this section are only a small portion of the

camera network applications that directly relate to the research in this dissertation.

Video surveillance is a traditional application for camera network. Recent ad-

vances in camera networks help video surveillance in many ways. Camera planning

algorithms can be useful in minimizing the cost of deploying surveillance systems.

Local processing and sensor fusion techinques can help the system to automatically

detect suspicious activities. In [2], a privacy protected video surveillance system is

provided using camera network.

In smart home applications, camera network provides a system that can con-

stantly monitor the elderly or people with special needs, and then automatically

notify the hospital in case of an emergency. Camera network is also used to enhance

the tele-conferencing experience by providing multiple views of participants, as well as

improving segmentation results from cameras with multiple modality [3]. In a camera

network with depth cameras, a virtual environment can be generated and updated

in real-time, which provides unique opportunities to improve personal experience in

various augmented reality applications.
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1.1.2 Camera Network Research

The special characteristics of cameras in camera networks brings advantages as well

as challenges, when compared with traditional sensor networks. Some of the most

challenging issues are highligted below:

1. The light-of-sight property of cameras makes it possible to get information

in distant so that camera networks can cover a much broader environment.

However, due to the line of sight property of cameras, the visibility model

involves the restrictions of viewing angles, projective distortion, self and mutual

occlusions and specific application requirements, which demands much more

sophisticated mathematical tools to model the coverage. Furthermore, it is

a much more difficult problem to optimize the coverage of camera networks

not only because of the complex visibility model, but also because of the huge

dimension of the configuration space consisted of number of cameras, camera

types, positions, yaw and pitch angles and so on.

2. Due the large amount of data collected by cameras, the data flow in the network

is extremely heavy. In most cases, distributed algorithms have to be carefully

crafted to alleviate the communication burden.

3. Although a single camera is able to provide large amount of data, it is far from

sufficient to meet the requirement of large scale applications. Camera network

is able to provide information of the scene with better coverage and different

viewing perspectives. Furthermore, heterogeneous camera networks, which con-

3



sist of cameras of different types, offers information with different modalities.

On the other hand, all those information available poses an important data

fusion problem: how to make intelligent inferences by combining the data from

multiple cameras in a timely manner.

To deal with these challengers, most camera network research focuses on one of

two main areas: camera planning and sensor fusion.

Camera planning is the first aspect of camera network research which has enor-

mous impact on performance. When only static cameras are considered, the problem

is usually referred to a camera placement problem. Camera planning can be very

challenging because camera networks are typically deployed in urban or indoor en-

vironments characterized by complicated topologies, stringent placement constraints

and the constant flux of human or vehicular traffic. Besides, there are a myriad of

camera sensors and many of them have overlapping capabilities.

Given a fixed budget with limited power and network connectivity, the choice and

placement of sensors becomes critical to the continuous operation of a visual sensor

network. In addition, the performance of the network depends highly on the nature

of the specific tasks of the application. For example, biometric and object recognition

require the objects to be captured in a specific pose; triangulation requires visibility

of the same object via multiple sensors; object tracking can tolerate certain degree of

occlusion using a probabilistic tracker. Lastly, many researches successfully formulate

camera placement as combinatorial optimization problems, those formulations are

usually NP complete with huge dimensions of solution space, which makes them

4



difficult to solve in reasonable time.

When the camera network involves active cameras, such as pan-tilt-zoom cameras

or cameras deployed on robotic cars, techniques and theories from system control,

game theory and machine learning are very helpful. Real-time decisions need to be

made based on the current and previous status of the network. Due to the complexity

and strict time constraint of active camera networks, it is usually impossible to find

a global optimal solution and efficient approximate solutions are highly desirable.

The other area of camera network research is Sensor fusion, which is performed by

gathering information from a number of cameras in the camera network. Traditional

research in sensor network provides myriad useful generic fusion algorithms, including

Kalman filter [4], Bayesian Network [5] and Dempster-Shafer theory [6]. However,

the communication constraint makes it necessary to design a better distribution of

the computations in the network. The fusion algorithms in camera networks need to

consider not only how the information is fused in the network, but also what kind of

local processing is needed to reduce the network burden. In addition to generic data

reduction techniques, such as image and video compression, modern camera networks

usually consist of programmable “smart cameras”, which can perform application

specific operations that store only useful data.

Besides, due to the projective distortion when projecting objects onto a camera’s

image plane, the geometric relationship between images from different camera views

is very complicated. This poses new challenges concerning sensor fusion in camera

networks compared with other types of sensor network. Since there is no fixed map-

ping between images from two camera views, efficient on-line registration algorithms

5



need to be carefully designed, even with complete camera calibration data. We refer

to the data alignment problem in camera networks as geometric fusion.

1.2 Contributions of Dissertation

The research work presented in this dissertation addresses the challenges on both

camera planning and sensor fusion.

In order to deal with the multiple design challenges in camera placement, a unified

flexible sensor-planning framework was proposed that can incorporate all the model-

ing details, including to the complexity of the environment, self and mutual occlusion

of moving objects, diverse sensor properties and a myriad of performance metrics for

different applications. The proposed visibility model supports arbitrary-shaped 3D

environments and incorporates realistic camera models, occupant traffic models, self

occlusion and mutual occlusion. Using this visibility model, most static camera place-

ment problems can be adapted under the framework of Binary Integer Programming.

The proposed framework provides a complete formulation of the camera placement

problem, and it covers not only the 3D static environment topology and different

types of requirements, but also captures the traits of the scene dynamic, including

mutual occlusion and pedestrian traffic pattens.

At the same time, although the proposed framework is general enough for most

camera placement problem modeling, its complexity increases exponentially with

problem size. My research is the first to study the entire spectrum of approximation

algorithms from Greedy, Markov Chain Monte Carlo (MCMC) and various relax-

ation techniques. Our key contribution is to provide not only a generic formulation

6



of the camera placement problem, but also to present detailed approaches to adapt

the formulation to various approximation schemes. Our adaptations to Simulated

Annealing (SA) and Semi-Definite Program (SDP) are novel. We demonstrate that

Greedy approach and its variants can obtain a good first order estimation. MCMC

approaches are more complex but still return good solutions even in complex prob-

lems. Linear Programming (LP) and (SDP) relaxations are most complex, but they

can provide good performance bounds.

Besides the general contribution to the camera placement problem, this research

also makes contributions to the sensor fusion problem in camera networks. The

major contribution is focused on solving the geometric fusion problem by utilizing

the characteristics of camera projection to align image data from different cameras.

Specifically,

1. After providing a hierarchy of classic camera models with different levels of

complexity, this research proposes a novel approximation camera model, blob

homography, which is specifically designed for geometric fusion in a typical video

surveillance environment.

2. Using the blob homography model, a fusing algorithm for thermal and regular

cameras is proposed for robust segmentation of humans in video sequences.

By decomposing the homography matrix into rectified domain, It significantly

reduces the complexity of parameter estimation, and the registration of multi-

modality information becomes more robust with the help of temporal inference

by including the homography parameters in a two-tier tracking system.
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3. A distributed camera fusing algorithm is presented for combining the infor-

mation from multiple regular cameras and depth cameras in a virtual mirror

system. This dissertation shows how calibration and distributed image pro-

cessing algorithms can be used in camera networks to tackle complex 3D scene

acquisition and generation tasks with great efficiency.

1.3 Dissertation Overview

This dissertation is organized as follows: Chapter 2 reviews the related work in cam-

era network research, with a focus on the camera model, camera placement and sensor

fusion between thermal-RGB camera pairs and depth-RGB camera pairs. In Chap-

ter 3, a unified framework is presented for modeling all kinds of camera placement

problems using binary integer programming. Chapter 4 continues the study on the

camera placement problem with a focus on the approximation techniques in solving

those problems. The sensor fusion problem in camera networks is discussed in Chap-

ter 5 and Chapter 6. In Chapter 5, a generic framework for camera fusion algorithm

design is proposed, with a focus on the geometric fusion algorithms. The effectiveness

of the framework is validated through practical fusion problems between visible light

cameras with thermal and depth cameras in Chapter 6. The dissertation is concluded

in Chapter 7
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Chapter 2 Related Work

2.1 Related Work on Camera Models

Cameras are a variety of sensors which form images by collecting light rays from

surroundings. Video cameras are the most common type of cameras, which work

by collecting the visible light so that the generated images are similar to those from

our human vision. Using special sensors to collect infrared light emissions, thermal

cameras are capable of getting images with intensity value proportional to surface

temperature of objects in the scene. Depth cameras estimate depth value at each

pixel by collecting the reflected rays of EM radiation that they projected onto the

scene. Cameras can also be found in medical applications such as gamma cameras

(scintillation cameras) and X-ray cameras.

Despite the enormous differences of cameras, most cameras share the following

properties,

1. Unlike other type of sensors which usually obtain signals from proximity, cam-

eras can collect light rays emitted from objects far away and are therefore

particularly useful for remote sensoring.

2. The process of collecting light rays is naturally parallel, which gives cameras

the opportunity of gathering large amount of data in a very short time. The

amount of information collected by cameras is usually several magnitudes larger

than other type of sensors.
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3. Due to the line of sight property of cameras, the visibility of objects to cam-

eras are usually affected by not only the distance but also viewing angles and

occlusions.

Although cameras may use EM radiation with different frequencies, their imaging

model are astonishingly similar. Most of the models mentioned in this section comes

from the study of visible-light camera but are equally applicable for other types of

cameras.

Pinhole camera model [7, ch.6], also known as finite projective camera model, is

the most popular model for cameras. The model is believed to be introduced by Mozi

(400 BC) in China and Aristotle (200 BC) in Greece independently. In fact, the word

camera comes from this model as camera obscura, which means “darkened chamber”.

It is a description of an imaging device of a light-proof box with a small pinhole on

one side. Light rays from surrounding scene pass through a single point and project

an inverted image on the opposite side of the box, as in Figure 2.1

Although modern cameras are much more complicated than pinhole camera, the

model provides very good approximations for most cameras with tremendous math-

ematical conveniences, thanks to the work in [8, 9, 10, 7]. It can be mathematically

formulated as a 3 × 4 projection matrix with rank 3 and 11 degrees of freedom in

homogeneous coordinate. The detailed form will be explained in Chapter 3.

Starting from the pinhole camera model, research took two separate paths to ad-

vance the model. One research direction focuses on the simplification of the pinhole

model in order to expedite the calculation for real time applications. For instance,
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Figure 2.1: Pinhole camera model

by moving the center of projection to infinity, incident rays from the scene become

parallel. Although no cameras actually follow this model, it is a reasonably close

approximation when the object is far away from the camera and the complexity of

the model can be dramatically reduced. Under this assumption, orthographic projec-

tion [10] uses only five degrees of freedom which incorporates translation and rotation.

A more realistic model is the weak perspective projection [10, ch.1] model with only

seven degrees of freedom. It is an extremely useful model when the scene depth vari-

ation is small relative to the average depth from the camera. Similar approximation

can be found in para-perspective [11] with a better model of the perspective distortion.

All of those coarser models can be generalized in Affine camera model [12], which has

eight degrees of freedom. Mathematically, the difference between affine model and

finite projective model is that the left handside 3 × 3 submatrix of the projection

matrix is non-singular in finite projective camera model and singular in affine camera
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models.

The other direction of camera model research is to exploit more sophistication to

cameras in real life. First of all, most modern cameras are equipped with lens, which

can keep the picture in sharp focus while gathering light from larger area. However,

the introduction of lens makes the pinhole camera model somewhat insufficient. Even

under the most simplified thin lens model [10, ch.1.2.2], only objects within a certain

depth range will remain sharp, while objects out of the range will be blurred. Also,

lens distortion sometimes can be significant so that the camera no longer preserves

linearity. A lot of models are introduced to formulate this effect and make reasonable

corrections [13, 14], which bring more complexity to the camera model. Also, some

researches exploit the cameras with non-planar image planes. Spherical projection [10,

ch.1.1.3] model, for instance, uses spherical image sensor and gives some advantages

on preserving the size of object in the generated image. However, it does not preserve

straight lines. In [15], Ponce gives an excellent survey and generalization to a range

of more complex camera models in theory and real life.

2.2 Related Work on Camera Planning

The research of camera planning focuses on placing and controlling the cameras in a

camera network. For a network only consists of static cameras, only camera placement

is needed. However, when active cameras such as pan-tilt-zoom cameras or robotic

cameras are concerned, camera planning involves on line algorithms which change

the parameters of those active cameras accordingly. Since my work mostly focuses on

the static camera planning, in this section, I present a detailed survey in the camera
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placement, together with a brief review of techniques used in active sensor planning.

2.2.1 Related Work on Camera Placement

The problem of finding the optimal camera placement has been studied for a long

time. The earliest investigation can be traced back to the “art gallery problem”

in computational geometry. This problem is the theoretical study on how to place

cameras in an arbitrary-shaped polygon so as to cover the entire area [16, 17, 18].

It covers a set of important topics in computational geometry including Delaunay

triangulation, vertex covering and so on. Although Chvátal has shown in [19] that the

upper bound of the number of cameras is ⌊n/3⌋, determining the minimum number of

cameras turns out to be a NPcomplete problem [20]. While the theoretical difficulties

of the camera placement problem are well understood, few solutions can be directly

applied to realistic computer vision problems since the original formulation of the “art

gallery” problem lacks for realistic models for either the cameras or the environment

under surveillance, and provides few efficient computational approaches to calculate

optimal placements under different scenarios.

Camera placement has also been studied in the field of photogrammetry in order

to obtain the most accurate 3-D reconstruction of the scene. Various metrics such as

visual hull [21] and viewpoint entropy [22] have been developed and optimization are

realized by various types of ad-hoc searching and heuristics [23]. These techniques

assume very dense placement of cameras and are not applicable to wide-area wide-

baseline camera networks.

Recent widespread deployments of video camera networks, however, turn camera
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placement from a problem of theoretical interest into an important tool that can

significantly improve the performance, coverage and cost effectiveness of the network.

Recently, Ramakrishnan et al. propose a framework to study the performance of

sensor coverage in wide-area sensor networks [24]. Unlike previous techniques, their

approach takes into account the orientation of the object. They develop a metric

to compute the probability of observing an object of random orientation from one

sensor, and use that to recursively compute the performance for multiple sensors.

While their approach can be used to study the performance of a fixed number of

cameras, it is not obvious on how to extend their scheme to find the optimal number

of cameras as well as how to incorporate other constraints such as the visibility from

more than one camera.

More sophisticated modeling pertinent to visual sensor networks are recently pro-

posed in [25, 26, 27]. The sophistication in their visibility models comes at a high

computational cost for the optimization.

While the original “art gallery” problem was formulated in the continuous 2-D or

3-D spaces, most recent approaches consider the problem entirely in discrete domain

– instead of optimizing continuous functionals using calculus of variation, discrete-

domain approaches quantize the search space into finitely many “candidate” positions

and search for the best configurations that optimize a given cost function. This

strategy naturally leads to combinatorial problems with the camera, environment,

and traffic models encoded in different integral constraints and objective functions.

Efforts have been made to formulate the discrete camera placement problems using

standard binary linear programming [28, 29, 30] and quadratic programming [27].
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For the few camera placement formulations in the continuous space, traditional

numerical methods are used taking advantage of the derivative of those continuous

functions. For example, the simulated quenching scheme used in [26] takes several

hours to find the optimal placements of four cameras in a room. Other optimization

schemes such as hill-climbing[25], semi-definite programming[27] and evolutionary

approach[31] all prove to be computationally intensive and prone to local minima.

The majority of camera placement researches adopt formulations in discrete do-

main. While most formulations result in NP-hard problems, a myriad of practi-

cal solutions including Binary Integer Programming solvers (BIP), greedy approach,

greedy heuristics, Monte Carlo (MC) simulations and Semi-Definite Programming

relaxations (SDP) have been proposed [28, 32, 33, 34, 35, 30, 36, 27]. A summarize

of camera placement optimization solution is shown in Table 2.1. Each method has

its own merits in terms of ease of formulation, computational complexity, worst or

average case performances, scalability, etc. To further complicate matters, different

researchers often tackle slightly different objective functions and design specific ap-

proximation techniques accordingly. To the majority of the vision community, it is

difficult to discern the merits of different approaches and to identify the appropriate

solution for a specific placement problem at hand.

2.2.2 Related Work on Active Camera Planning

The topic of controlling active cameras to conduct active vision has been studied for

decades. Due the real time constraint and much bigger state space to explore, most

techniques avoid the full scale optimization methods we mentioned in last section
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Table 2.1: Various approaches for solving the camera placement problem

BIP/LP Greedy Heuristic MC SDP
[28] X
[32] X
[33] X X
[34] X X
[35] X X
[30] X
[36] X X
[27] X X X

but instead use greedy or heuristic method to control the cameras without strict

mathematical proof of optimality [37, 38, 39]. The most popular theoretical scheme

fit for active vision problem is Markov Decision Process based reinforcement learn-

ing [40]. In this formulation, there are a set of action space and state space, and

the transition of the states not only depends on the previous state but also the cur-

rent action. There are also different real valued reward for a specific action-state

pair(reinforcement). The goal of this process is to decide a sequence of actions in

order to achieve the maximum expected accumulated rewards. The most aggressive

formulation of reinforcement learning is to obtain both the suboptimal strategy and

the state’s dynamics at the same time, with no prior knowledge of the state transition

dynamics. The only assumption is the dynamic transition is a time-invariant Markov

chain. Classic solutions for this problem includes Temporal-difference learning, Q-

learning and their variations. The convergence of these methods have been proved

both theoretically and experimentally [41] but their efficiency in real applications are

frequently challenged in terms with both its sensitivity to space size and convergence

time [40]. Foresti et at. [42]implement a Q-learning algorithm to control one pan-

16



tilt-zoom for pedestrian foveation. In their implementation, they use a training stage

to achieve better estimation of the state transition before deciding the appropriate

control of the PTZ cameras. Although their pioneer work brings some insight into

the problem, their work only deal with one PTZ camera and the action speed of PTZ

camera and its power assumption are not considered when modeling the action space

as they simply assume the camera can foveate in any position in any time instance.

Naish [43] proposed a Neuro-dynamic [44] reinforcement control strategy for range

sensors. They had limit action space and experimental results are provided by only

synthesis data.

2.3 Related Work on Sensor Fusion in Camera Network

2.3.1 General Sensor Fusion

The problem of sensor fusion has been studied as a general problem for decades.

Since sensor fusion heavily depends on the application and type of sensors, most of

those studies remain in a very high level. On one hand, the conclusions from sensor

fusion study are general enough to cover all kinds of sensor networks including camera

network. However, on the other hand, those models are usually very abstract and

have little guidance for a specific sensor network design. Here we present a brief

survey of some of the most well-known models is presented. Interested readers can

refer to [45, 46] for detailed treatment.

The sensor fusion model proposed by US Joint Directions of Laboratories is ar-

guably the most classic sensor fusion model, better known as the JDL model [47]. It
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was later revised in [48, 49]. The JDL model is consisted of five different levels [45],

1. Source preprocessing (Level 0): The pre-pocessing step which is performed

locally at each sensor. Common process includes signal denoising, compression

and so on. The objective of this process is to reduce the communication and

computation burden in the later fusion phase.

2. Object/Entity Assessment (Level 1): A process includes data alignment, data

association, object tracking and identification. This process accounts for most

of the research topics in academia.

3. Situation Assessment(Level 2): In this level, an attempt is made to find a

contextual description of the relationship between the objects and observed

events.

4. Threat Assessment (Level 3) : By combining the priori knowledge and pre-

dictions about the future situation, this step infers about vulnerabilities and

opportunities for operation in the sensor network. Typical examples include

estimation of security thread level and locating the target.

5. Process Refinement (Level 4): It is a process focus on the fusion process itself

instead of the data from the sensor. Sensor management is the central func-

tionality in this level, which will is the most task in an active sensor network.

The JDL model provides a comprehensive infrastructure for all sensor fusion ap-

plications. However, it is so generic that the methodology various dramatically even
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within the same level. Some of the typical sensor fusion techniques in camera network

corresponding to each level in JDL model are illustrated in Figure 2.2

Figure 2.2: Sensor fusion techniques in camera network

In the following sections, we will survey some of the related camera network fusion

techniques closely related to the application project in this dissertation. Namely,

the camera image fusion between thermal cameras, visible light cameras and depth

cameras.

2.3.2 Fusion of Thermal Camera and Regular Camera

For decades, the problem of segmenting human in video sequence has been a cen-

tral issue in computer vision. Despite its popularity, it remains to be a challenging

problem because visual appearances are subjected to occlusion, illumination change,

hightlight, shadow and color confusion. Recently, systems using sensors of differ-

ent modalities have been proposed to improve human video segmentation results.

Among them, thermal infrared sensors are particularly popular as human bodies

usually present different temperature characteristics from that of the environment.
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The introduction of infrared camera provides both opportunities and challenges.

On one hand, the extra modality provided by infrared camera offers supplementary

information about the human body and thus should potentially improve the clas-

sification. On the other hand, the information from the visible-light and thermal

cameras are not spatially aligned and the new modality can bring new channels of

noises which could further confuse the classifier. In this paper, we tackle the regis-

tration problem by learning blob-to-blob homographies according to the disparity of

each blob to attain a pixel level registration. The multi-modality information is then

combined under a two tier tracking algorithm and an unified background model to

mitigate segmentation noise from either modalities.

Most existing systems solve the registration problem by either optical fusion[50,

51] or image warping[52, 53, 54]. The optical fusion methods use specially-designed

optical device to merge the optical axes of the two cameras so that the two cameras

can see exactly the same view. Despite its computationally efficiency and registra-

tion accuracy, it suffers from high manufacture costs. The image warping method

calculates a homography matrix during the calibration procedure by point match-

ing. The homography is used to warp segmentation results from one modality to the

other. The same homography matrix is applied to all objects in the scene regardless

of their depths. Due to over-simplification from 3D projection to 2D mapping, the

performance dwindles when there exists significant variation of objects’ depth in the

sequences. Some systems such as [54] and [52] adopt additional search procedures to

correct the registration error. Those searching algorithm significantly diminish the

algorithmic efficiency and will fail when either of two views has defective foreground
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segmentation.

In [55], instead of performing the warping in image scale, the authors align the

two foreground blobs by identifying shape feature points to estimate the homography,

through either skeleton or discrete curve evolution. Although our algorithm follows

a similar idea, we further exploit the camera model and reduce the number of pa-

rameters need to be learned from eight to just one. Furthermore, by including the

parameter into a tracker, we make full use of the temporal information to infer the

homography so that the registration would still work in noisy frames where no valid

observation is available.

Traditional sensor fusion techniques are pervasively used to improve the segmen-

tation from information obtained by multiple sensor. Kumar et al. [53] adopt fuzzy

logic to evaluate the confidence from each sensor. Han and Bhanu [54] compares

different rules under Bayesian framework, while combined trackers such as Kalman

filter and Particle filter are used to fuse the multi-modality observations in [56, 57, 58].

Alternatively, the fusion can be performed from the image perspective. In [50], image

segmentation is performed using the output of thermal camera as seeds. Morpholog-

ical operations are adopted in [52] and [59].

2.3.3 Fusion of Depth Camera and Regular Camera

The introduce of Time-of-flight sensor has brought a lot of enthusiasm to the camera

network community. Time-of-flight(ToF) sensors provide independent range esti-

mates at each pixel in real time, which provides critical complementary depth infor-

mation for regular cameras in camera network.
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Early studies on sensor fusion between ToF sensor and regular camera focus on the

accuracy of depth estimation [60, 61, 62, 63, 64]. In [60], data alignment is achieved by

estimating disparity from the TOF-depth measurements. Then the depth information

is converted into disparity and used for improving the stereo matching process. On

the other hand, Zhu et. al [63] convert the disparity information from stereo camera

into depth and directly fuse with the depth value in ToF sensor under a probabilistic

Markov Random Filed.

As the ToF and other depth sensors become more reliable and available, re-

searchers begin to look at higher level applications. For instance, depth camera

has significantly improved the foreground/background segmentation in video pro-

cessing. In [65], an initial foreground probability is obtained by looking at the depth

data, then the depth probability is smoothed by considering the color consistency

in neighborhood pixels. An edge preserving filter is then used to further smooth

the segmentation result while preserve the boundary. Instead of directly applying

smoothing filter, Wang et. al [66] uses an energy minimization framework to incor-

porate the depth, color information and spatial smoothness, the final formulation is

solved by graph cut [67]. Similar system is seen in [68].

The introduction of Microsoft Kinect [69] dramatically reduces the cost of deploy-

ing depth camera in camera network. Since its first apprance in November, 2010,

academic researchers, professionals and amateurs have been pouring ideals into this

fascinate field and a lot of interesting applications have emerged on the Internet. For

example, Using Kinect to improve the gesture recognition accuracy, a lot of novel

applications can be crafted as novel human-computer interaction applications, such
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as virtual piano [70], robot control [71] and hand controlled browser [72]. Other ap-

plications utilize the capability of depth camera equipped camera network to quickly

obtain the 3D information of the environment, such as 3D visual “Simultaneous Lo-

calization and Mapping” [73], 3D video conferencing [74] and the virtual mirror we

proposed in Section 6.6.2 .

Several papers have demonstrated the concept of virtual mirror for various ap-

plications. Though they differ in some aspects, most of them only deal with simple

appearance modification with a limited viewpoint [75, 76, 77]. Darrell et al. [75] de-

scribed a virtual mirror interface that reacted to people by applying different graphical

effect on their faces. Similarly, in [76], the authors proposed a virtual facial modi-

fication program by user-driven 3D-aware 2D warping. However, both of them did

not consider the view point’s influence on rendering virtual mirror. Francois and

Kang [78] designed a handheld mirror simulation device. Although it considered the

viewpoint change during the mirror image transformation, the system simply model

the world as a plane parallel to the mirror/imaging.
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Chapter 3 Formulating the Camera Placement Problem

3.1 Introduction

In recent years we have seen widespread deployment of camera networks for a variety

of applications. Proper placement of cameras in such a distributed environment is an

important design problem. Not only does it determine the coverage of the surveillance,

it also has a direct impact on the appearance of objects in the cameras which dictates

the performance of all subsequent computer vision tasks.

However, even with decades of study on camera network, the most ambitious goal

of designing a universal camera network configuration tool has never been achieved.

The intricacy comes from a lot of factors. Firstly, unlike other sensors, the line-of-sight

property of cameras makes them much more vulnerable to occlusions by both static

and dynamic objects. This is especially tricky when considering camera placement

in wide area indoor or outdoor environment characterized by complicated topologies,

stringent placement constraint, and a constant flux of occupant or vehicular traffic.

Secondly, camera is a abundant category ranging from infrared to range sensing,

from static to pan-tilt-zoom, from telescope to omni-directional. There is a lack of

a generic model to abstract their overlapping capability and differentiate their own

characteristic at the same time. More importantly, the performance of the network

depends heavily on the nature of the specific tasks in the application. The term

“visible” has dramatically different meaning in different settings. For example, in
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facial recognition application, one will require getting a clear frontal shot of the

person while in gait analysis, the profile view becomes the objective.

In this chapter, we tackle this problem by presenting a generic four-step scheme

consisted of

1. A generic visibility modeling.

2. A discretization process.

3. A Binary Integer Programming (BIP) formulation.

4. An optimization tool to solve the problem efficiently.

Instead of trying to solve all the problems at once, we argue that most of the cam-

era planning problems can be decomposed into the four steps and solved efficiently.

3.2 General Visibility Model

The first question we consider in planning a camera network is “when will an object be

visible to a camera?” It is generally not a very difficult problem given some knowledge

of the sensor but still takes some effort to describe it in a mathematical fashion.

We define our general visibility model to be a function which takes a fixed camera

and target with known parameters as input and outputs a continuous or binary value

to indicate the visibility of the target from specific sensor position. Our visibility

model does not only deal with different cameras from infrared to range sensing, from

static to pan-tilt-zoom, but also incorporates the perspective requirement from dif-
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ferent vision tasks such as profile view for gait analysis and frontal view for facial

recognition.

Figure 3.1: Three-dimensional visibility model. The target object can be anything de-
pending on the application, such as bags, iris faces jersey numbers and so on. Cameras
of arbitrary yaw and pitch angles can be placed anywhere in the 3-D environment.

Consider the 3D environment depicted in Figure 3.1, the first thing our visibility

model requires is to identify the target object of this specific surveillance task. For

instance, instead of the entire body, the system may only care for particular biometric

features such as face or eye for biometric application. In anti-terrorist application, the

target object should be the bag the individual is carrying. The sports broadcasting

system may want to track the jersey number of the player.

After identifying the target object for observation, several factors contribute to

the visibility of the object. They are usually the input of a camera configuration

system.

1. Camera geometry. It includes the camera’s 3D position and pose. We can

usually describe it by a 3D coordinate of the camera’s center and a 3D vector
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called “direction of projection”, which is the norm of camera’s image plane.

2. Target geometry. Similar to the camera geometry, the target geometry consists

of a 3D position of the target’s center and a vector indicating the object’s

orientation.

3. Field of view (FOV). It is a volume within which objects can be seen from a

particular camera. The FOV is determined by the camera’s focal length and

the size of its image plane. It’s usually denoted using two angles which are the

horizontal and vertical angle just as in Figure 3.2.

4. Angle of view (AOV). Similar to FOV, angle of view is an angular extension of

a visible volume from which the object can be seen, as in Figure 3.2. It is a

function of shape of the target object. An planar object usually has 180 degree

of AOV; a concave surface usually has less than 180 AOV and a convex object

has larger than 180 degree; a sphere has 360 degree of visible angle which means

it can be visible from any observation angle.

5. Environmental topology. It is usually a floor map containing all the obstacles.

For computational convenience it is approximated by combination of primer

shapes such as polyhedral, spheres and planes. Sometimes the environmental

topology can also include dynamic obstacles such as other pedestrian in the

environment.
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Figure 3.2: FOV and AOV of camera. FOV is the pyramid depicted by blue lines
and the angle of view of the object is shown in the red cone. the red cone from the
object is the AOV

3.2.1 Visibility Model for a Single Camera

In this section, we outline a general model to compute performance of a given camera

in a confined three-dimensional environment.

Table 3.1 provides a quick summary of all the symbols used in our derivation.

We assume that the 3-D environment has vertical walls with piecewise linear

contours. Obstacles are modeled as columns of finite height and polyhedral cross

sections. Whether the actual target is the face of a subject or an artificial object, it

is reasonable to model each target as a small flat surface perpendicular to the ground

plane. We further assume that all the targets are of the same square shape with
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Table 3.1: Symbols for camera visibility

P target center
vP target pose vector with ||vP|| = 1
Γ Horizontal Plane where P lies
β Occlusion angle measured at P on Γ
βs Starting position of the occlusion an-

gle
vV Normal of Γ with ||vV|| = 1
l Line segment at the intersection be-

tween the target and Γ
Pl1, Pl2 Two end points of l

C Camera’s Center of Projection
vC Camera’s direction of the projection

or pose vector with ||vC|| = 1
α Angle between vP and the vector

from P to C
Π Image plane, a finite-size rectangle

with normal vC and its distance from
the center of projection defines the
focal length.

O Center of the Π plane
P ′, P ′

l1, P
′
l2, l

′ Projection of P , Pl1, Pl2 and l on Π
K Fixed environment parameters about

the walls and obstacles
Υ A point in the camera space param-

eterized by C and vC, along with
other derived quantities like Π and
O

Λ A point in the target space parame-
terized by P , vP and βs

Θ Angle of view for the target object.

known edge length 2w. Without any specific knowledge of the height of individuals,

we assume that the centers of all the targets lie on the same plane Γ parallel to

the ground plane. This assumption does not hold in real world as individuals are of

different height. Nevertheless, as we will demonstrate in Section 3.5.1, such height

variation does not much affect the overall visibility measurements. While our model

restricts the targets to be on the same plane, we place no restriction on the 3-D
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positions, yaw and pitch angles of the cameras in the camera network.

Given the number of cameras and their placement in the environment, we define

the visibility V of a target using an aggregate measure of the projected size of a target

on the image planes of different cameras. The projected size of the target is very

important as the image of the target has to be large enough to be automatically

identified at each camera view. Due to the camera projection of the 3-D world to the

image plane, the image of the square target can be an arbitrary quadrilateral. While

it is possible to precisely calculate the area of this image, it is sufficient to use an

approximation for our visibility calculation. Thus, we measure the projected length

of the line segment l at the intersection between the target and the horizontal plane

Γ. The actual 3-D length of l is 2w, and since the center of the target always lie on l,

the projected length of l is representative of the overall projected size of the target.

Next we identify the set of random and fixed parameters that affects V . The fact

that we have chosen to measure the projected length of l instead of the projected area

of the target greatly simplifies the parametrization of V . Given a camera network,

the visibility function of a target can be parameterized as V (P,vP, βs|w,K) where

P , vP, βs are random parameters about the target; K and w are fixed environmental

parameters. These parameters are defined in the sequel and illustrated in Figure 3.1.

P defines the 2D coordinates of the center of the target on the plane Γ. vP is the

pose vector of the target. As we assume the target is perpendicular to the ground

plane, the pose vector vP lies on the plane Γ and has a single degree of freedom –

the orientation angle θ with respect to a reference direction. Note the dependency

of V on vP allows us to model self-occlusion – the target is being occluded by the
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person who is wearing it. The target will not be visible to a camera if the pose vector

is pointing away from the camera. While self occlusion can be succinctly captured

by a single pose vector, the modeling of mutual occlusion involves the number of

neighboring objects, their distances to the target and the positions of the cameras.

The precise modeling of mutual occlusion can be extremely complicated. In our

model, we choose the worst-case approach by considering a fixed occlusion angle β

measured at the center of the target on the Γ plane. Mutual occlusion is said to

occur if the projection of the line of sight on the Γ plane falls within the range of

the occlusion angle. In other words, we model the occluder as a cylindrical wall

of infinite height around the target partially blocking a fixed visibility angle of β at

random starting position βs. w is half of the edge length of the target which is a known

parameter. The shape of the environment is encapsulated in the fixed parameter set

K which contains a list of oriented vertical planes that describe the boundary wall

and obstacles of finite height. It is straightforward to use K to compute whether

there is a direct line of sight between an arbitrary point in the environment and a

camera.

To correctly identify and track any target, a typical classification algorithm would

require the target size on the image to be larger than a certain minimum size, though

a larger projected size usually does not make much difference. For example, a color

target detector needs a threshold to differentiate the target from noises, and a face

detector needs a face image large enough to observe the facial features. On the other

hand, the information gain does not increase as the projected object size increases

beyond a certain value. Therefore, the threshold version can represent our problem
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much better than the absolute image size. Assuming that this minimum threshold

on image size is T pixels, this requirement can be modeled by binarizing the visibility

function as follows:

Vb(P,vP, βs|w,K, T ) =

{

1 if V (P,vP, βs|w,K) > T
0 otherwise.

(3.1)

Finally, we define η, the mean visibility, to be the metric for measuring the average

visibility of P over the entire parameter space:

η =

∫

Vb(P,vP, βs|w,K, T ) · f(P,vP, βs) dP dvP dβs (3.2)

where f(P,vP, βs) is the prior distribution that can incorporate prior knowledge

about the environment – for example, if an application is interested in locating faces,

the likelihood of the head positions and poses are affected by furnishings and at-

tractions such as television sets and paintings. Except for the most straightforward

environment such as a single camera in a convex environment discussed in [79], Equa-

tion (3.2) does not admit a closed-form solution. Nevertheless, it can be estimated

by using standard Monte-Carlo sampling and its many variants. The details of our

Monte-Carlo sampling strategy is discussed in Section 3.5.

3.2.2 Visibility for a Camera Network

In order to calculate performance metric for the entire camera network defined in

Equation 3.2, we need to give concrete formula for each of term. In this section, we

first take a closer look at the term Vb(·). Given a single camera with the camera

center at C, it is straightforward to see that a target at P is visible at C if and only

if the following four conditions hold:
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1. The target is not occluded by any obstacle or wall. (Environmental Occlusion)

2. The target is within the camera’s field of view. (Field Of View)

3. The target is not occluded by the person wearing it. (Self-Occlusion or Angle

of View)

4. The target is not occluded by other moving objects. (Mutual Occlusion)

Thus, we define the visibility function for one camera to be the projected length ||l′||

on the image plane of the line segment l across the target if the above conditions are

satisfied, and zero otherwise. In the sequel, we demonstrate how the projected length

is calculated and show how we check each of the four conditions.

Using pinhole camera model, Figure 3.3 shows the projection of l , delimited by

Pl1 and Pl2, onto the image plane Π. Based on the assumptions that all the target

centers has the same elevation and all target planes are vertical, we can analytically

derive the formulae for Pl1, Pl2 as follows: as l is perpendicular to both the unit

pose vector of the target vP and the unit normal vector vV to the plane Γ, we have

Pl1,2 = P±w(vP×vV). Their projections P
′
l1 and P ′

l2 lie on the intersections between

the image plane Π and the light rays CPl1 and CPl2 respectively. For i = 1, 2, any

point X on Π must satisfy 〈vC, X −O〉 = 0 where 〈·, ·〉 indicates inner product, and

any point X on the line CPli must satisfy X = C + λ(Pli −C). Thus, P ′
li for i = 1, 2

can be calculated as follows:

P ′
li = C −

〈vC, O − C〉

〈vC, Pli − C〉
(Pli − C) (3.3)

The projected length ||l′|| is simply ||P ′
l1 − P ′

l2||.
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Figure 3.3: Projection of a single target onto a camera.

The projected length l under other camera model can be similarly modeled.

After computing the projected length of the target, we proceed to check the four

visibility conditions as follows:

1. Environmental Occlusion: We assume that environmental occlusion occurs

if the line segment connecting camera center C with the target center P intersect

with some obstacle. While such an assumption does not take into account of

partial occlusion, it is adequate for most applications where the target is much

smaller than its distance from the camera. We represent this requirement as
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the following binary function:

chkObstacle(P,C,K)

=







1 No obstacles intersect
with line segment PC

0 else
(3.4)

Specifically, the obstacles are recorded in K as a set of oriented vertical planes

that describe the boundary wall and obstacles of finite height. Intersection be-

tween the line of sight PC and each element in K is computed. If there is no

intersection within the confined environment or the points of intersection are

higher than the height of the camera, no occlusion occurs due to the environ-

ment.

2. Field of View: Similar to determining environmental occlusion, we declare

the target to be in the field of view if the image P ′ of the target center is within

the finite image plane Π.

Using a similar derivation as in (3.3), the image P ′ is computed under the

pinhole camera model as follows:

P ′ = C −
〈vC, O − C〉

〈vC, P − C〉
(P − C) (3.5)

We then convert P ′ to local image coordinates to determine if P ′ is indeed within

Π. We encapsulate this condition using the binary function chkFOV(P,C,vC,Π, O)

takes camera intrinsic parameters, target location, pose vector as input, and re-

turns a binary value indicating whether the center of the target is within the

camera’s field of view.
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When a camera model with lens is used, we need to also check the depth of the

target, ||P − C||, is within the range of the depth of view [dmin, dmax].

3. Angle of view or Self Occlusion: As illustrated in Figure 3.3, the target

is self occluded if the angle α between the light of sight to the camera C − P

and the target pose vP exceeds π
2
. In other word, we say the object is not

self occluded if the camera is within the angle of view of the object. We can

represent this condition as a step function U(Θ
2
− |α|).

4. Mutual Occlusion: In Section 3.2, we model the worst-case occlusion using

an angle β. As illustrated in Figure 3.3, mutual occlusion occurs when the

target center or half the line segment l is occluded. The angle β is suspended

at P on the Γ plane. Thus, occlusion occurs if the projection of the light of

the sight C − P on the Γ plane at P falls within the range of [βs, βs + β). We

represent this condition using the binary function chkOcclusion(P,C,vP, βs)

which returns one for no occlusion and zero otherwise.

Combining both ||l′|| and the four visibility conditions, we define the projected length

of an oriented target with respect to camera Υ as I(P,vP, βs|K,Υ) follows:

I(P,vP, βs|w,K,Υ) = ||l′||·

chkObstacle(P,C,K) · chkFOV(P,C,vC,Π, O) ·

U

(

Θ

2
− |α|

)

· chkOcclusion(P,C,vP, βs) (3.6)
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where Υ includes all camera parameters including Π, O and C. As stated in Section

3.2, a threshold version is usually more convenient:

Ib(P,vP, βs|w,K,Υ, T ) =

{

1 if I(P,vP, βs|w,K,Υ) > T
0 otherwise

(3.7)

3.3 Discretize the Space by Sampling

It is generally not difficult to derive a function to predict the visibility of a target

object provided when both the camera and target parameters are given and to further

decide the “observability” of the target object to a fixed camera network. However,

the goal of an optimal camera placement is to identify, among all possible camera

network configurations, the one that maximizes the average observability assuming

the target parameters to be random with or without prior knowledge. In reality,

the visibility function never possesses an analytic form because it usually involves

some thresholding, enumeration and etc. Therefore it is very difficult to apply con-

ventional continuous optimization strategies such as variational techniques or convex

programming. As such, discrete approaches are more suitable by finding an approx-

imate solution over a discretization of two spaces – the space of possible camera

configurations and the space of target object’s location and orientation.

The infinite camera configuration space can be discretized into finite space with

some sacrifice of accuracy. Normally, the camera configuration space — including the

3D location, pitch and yaw angle — can be uniformly sampled as candidate camera

grid points. The sampling density can be defined by the user, trading off between

computational complexity and approximation accuracy. For certain environmental
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topology, it is easy to observe that some locations or poses may have more advan-

targeteous over others, such as vertices of polyhedral and the pose pointing to the

center of a sphere. The discretization process should be capable to identifying these

points or at least allow the user to pick these locations and poses manually.

For planning of heterogeneous camera network, the discretization can naturally

model the selection of different camera types. For given fixed camera setup including

position, pose and occlusion angle, we assign multiple variables to represent differ-

ent camera types and ensure only one type of camera is selected by apply a group

constraint same as in Section 3.3.4.3.

The random parameters for the target object in computing the visibility function

include the location and the orientation. An intuitive way is to evenly partition these

spaces into equal size cells and use their centers as grid points, as in Figure 3.4a. Other

discretization may also apply, including random sampling, stratified sampling and

systematic sampling [80, ch.3] as shown in Figure 3.4b and 3.4c. In some surveillance

applications, the possible location of the target object can be better generalized using

trajectories. This is especially the case in traffic monitoring and surveillance for

pedestrians. [25] is such an example (Figure 3.4d).

As for occlusion, our goal is to perform the worst-case analysis so that as long

as the occlusion angle is less than a given β — which is the limit of mutual oc-

clusion assuming two individuals always keep a minimum distance with each other

— our solution is guaranteed to work no matter where the occlusion is. As such, a

straightforward quantization of the starting position βs of the occlusion angle will not

work – an occlusion angle of β starting anywhere between grid points will occlude
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Figure 3.4: Different sample strategy for discretizing the object space

additional view. To simultaneously discretize the space and maintain the guarantee,

we select a larger occlusion angle βm > β and quantize the starting position of the

occlusion angle using a step-size of β∆ = βm − β. The occlusion angles considered

under this discretization will then be {[iβ∆, iβ∆ + βm) : i = 0, . . . , Nβ − 1} where

Nβ = ⌈(π − βm)/β∆⌉. This guarantees that any occlusion angle less than or equal

to β will be covered by one of the occlusion angles. Figure 3.5 show an example of

β = β∆ = π/4 and βm = π/2.

Given a camera grid point and a target grid point, we can explicitly predict
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Figure 3.5: Discretization for occlusion angle. Discretization to guarantee occlusion
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whether a target object will be visible or not to a particular camera grid point,

using the visibility function in Section 4.3.2.2. These numerical values for every pair

of camera and target grid points consists a “visibility matrix”, which will be used

in formulating our optimal camera placement problem together with the discretized

camera and object space.

3.4 Optimal Camera Placement Formulation

The goal of an optimal camera placement is to identify, among all possible camera

network configurations, the one that maximizes the visibility function given by (3.2).

As (3.2) does not possess an analytic form, it is very difficult to apply conventional

continuous optimization strategies such as variational techniques or convex program-

ming. As such, we follow a similar approach as in [28] by finding an approximate

solution over a discretization of two spaces – the space of possible camera configura-

tions and the space of target location and orientation. The optimization problem over
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the discrete spaces is formulated as a Binary Integer Programming (BIP) problem in

which binary variables are used to indicate whether a camera is placed at a specific

grid point and whether a target is observable at a particular location and orientation.

Binary integer programming is a very powerful tool for mathematical modeling.

In this section, we present various formulations for different application requirements.

Before going to the detail models, we firstly make some simple but important nota-

tions below.

• bj , j = 1, 2, . . . , Nc: is a group of binary variable indicating whether to put a

camera in a specific camera grid point j. Nc is the size of the discrete camera

space.

• xi, i = 1, 2, . . . , Nt: is a group of binary variable indicating whether a target

object at grid point i is “observable” under a specific camera placement. Nt is

the size of the discrete target object space.

• Ib(Λj|w, T,K,Υi), i = 1, 2, . . . , Nt, j = 1, 2, . . . , Nc: as described in Equation (3.7),the

“visibility matrix” with binary value indicating whether a target object at grid

i is visible by camera at grid j.

3.4.1 MIN CAM: Minimizing the number of cameras for a target visibil-

ity

MIN CAM estimates the minimum number of cameras which can provide a mean

visibility η equal to or higher than a given threshold ηt. There are two main charac-

teristics of MIN CAM: first, η is computed not on the discrete target space but on
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the actual continuous space using Monte Carlo simulation. As such, the measure-

ment is independent of the discretization. Furthermore, if the discretization of the

target space is done with enough prior knowledge of the environment, MIN CAM can

achieve the target using very few grid points. This is important as the complexity

of BIP depends greatly on the number of constraints which is proportional to the

number of grid points. Second, the requirements are formulated as constraints rather

than the cost function in the BIP formulation of MIN CAM. Thus, the solution will

guarantee the chosen target grid points be visible at two or more cameras. While

this is useful to those applications where the requirement in the environment needs

to be strictly enforced, they may inflate the number of cameras needed to capture

some poorly chosen grid points. Before describing the details of how we handle this

problem, we first describe the BIP formulation in MIN CAM.

We first associate each camera grid point Υi in gridC with a binary variable bi

such that

bi =

{

1 if a camera is present at Υi

0 otherwise
(3.8)

The optimization problem can be described as the minimization of the number of

cameras:

min
bi

Nc
∑

i=1

bi (3.9)

subjected to the following two constraints: first, for each target point Λj in gridP ,

we have
Nc
∑

i=1

bj · Ib(Λj|w, T,K,Υi) ≥ 1 (3.10)
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This constraint represents the requirement that all targets must be visible at least

one camera. As defined in Equation (3.7), Ib(Λj|w, T,K,Υi) measures the visibility

of target Λj with respect to camera at Υi. In other words, Λj satisfying the constraint

(3.10) must be in the perfect zone. Second, for each camera location (x, y), we have

∑

all Υi at (x, y)

bi ≤ 1 (3.11)

These are a set of inequalities guaranteeing that only one camera is placed at any

spatial location. The optimization problem in (3.9) with constraints (3.10) and (3.11)

forms a standard BIP problem.

The solution to the above BIP problem obviously depends on the selection of

grid points in gridP and gridC. While gridC is usually predefined according to the

constraint of the environment, there is no guarantee that, as alluded to in Section 3.2,

a target at a random location can be visible by two cameras even if there is a camera at

every camera grid point. Thus, target grid points must be placed intelligently – target

grid points away from obstacles and walls are usually easier to observe. On the other

hand, focusing only on areas away from the obstacles may produce a subpar result

when measured over the entire environment. To balance the two considerations, we

solve the BIP repeatedly over a progressively refined gridP over the spatial dimensions

until the target η, measured over the entire continuous environment, is satisfied. One

possible refinement strategy is to have gridP started from a single grid point at the

middle of the environment, and grew uniformly in density within the interior of the

environment but remains at least one interval away from the boundary. If the BIP

fails to return a solution, the algorithm will randomly remove half of the newly added
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target grid points. The iteration terminates when the target ηt is achieved or all the

newly added grid points are removed. The above process is summarized in Algorithm

1.

Input: initial grid points for cameras gridC and target gridP , ηt, maximum
grid density maxDensity

Output: Camera placement camP lace
Set η = 0, newP = ∅;
while η ≤ ηt do

foreach Υi in gridC do
foreach Λj in gridP ∪ newP do

Calculate Ib(Λj|w, T,K,Υi);
end

end
Solve newCamPlace = BIP solver(gridC, gridP, Ib);
if newCamPlace == ∅ then

if |newP | == 1 then
break, return failure ;

Randomly remove half of the elements from newP ;

else
camP lace = newCamPlace;
gridP = gridP ∪ newP ;
newP = new grid points created by halving the spatial separation;
newP = newP \ gridP ;
Calculate η for camP lace by Monte Carlo Sampling;

end

end
Algorithm 1: MIN CAM Algorithm

3.4.2 FIX CAM: Maximizing the visibility for a given number of cameras

A drawback of MIN CAM is that it may need a large number of cameras in order to

satisfy the visibility of all target grid points. If the goal is to maximize the average

visibility, a sensible way to reduce the number of cameras is to allow a small portion

of the target grid points not being observed by two or more cameras. As long as the
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target grid is dense, such “blind spots” will be rare as guaranteed by a high average

visibility. FIX CAM is the algorithm that does precisely that.

We first define a set of binary variables on the target grid {xj : j = 1, . . . , Np}

indicating whether a target on the jth target point in gridP is visible at two or more

cameras. In order to maximize the visibility, the objective function for BIP becomes,

max
bi

Np
∑

j=1

xj (3.12)

The relationship between the camera placement variables bi’s as defined in (3.8) and

visibility performance variables xj ’s can be described by the following constraints.

For each target grid point Λj, we have

Nc
∑

i=1

biIb(Λj|w, T,K,Υi)−Ncxj ≤ 0 (3.13)

Nc
∑

i=1

biIb(Λj|w, T,K,Υi)− xj ≥ 0 (3.14)

These two constraints effectively define the binary variable xj : if xj = 1, Inequality

(3.14) becomes
Nc
∑

i=1

biIb(Λj|w, T,K,Υi) ≥ 1

which means that a feasible solution of bi’s must have the target visible at two or

more cameras. Inequality (3.13) becomes

Nc
∑

i=1

biIb(Λj|w, T,K,Υi) ≤ Nc

which is always satisfied – the largest possible value from the left-hand size is Nc

corresponding to the case when there is a camera at every grid point and every target
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point is observable by two or more cameras. If xj = 0, Inequality (3.13) becomes

Nc
∑

i=1

biIb(Λj|w, T,K,Υi) ≤ 0

which implies that the target is not visible by two or more cameras. Inequality (3.14)

is always satisfied as it becomes

Nc
∑

i=1

biIb(Λj|w, T,K,Υi) ≥ 0

Two additional constraints are needed to complete the formulation: as the cost

function focuses only on visibility, we need to constrain the number of cameras to be

less than a maximum number of cameras as follows:

Nc
∑

j=1

bj ≤ m (3.15)

We also keep the constraint in (3.11) to ensure only one camera is used at each spatial

location.

Unlike MIN CAM, the feasible solution set for FIX CAM is non-empty – no matter

how dense we set the discretization, the trivial case of no target being observed will

always satisfy the constraints. As such, we can simply run FIX CAM on a fixed dense

grid without any refinement of the target space. FIX CAM is more computationally

intensive than MIN CAM as there are two constraints for each target grid point and

usually a denser grid is used. Since this algorithm is more complex and requires

the specification of a target number of cameras, a possible strategy is to use the

MIN CAM to estimate the approximate number of cameras and gradually reduce the

number of cameras using FIX CAM until the mean visibility falls below the target.
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Alternatively, we can incorporate the minimization of the number of cameras by

modifying the cost function defined in Equation (3.12) to the following:

max
bi

Np
∑

j=1

xj − σ

Nc
∑

i=1

bi (3.16)

where σ is a user-defined parameter for balancing the maximization of visibility and

minimization of the number of cameras. Experimental results using FIX CAM will

be shown in Section 3.4.1.

3.4.3 Common Requirements in Camera Planning

Connectivity

In addition we can add constraints to model the connectivity requirement for camera

network. These kind of requirement is extremely useful in wireless camera network

where only proximate camera nodes can communicate between each other due to

the power constraints. We firstly introduce an adjacency matrix A with each entry

aij = 1 if camera at i and j are connected, a set variable if there is a flow from camera

i to j. The flow is defined as

yij ≤
aij
2
(bi + bj)

The connectivity is ensured by require every selected camera has at least a flow

bi ≤
∑

j

yij

A more complex example considering communication capacity and different type

of sensors can be found in [81].
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Localization Error

In [27], Ercan et. al models the 2D localization error of a given target for one camera

as a Gaussian distribution. Therefore, they formulate the sensor selection problem

to be

max.(
α + 1

σ2
x

+
∑

i

bi
σvi

)2 − (
α− 1

σ2
x

+
∑

i

bi cos 2θi
σvi

)2

− (
∑

i

bi sin 2θi
σvi

)2

s.t.

Nc
∑

i=1

bi ≤ m and bi are binary. (3.17)

Where α, σx, σv are all pre-computed constants. σv is the measurement noise

variance, σx is the localization noise prior and α is an parameter to indicate the

asymmetry of prior noise in the 2 principle axes. In the original paper, a Semi-

definite program approach is used taking advantage of the fact that the objective

function is quadratic. However, we will show that our formulation is general enough

to transform this problem into a binary integer programming.

By expansion, the objective function can be rearranged into following form,

4α

σ4
x

+
2(α + 1)

σ2
x

∑

i

bi
σ2
vi

+
2(α− 1)

σ2
x

∑

i

cos 2θibi
σ2
vi

+ 2
∑

i

∑

j

1− cos 2θi cos 2θj − sin 2θi sin 2θj
σ2
viσ

2
vj

bibj (3.18)

Where the only variables are bi’s. Though the expression is not linear due to the

existence of bibj , we can linearize it by replacing bibj with binary variables yij and
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add three sets of linear constraints,

−bi + yij ≤ 0

−bj + yij ≤ 0

bi + bj − yij ≤ 1 (3.19)

Multiple Coverage Constraint

In [29], the target is considered visible if and only if its frontal view is observed

by at least k cameras. This requirement can be imposed by adding the following

constraints. For each target grid point Λj for j = 1, 2, . . . , Np, we have

Nc
∑

i=1

vijbi − (Nc − k + 1)xj ≤ k + 1 (3.20)

and
Nc
∑

i=1

vijbi − kxj ≥ 0 (3.21)

where vij is a binary visibility matrix pre-computed for each pair of camera position

Υi and target position Λj, such that vij = 1 indicates the camera at Υi can observe

target at Λj .

Note that when we want to maximize the coverage, we can drop the constraint

3.20. However, it does not necessary lead to faster solutions.

Tracking Performance

The crucial element for tracking is occlusion handling. In the sense of camera place-

ment or selection, it means the continuous time interval when the object is not ob-

served should be minimized. This requirement can be represented by a set of linear
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constraints for every path or neighborhood denoted as Ψj

∑

i∈Ψj

xi ≤ η|Ψj|

Where η is the tolerance of missing frames for the tracker and |Ψ| is the size of the

neighborhood.

Partial Coverage

In some computer vision applications, a simple binary visibility metric is inadequate.

For instance, in facial recognition system, smaller image has higher probability to

produce erroneous results than a bigger image. This require a function to “gracefully”

decade from full visible status to invisible. A fuzzy model has been introduced in [82],

which can be easily incorporated into a binary integer programming model. All we

need is to redefine vij in Equation (3.13) to be

vij =







0 f(·) < t1
1 f(·) ≥ t2

1

t2−t1
f(·)− t1 t1 ≤ f(·) < t2

where f(·) is an image function that takes the camera position and target position to

output image size. t1, t2 are upper and lower threshold for a computer vision task.

Group Constraint

Group constraint is used to impose some requirement in a subset of the whole pa-

rameter space. For instance, the control of a PTZ camera can be formulated as a

group constrait over binary variables with known position but unknown pose. When

we already know the position of a camera but want to choose an optimal pose out of
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it, we can further discretized the pose parameter and impose following constraint

∑

all Υi at (cx, cy, cz)

bi = 1. (3.22)

Similar constraint can be found in [79] where a set of inequalities are used to

prevent multiple cameras to be placed into one physical position.

Placement of Stereo Sensors

Binary integer programming is also used to model a stereo sensor placement problem

of to minimize cost while ensuring every target has been covered by a stereo pair. We

provide an alternative BIP formulation using our generic framework.

min.
∑

i

bi

s.t. xk = vki,jbibj = 1 (3.23)

Where vki,j is the stereo visibility metric defined as

vkij =







1 when d1 ≤ d(Υi,j,Λk) ≤ d2
and 6 ΥiΛkΥj ≤ θ

0 otherwise

Where d(·, ·) is the Euclidean distance function.

The same method as in Section 3.4.3 can be used to make the constraint linear.

Similar framework can be seen in [34].

3.5 Experimental Results

In this section, we present both simulation and realistic camera network results to

demonstrate the proposed algorithms. In Section 3.5.1, we show various properties of
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MIN CAM, FIX CAM and GREEDY by varying different model parameters. In Sec-

tion 3.5.2, we compare the optimal camera configurations computed by our techniques

with other camera configurations.

3.5.1 Optimal camera placement simulation experiments

All the simulations in this section assume a room of dimension 10m × 10m with a

single obstacle and a square target with edge length w = 20 cm long. For the camera

and lens models, we assume a pixel width of 5.6 µm, focal length of 8 cm and the

field of view of 60 degrees. These parameters closely resembles the real cameras that

we use in the real-life experiments. The threshold T for visibility is set to five pixels

which we find to be an adequate threshold for our color-target detector.

Performance of MIN CAM

We first study how MIN CAM estimates the minimum number of cameras for a

target mean visibility ηt through target grid refinement. For simplicity, we keep all

the cameras at the same elevation as the targets and assume no mutual occlusion.

The target mean visibility is set to be ηt = 0.90 and the algorithm reaches this target

in four iterations. The output at each iteration are shown in Figure 3.6. Figures

3.6a and 3.6e show the first iteration. Figure 3.6a shows the environment with one

target grid point (black dot) in the middle. The camera grid points are restricted at

regular intervals along the red boundary of the environment and remain the same for

all iterations. The blue arrows indicate the output position and pose of the cameras

from the BIP solver. Figure 3.6e shows the Monte-Carlo simulation results. The
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mean visibility η over the environment is estimated to be 0.4743. Since it is below

the target ηt, the target grid is refined as shown in Figure 3.6b with the corresponding

Monte-Carlo simulation shown in Figure 3.6f. With the number of cameras increases

from four to eight, η increases to 0.7776. The next iteration shown in Figure 3.6c

grows the target grid further. With so many constraints, the BIP solver fails to

return a feasible solution. MIN CAM then randomly discards roughly half of the

newly added target grid points. The discarded grid points are shown as blue dots

in Figure 3.6d. With fewer grid points and hence fewer constraints, a solution is

returned with eleven cameras. The corresponding Monte-Carlo simulation shown in

Figure 3.6h gives η = 0.9107 which exceeds the target threshold and MIN CAM

terminates.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

(e) η = 0.4743 (f) η = 0.7776 (g) η = 0 (h) η = 0.9107

Figure 3.6: Four iterations of MIN CAM
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FIX CAM versus MIN CAM

In the second experiment, we demonstrate the difference between FIX CAM and

MIN CAM. Using the same environment as in Figure 3.6c, we run FIX CAM to

maximize the performance with eleven cameras. The traffic model ρj is set to be uni-

form. MIN CAM fails to return a solution under this dense grid and after randomly

discarding some of the target grid points, outputs η = 0.9107 using eleven cameras.

On the other hand, without any random tuning of the target grid, FIX CAM returns

a solution of η = 0.9205 and the results are shown in Figures 3.7a and 3.7b. When

we reduce the number of cameras to ten and rerun FIX CAM, we manage to produce

η = 0.9170 which still exceeds the results from MIN CAM. This demonstrates that we

can use FIX CAM to fine-tune the approximate result obtained by MIN CAM. The

camera configuration and the visibility distribution of using ten cameras are shown

in Figure 3.7c and 3.7d, respectively.

GREEDY Implementation of FIX CAM

Using the same setup, we repeat our FIX CAM experiments using the GREEDY

implementation. Our algorithm is implemented using MATLAB version 7.0 on a Xeon

2.1Ghz machine with 4 Gigabyte of memory. The BIP solver inside the FIX CAM

algorithm is based on lp solve [83]. We have tested both algorithms using eleven, ten,

nine and eight maximum number of cameras. While changing the number of cameras

does not change the number of constraints, the search space becomes more restrictive

as we reduce the number of cameras. As such, it is progressively more difficult to
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(a) FC: 11 cam (b) FC: η = 0.9205 (c) FC: 10 cam (d) FC: η = 0.9170

(e) G: 11 cam (f) G: η = 0.9245 (g) G: 10 cam (h) G: η = 0.9199

Figure 3.7: Comparison of FIX CAM with GREEDY algorithm. Figures 3.7a to 3.7d
show the results of using FIX CAM (F). Figures 3.7e to 3.7h show the same set of
experiments using GREEDY (G)as an approximation to FIX CAM.

prune the search space, making the solver resemble that of an exhaustive search.

The results are summarized in Table 3.2. For each run, three numerical values are

reported: the fraction of target points visible to two or more cameras which is the

actual minimized cost function, the running time and the mean visibility estimated

by Monte Carlo simulations. At eight cameras, GREEDY is 30,000 times faster than

lp solve but only 3% fewer visible target points than the exact answer. It is also

worthwhile to point out that the lp solve fails to terminate when we refine the target

grid by halving the step-size at each dimension, while GREEDY uses essentially the

same amount of time. The placement and visibility maps of the GREEDY algorithm

that mirror those from FIX CAM are shown in the second row of Figure 3.7.
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Table 3.2: Comparison between Lp solve and greedy

No. cameras Lp solve Greedy

Visible targets Time(s) η Visible targets Time(s) η

Eleven 0.99 1.20 0.9205 0.98 0.01 0.9245

Ten 0.98 46.36 0.9170 0.98 0.01 0.9199

Nine 0.97 113.01 0.9029 0.97 0.01 0.8956

Eight 0.96 382.72 0.8981 0.94 0.01 0.8761

Elevation of targets and cameras

Armed with an efficient greedy algorithm, we can explore various modeling parameters

in our framework. An assumption we made in the visibility model is that all the

target centers are in the same horizontal plane. This does not reflect the real world

due to the different height of individuals. In the following experiment, we examine

the impact of the variation in height on the performance of a camera placement.

Using the camera placement in Figure 3.7g, we simulate five different scenarios: the

height of each person is 10 cm or 20 cm taller/shorter than the assumed height, as

well as heights randomly drawn from a bi-normal distribution based on U.S. census

data [84]. The changes in the average visibility are shown in Table 3.3. They range

from -3.8% to -1.3% which indicate that our assumption does not has a significant

impact on the measured visibiliy.

Table 3.3: Effect of height variation on η

height model +20 -20 +10 -10 Random

Change in η −3.8% −3.3% −1.2% −1.5% −1.3%

Next, we consider the elevation of the cameras. In typical camera networks, cam-

eras are usually installed at elevated positions to mitigate occlusion. The drawback
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of the elevation is that it has a smaller field of view when compared with the case

when the camera is at the same elevation as the targets. By adjusting the pitch angle

of an elevated camera, we can selectively move the field of view to various part of

the environment. As we now add one more additional dimension of pitch angle, the

optimization becomes significantly more difficult and GREEDY algorithm must be

used. Figure (3.8) shows the result for m = 10 cameras with three different elevations

above the Γ plane on which the centers of all the targets are located. As expected, the

mean visibility reduces as we raise the cameras. The visibility maps in Figures 3.8d,

3.8e and 3.8f show that as the cameras are elevated, the coverage near the boundary

drops but the center remains well-covered as the algorithm adjusts the pitch angles

of the cameras.

(a) 0.4m (b) 0.8m (c) 1.2m

(d) η = 0.9019 (e) η = 0.8714 (f) η = 0.8427

Figure 3.8: Camera planning and Monte-Carlo simulation results. Cameras are ele-
vated to be 0.4, 0.8 and 1.2m above the targets.
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Mutual Occlusion

We present simulation results to show how our framework deals with mutual occlusion.

Recall that we model occlusion as an occlusion angle of β at the target. Similar to the

experiments on camera elevation, our occlusion model adds an additional dimension to

the target grid and thus we have to resort to the GREEDY algorithm. We would like

to investigate how occlusion affects the number of cameras and the camera positions

of the output configuration. As such, we use GREEDY to approximate MIN CAM

by identifying the minimum number of cameras to achieve a target level of visibility.

We use a denser target grid than before to minimize the difference between the actual

mean visibility and that estimated by GREEDY over the discrete target grid. The

target grid we use is 16 × 16 spatially with 16 different orientations. We set the

target to be ηt = 0.8 and test different occlusion angle β at 0◦, 22.5◦ and 45◦. As

explained earlier in Section 3.3, our discretization uses a slightly larger occlusion

angle to guarantee worst-case analysis – we uses βm = 32.5◦ for β = 22.5◦ and

βm = 65◦ for β = 45◦. In the Monte Carlo simulation, we put the occlusion angle

at random position of each sample point. The results are shown in Figure 3.9. We

can see that even with increasing number of cameras from six to eight to twelve, the

resulting mean visibility suffers slightly when the occlusion angle increases. Another

interesting observation from the visibility maps in Figures 3.9d, 3.9e and 3.9f is that

the perfect region, indicated by the white pixels, dwindles as occlusion increases. This

is reasonable because it is difficult for a target to be visible at all orientation in the

presence of occlusion.
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(a) 0◦; 6 cam. (b) 22.5◦; 8 cam (c) 45◦; 12 cam

(d) η = 0.8006 (e) η = 0.7877 (f) η = 0.7526

Figure 3.9: Comparing different occlusion angles. As the occlusion angle increases
from 0◦ in Figure 3.9a to 22.5◦ in Figure 3.9b and 45◦ in Figure 3.9c, the required
number of cameras increases from 6 to 8 and 12 when using GREEDY to achieve
a target performance of ηt = 0.8. Figure 3.9d to Figure 3.9f are the correspondent
visibility maps.

Realistic Occupant Traffic Distribution

In this last experiment, we show how one can incorporate realistic occupant traffic

patterns into the FIX CAM algorithm. All experiments thus far assume an uniform

traffic distribution over the entire target space – it is equally likely to find a person

at each spatial location and at each orientation. This model does not reflect many

real-life scenarios. For example, consider a hallway inside a shopping mall: while

there are people browsing at the window display, most of the traffic flows from one

end of the hallway to the other end. By incorporating an appropriate traffic model,

the performance should be improved under the same resource constraint. In the

FIX CAM framework, a traffic model can be incorporated into the optimization by
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using non-uniform weights ρj in the cost function (3.12).

In order to use a reasonable traffic distribution, we employ a simple random walk

model to simulate a hallway environment. We imagine that there are openings on

the either sides of the top portion of the environment. At each of the target grid

point, which is characterized by both the orientation and the position of a walker,

we impose the following transitional probabilities: a walker has a 50% chance of

moving to the next spatial grid point following the current orientation unless it is

obstructed by an obstacle, and has a 50% chance of changing orientation. In the case

of changing orientation, there is a 99% chance of choosing the orientation to face the

target grid point closest to the nearest opening while the rest of the orientations share

the remaining 1%. At those target grid points closest to the openings, we create a

virtual grid point to represent the event of a walker exiting the environment. The

transitional probabilities from the virtual grid point back to the real target points

near the openings are all equal. The stationary distribution ρj is then computed by

finding the eigenvector with eigenvalue one of the transitional probability matrix of

the entire environment[85][ch.11.3].

Figure 3.10a shows this hallway environment. The four hollow circles indicate

the target grid points closest to the openings. The result of the optimization under

the constraint of using four cameras is shown in Figure 3.10b. Clearly the optimal

configuration favors the heavy traffic hallway area. If the uniform distribution is used

instead, we obtain the configuration in Figure 3.10c and the visual map in Figure

3.10d. The average visibility drops from 0.8395 to 0.7538 as there is a mismatch of

the traffic pattern.
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(a) Random Walk (b) η = 0.8395 (c) Uniform (d) η = 0.7538

Figure 3.10: Random walk model for camera placement. Figures 3.10a and 3.10b
use the specific traffic distribution for optimization and obtain a higher η as compared
to using an uniform distribution in figures 3.10c and 3.10d.

3.5.2 Comparison with other camera placement strategies

In this section, we compare our optimal camera placements with two different place-

ment strategies. The first one is uniform placement – assuming that the cameras are

restricted along the boundary of the environment, the most intuitive scheme is to

place them at regular intervals on the boundary, each pointing towards the center of

the room. The second one is based on the optimal strategy proposed in [28].

To test the differences in visibility models, it is unfair to use Monte-Carlo sim-

ulations which use the same model as the optimization. As a result, we resort to

virtual environment simulations by creating a virtual 3-D environment that mimics

the actual 10m×10m room used in Section 3.5.1. We then insert a random-walking

humanoid wearing a red target. The results are based on the visibility of the target

in two or more cameras. The cameras are set at the same height as the target and no

mutual occlusion modeling is used. The optimization is performed with respect to a

fixed number of cameras. To be fair to the scheme in [28], we run their optimization

formulation to maximize the visibility from two cameras. The measurements of η for
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the three schemes with the number of cameras varied from five to eight are shown

in Table 3.4. Our proposed FIX CAM performs the best followed by the uniform

placement. The scheme in [28] does not perform well as it does not take into account

the orientation of the target. As such the cameras do not compensate each other

when the target is in different orientations.

Table 3.4: η measurements among the three schemes using virtual simulations

Number of cameras FIX CAM [28] Uniform Placement

5 0.614± 0.011 0.352± 0.010 0.522± 0.011
6 0.720± 0.009 0.356± 0.010 0.612± 0.011
7 0.726± 0.009 0.500± 0.011 0.656± 0.010
8 0.766± 0.008 0.508± 0.011 0.700± 0.009

We are, however, surprised by how close uniform placement is to our optimal

scheme. Thus, we further test the difference between the two with a real-life ex-

periment that incorporates mutual occlusion. We conduct our real-life experiments

indoor in a room of 7.6 meters long, 3.7 meters wide, and 2.5 meters high. There are

two desks and a shelf along three of the four walls. Seven Unibrain Fire-i400 cameras

at elevation of 1.5 meters with Tokina Varifocol TVR0614 lens are used. Since they

are variable focal-length lens, we have set them at a focal length of 8mm with a ver-

tical field of view of 45◦ and horizontal field of view of 60◦. As the elevation of the

cameras is roughly level with the position of the targets, we have chosen a fairly large

occlusion angle of βm = 65◦ in deriving our optimal placement. Monte-Carlo results

between the uniform placement and the optimal placement are shown in Figure 3.11.

For the virtual environment simulation, we replace the desks and the shelf with ta-

bles and teapot, insert three randomly walking humanoids and capture 250 frames
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for measurement. For the real-life experiments, we capture about two minutes of

video from the seven cameras, again with three persons walking in the environment.

Figures 3.12 and 3.13 show the seven real-life and virtual camera views from both

the uniform placement and optimal placement respectively. As shown in Table 3.5,

the optimal camera placement is better than the uniform camera placement in all

three evaluation approaches. The three measured η’s for the optimal placement are

consistent. The results of the uniform placement have higher variation most likely

due to the fact that excessive amount of occlusion makes detection of color targets

less reliable.

Table 3.5: η measurements between uniform and optimal camera placements

Methid MC Simulations Virtual Simulation Real-life Experiments

Uniform 0.3801 0.4104± 0.0153 0.2335± 0.0112
Optimal 0.5325 0.5618± 0.0156 0.5617± 0.0121
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(a) Uniform placement,η = 0.3801 (b) Optimal placement,η = 0.5325

(c) Uniform placement: η = 0.3801 (d) Optimal placement: η = 0.5325

Figure 3.11: Camera placement in a real camera network

Figure 3.12: Seven camera views from uniform camera placement

Figure 3.13: Seven camera views from optimal camera placement
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Chapter 4 Approximate Techniques in Solving the Camera Planning

Problems

While the theoretical foundation of optimal camera placement has been studied for

decades, its practical implementation has recently attracted significant research in-

terest due to the increasing popularity of visual sensor network. The discrete camera

placement problem is NP-hard and many approximate solutions have been indepen-

dently studied. The goal of this chapter is to provide a comprehensive framework in

comparing the merits of these techniques. We consider two general classes of cam-

era placement problems and adapt some of the most commonly used approximation

techniques in solving them. The accuracy, efficiency and scalability of each technique

are analyzed and compared in depth. Extensive experimental results are provided to

illustrate the strength and weakness of each method.

To the best of our knowledge, there is no prior work covering the entire spectrum

of approximation algorithms from Greedy, Markov Chain Monte Carlo (MCMC) to

various relaxation techniques. Our key contribution is to provide not only a generic

formulation of the camera placement problem but also detailed approaches to adapt

the formulation to various approximation schemes. Our adaptations to Simulated

Annealing (SA) and Semi-Definite Program (SDP) are novel. We demonstrate that

greedy approach and its variants can obtain a good crude estimation. MCMC ap-

proaches are more complex but still return good solutions even in complex problems.

Linear Programming (LP) and (SDP) relaxations are most complex but they can
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provide good performance bounds.

4.1 Camera placement in general

This section we recap the general camera placement formulation mentioned in last

chapter. Although there is a myriad of camera placement problems in the litera-

ture, the fundamental objectives of these problems almost always fall into two broad

categories which we refer to as the MIN and FIX problems. The goal of the MIN

problems is to minimize the number of cameras such that a target coverage rate p

can be achieved subject to other constraints. The goal of the FIX problems is to

maximize the coverage of targets subject to fixed number of cameras m and other

application specific constraints.

Both problems can be tackled in the following fashion. First, the space of possible

camera configurations, including locations, yaw, pitch angles, and camera types can

be converted into discrete points by either a random sampling [28] or uniform dis-

cretization [29, 30]. The target space of the camera network can also be discretized

into a finite space, which can be the possible 2-D [36] or 3-D [25] object positions,

object orientations[86], motion paths [25] or even a combination of all the above

spaces.

We denote the discretized camera space as {Υi : i = 1, . . . , Nc} and the target

space as {Λj : j = 1, 2, . . . , Np}. We then define two sets of binary variables {bi :

i = 1, . . . , Nc} and {xj : j = 1, . . . , Np} on the two spaces respectively. So bi = 1

for i = 1, . . . , Nc indicates that a camera is placed or selected at Υi, and xj = 1

for j = 1, . . . , Np indicates an object at Λj can be observed under a given camera
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placement plan. Using these variables, MIN and FIX can be formulated as follows:

MIN: minimize

Nc
∑

i=1

bi

given

Np
∑

j=1

xj ≥ p ·Np and xj , bi are binary, (4.1)

FIX: maximize f(x1, x2, . . . xNp
)

given
Nc
∑

i=1

bi ≤ m and xj , bi are binary. (4.2)

where f(x1, . . . , xNp
) is an application-specific real-valued function that measures the

coverage of the network. A simple example of f(x1, . . . , xNp
) would be 1

Np

∑Np

j=1 xj but

a more sophisticated metric that considers other factors can also be used. Additional

application-specific constraints can also be added. We assume that all constraints are

linear in xj ’s and bi’s. This assumption is not overly restrictive as there are general

strategies to convert nonlinear constraints into linear ones as we seen in Section 4.3.4.

4.2 Approximation methods

The number of variables in camera placement problems is directly proportional to the

volume of the search space and is typically very large even for simple environments.

Although there is optimization software capable of solving integer program (IP) prob-

lems, it is in general impractical or even impossible to obtain an exact solution for

any reasonable-size camera placement problem. In this section we investigate several

approximation methods for camera placement problems and we will show how close

approximated solutions are to the exact solutions by simulations in Section 4.3.
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4.2.1 Greedy method

The greedy method is probably the most intuitive method to solve these kind of

problems. The basic idea is that instead of seeking a global optimum by checking all

possible configurations, we choose one camera that optimizes the objective value at

each step. The advantages of the greedy algorithm include a simple implementation

and tremendous efficiency — most greedy algorithms have O(n) complexity instead of

O(nk) by using an exhaustive search. A generalized greedy algorithm for the camera

placement problems in Algorithm 2.

Input: Initial grid points for cameras Υ and targets Λ, feasible sets defined by
other constraints S, the target mean visibility p, maximum number of
cameras m.

Output: Camera placement camP lace
Set U = Υ, V = ∅, W = Λ, camP lace = ∅;
while |V | < p · |Λ| for MIN or |camP lace| < m for FIX do

c = the camera grid point in U that maximizes the number of visible target
grid points in W ;
if camP lace ∪ {c} ∈ S then

camP lace = camP lace ∪ {c};
T = subset of grid visible by k in camP lace;
V = V ∪ T ;
W = W \ T ;

U = U \ c;

end
Output camP lace
Algorithm 2: GREEDY: a greedy search camera placement algorithm.

In fact, the greedy algorithm has deeper theoretical motivations than intuition.

In combinatorial optimization, there is a well-studied class of problems known as “set

cover” [87] defined as follows: Given a finite set X and a family (F ) of subsets of

X , a cover is a subfamily of sets whose union is X . The set covering optimization

problem is to find a covering which uses the fewest sets.
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Feige has shown in [88] that the greedy algorithm is the best polynomial-time

approximation for the set covering problem by the worst-case analysis if P 6= NP .

The worst-case performance is ln |X| + 1. We can show that MIN is a set covering

problem if the target coverage p is one and no other constraint is imposed. It can be

achieved by setting the observation space Λ as the finite set X and each camera point

Υi as an element in F that consists of all of the points in X observable by the camera.

Even for the more complex MIN problems which require p < 1 and/or each target

point observed by more than one camera, there has been much work showing that

the greedy algorithm still has the same lower bound [89, 90] with little modifications.

Note that when using Algorithm 2 to solve the FIX problem, we simply assume the

objective function is
∑Nc

i=1
xi. Therefore it makes sense to approximate the optimum

by selecting the cameras with maximized coverage at given step. This restricted

version of FIX problem without any other constraints is called “max k cover” in [88],

which was shown to admit the greedy algorithm as an efficient approximation.

However, the greedy algorithm is not the only possible approximation for the

generic FIX problem. In some applications, the objective functions have different

forms which does not allow meaningful interpretation when we select one camera at

one step. In [29], the objective function is to maximize the number of target points

observable by k cameras. When selecting the first k − 1 cameras, no local optimum

can be calculated. For MIN, we can simply split each target into k instances and

eventually there will be p · k · |Λ| instances covered. For FIX, the algorithm may

terminate when no target is covered k times, thus leading to an objective value

equal to 0. Also, when the constraints of the problem become complicated, the
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greedy algorithm wastes time searching for feasible solutions, leading to an inefficient

algorithm. For instance, the problem in [34] has the “sensor matching constraints”

in addition to the covering constraints to ensure that enough cameras are assigned

to the targets. In [30] and [29], the camera pose is also discretized so that another

constraint is needed to ensure no two cameras in the same position can be selected.

Since the greedy approach already provides a good approximation for MIN, the

following discussions will focus on FIX. Note that even for the MIN problems which

do not admit a greedy solution, we can always iteratively apply a solver for FIX for

different number of cameras and search for the minimum one that satisfies the target

coverage rate.

4.2.2 Heuristics

As mentioned in the previous section, the objective functions of some camera place-

ment problems cannot be computed by adding one camera at a time. Nevertheless, we

can still follow the idea of finding local maximum/minimum at each iteration from a

different perspective. The following example is a popular greedy heuristic (Algorithm

3) for FIX.

In this greedy heuristic, we have a well-defined objective function in each iteration.

However, there is no sensible way to choose one set of initial camP lace over another.

We therefore choose a random initialization. The use of randomness inspires us to

look into another set of powerful tools — random sampling.
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Input: Initial grid points for cameras Υ and targets Λ, feasible sets defined by
other constraints S, objective function f(·), max iterations N and the
maximum number of cameras m.

Output: camP lace
Set U = Υ, camplace = m random cameras;
W = U \ camP lace;
for i = 0; i < N ; i = i+ 1 do

select a pair (b, c), b ∈ camP lace, c ∈ W maximize f(·) if exchange with
each other;
if f(camP lace) ≥ f(camP lace ∩ {c} \ {b}) then

Break;
if (camP lace ∩ {c} \ {b}) ∈ S then

camP lace = camP lace ∩ {c} \ {b};
W = U \ camP lace;

W = W \ c;

end
Output camP lace
Algorithm 3: Greedy Heuristic search for camera placement algorithm.

4.2.3 Sampling methods

Although the deterministic greedy algorithm is very efficient, we cannot improve the

result once a local optimum is achieved due to its deterministic nature. Random

sampling methods allows a definitive advantage over deterministic approaches — one

can always improve the results by sampling more points from the distribution.

The simplest version of a random sampler is to uniformly sample points from

the camera space. We can terminate the algorithm when a good enough solution is

obtained or the maximum number of iterations is reached. Due to the large search

space, it is often hard for this approach to sample even a near-optimal solution in a

reasonable running time. As such, this naive version of random sampling is rarely

useful.

A better random sampling scheme should relate the objective value of the sampled

point to the probability of it being sampled. By assigning a higher probability to
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sampled points with better objective values, we have a higher chance to sample points

from the distribution that are close to the global optimum.

We denote S as the set of all possible combinations of cameras subject to all

constraints, Bi = [b0 b1 . . . bNc
] ∈ S as one specific combination — a point in the

search space (the camera space). We also denote f(·) as the objective function. The

ideal probability for sampling should be

P (Bi) =
f(Bi)

∑

j∈S f(Bj)
. (4.3)

In order to calculate P (Bi) in Equation (4.3), we need to evaluate every Bi which is

as complex as performing an exhaustive search. Here we offer two effective schemes

to solve this problem.

Algorithm 4 assumes different camera positions are independent from each other

and the sampling probability at each camera position is directly proportional to the

number of target positions it can observe. The first assumption provides an effective

mean to focus on one camera at a time and the second assumption naively relates the

overall objective value to coverage of a single camera. While these two assumptions

provide a very crude approximation to Equation (4.3), they provide far better samples

than uniform distribution and admit very efficient implementation.

We will show in Section 4.3 that Algorithm 4 provides decent results with com-

plexity comparable to the greedy approach. On the other hand, the assumptions

are very strong and are certainly not applicable in many situations. To cope with

arbitrary probability functions, the most general approach is to use Monte Carlo

sampling and its many variant. Here we adopt the Metropolis algorithm [91, ch.5] to
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Input: Same as in Algorithm 3.
Output: camP lace
Set U = Υ, camP lace = ∅ ;
for i = 1, . . . Nc do

Calculate P (bi = 1) by aggregating the number of targets it can observe
end
camP lace = ∅, best = 0, W = U \ camP lace;
for i = 0; i < N ; i = i+ 1 do

for i = 1, . . .m do
Sample one c from W according to P ;
cam = cam ∩ c, W = W \ c ;

end
if (cam ∈ S and f(cam) > best then

camP lace = cam, best = f(cam);

end
Output camP lace

Algorithm 4: Random sampler based on marginal distribution.

improve tracking the probability of each point in the search space without calculating

the normalization factor.

The traditional Metropolis algorithm starts from an initial setup, (1) makes a

small but random perturbation, (2) calculates the gain of this perturbation, and

(3) decides whether we accept the perturbation by sampling a random number and

comparing with the gain. By using a perturbation and comparing the probabilities of

the two setups, we no longer need to calculate the normalization factor. Algorithm 5

is the adapted algorithm for FIX.

In order to conform to the notations typically used in the Metropolis algorithm,

we redefine the probability function in Equation (4.3) as the following:

P (Bi) =
exp log f(Bi)
∑

j∈S f(Bj)
. (4.4)

Thus the gain of a perturbation becomes log f(B′
i)− log f(Bi) = log f(B′

i)/f(Bi).
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Input: Same as in Algorithm 3
Output: camera placement camP lace
Set U = Υ, cam = m random cameras;
W = U \ cam, best = 0, i = 0;
for i = 0; i < N ; i = i+ 1 do

b = randomly select one camera in cam;
c = randomly select one camera in W ;
cam′ = cam \ b ∩ c;
if cam′ ∈ S then

∆h = f(cam′)/f(cam);
Draw random number u from uniform (0, 1) distribution;
if log u ≤ min(∆h, 1) then

cam = cam′;
if f(cam) > best then

camP lace = cam′, best = f(cam);

W = W \ c;

end
Output camP lace

Algorithm 5: Metropolis sampling for FIX.

Algorithm 5 is very similar to Algorithm 3 except for a simple change in sampling

strategy – instead of always exchanging with the camera that maximizes the objective

function, we choose a random candidate for exchanging. If the objective value of

the random candidate is bigger than the original, then we will make the change.

Otherwise, we may still make the change according to the probability calculated

by the gain. Such a sampling strategy allows our algorithm to move away from

local maximum and explore the rest of the search space. Also, the algorithm can

be adapted by changing the perturbation range: we can choose to exchange more

cameras at a time (larger perturbation) or only allow switching with cameras nearby

(smaller perturbation).

The crucial step of Algorithm 5 is that we relate the possibility of a point sampled
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from the distribution setup with its objective value. It is obvious that this relationship

does not need to be linear. Further more, we can see that this relationship does not

need to be static. There is an extensive literature on how to change this relationship

to get a faster rate of landing on an optimum point, known as “simulated annealing”

[92].

In order to adopt “simulated annealing” for FIX, we add another variable T to

our probability function in Equation 4.4:

P (Bi) =
exp log f(Bi) · T

Z
, (4.5)

where Z is a normalization factor which can be ignored in Metropolis sampling.

When we change T , we can control the probability of jumping to a point with smaller

performance. When T is big the exchange is very frequent, allowing us to explore

more in the search space; when T is small, we focus on searching for the maximum.

As such, a simulate-annealing scheme usually starts from a high T to run a Metropolis

sampling scheme and decreases T until the objective value does not change over time.

The algorithm is summarized in Algorithm 6.

Input: Inputs in Algorithm 3, an initial temperature ts, an ending
temperature te and cooling function fc(t).

Output: Camera placement camP lace
Set cam = randomly chose m cameras;
t = ts;
while t > te do

[cam, bestP lace] = MetSampling(cam,N, t);
if f(bestP lace) > f(camP lace) then

camP lace = bestP lace;
t = fc(t);

end
Output camP lace

Algorithm 6: Simulated Annealing algorithm for FIX.
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The cooling function fc(t) is a custom function to decrease the temperature.

Usually it is chosen as a linear or logarithmic decreasing function. The function

MetSampling is essentially Algorithm 5 using the customized probability function

defined in Equation (4.5).

4.2.4 LP and SDP relaxation

A significant drawback of sampling techniques is that it may take many iterations for

the algorithm to converge. Even after convergence, the algorithm provides little clue

on how close the resulting approximation is when compared with the true optimal

solution.

One possible solution is to relax the original formulation by replacing the binary

constraints with 0 ≤ xi ≤ 1 and 0 ≤ bi ≤ 1. As a result, we will get a linear

programming formulation and by solving it we may get a fractional solution instead

of a binary one. The objective from the LP relaxation provides an upper bound of the

original problem [93, ch.3]. Also, we can get an approximated solution by designing

some rounding scheme to obtain the binary solution.

However, the gap between the LP relaxation and original BIP — called the inte-

grality gap — is still unknown. Various methods can be used to reduce the integrality

gap by adding more constraints [94, 95, 96].

Note for any binary variable x, an equivalent constraint can be given as x(x−1) =

0. It is known that SDP can be used to approximate this constraint better than LP

(see [97] and references within). In this chapter, we adopt the “Lift and Project”

method proposed by Lovász and Schrijver [94].
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We generalize MIN and FIX into standard equation in Equation (4.6).

Minimize −cTx

s.t. Ax ≤ b and xi(xi − 1) = 0, (4.6)

where x,b, c are column vectors and A is a matrix. The inequality constraint in (4.6)

applies to each dimension. The “Lift and Project“ process works as follows:

1. Define a variable matrix Y = {yi,j|i, j = 0, 1, 2, . . . n}, where n is the length of

vector x.

2. Replace each constraint Aix ≤ bi with a set of constraints Ajx · xj ≤ b · xj and

Ajx · (1− xj) ≤ b · (1− xj), j = 1, 2, . . . n.

3. Replace each instance of x variable with y such that xixj = yi,j, xixi = xi = yi,i =

y0,i for all i, j.

4. Replace binary constraints xi(xi−1) = 1 with a constraint forcing Y to be positive

semi-definite or Y ≻ 0.

5. Solve the SDP problem of Y and recover xi = y0,i.

It is shown in Section 4.3 that the “Lift and Project” process provides a much

tighter bound than LP relaxation. In fact, we can get an even tighter relaxation

by continuing to raise the dimension of variables. In [97], Laurent analyzed and

compared three different hierarchical methods to obtain a series SDP relaxations of

the 0 − 1 problem. However, in practical camera placement problems, the number

of variables becomes large. Conducting more than one round of SDP relaxation will

inevitably run into memory issues.
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4.3 Simulation results

We propose three sets of experiments to illustrate the strength and weakness of each

proposed method. Firstly, we compare various fast and simple algorithms on a prob-

lem with a simple topology. Then we compare them with more sophisticated algo-

rithms on complex environments. Last but not least, we apply the LP and SDP

relaxations on a small example to see how the SDP relaxation dramatically reduces

the integrality gap.

For comparison, we only use the constraints in Equations (3.13), (3.14) and (3.22)

with k = 2. All experiments were conducted on a Duo core 2.8 GHz CPU with 3.2

GB RAM, with most code written in C linked to Matlab. The IP solver we used was

in [98] and SDP solver we used was SDPA [99].

4.3.1 Environment with simple topology

In this section, we test our algorithms on a simple 2D square environment to place

number of cameras range from 2 to 8 as in Figure 4.1a. The blue hollow circles are

discretized camera grid positions and yellow solid stars are target grid positions. The

blue arrows are the placed cameras. Here we have 28 camera positions and 49 tag

positions. Each position is further divided into 8 grid points to represent different

orientations. The total numbers of variables are Nc = 192 for cameras and Np = 392

for targets.

We first compare the running time for different algorithms and different sample

sizes in Figure 4.1b. In Figures 4.1c – 4.1f, we compare the results for different

78



algorithms when the number of cameras varies. From those comparisons, we can

make following observations: (1) When the number of cameras is sufficiently large,

the greedy algorithm has good approximation of IP solution with a fraction of the

running time. However, when the number of cameras is small, the greedy algorithm

provides much worse results due to its complete overlook of the combinatorial char-

acteristics of the problem; (2) the sampling techniques can trade off performance

with computational time; (3) using elements sampled from densities derived from the

objective function significantly outperforms those from uniform random sampling;

(4) the greedy heuristics generally out-performs other approximation methods. How-

ever, it can still be trapped in a local optimum regardless of the sample size. We

will see this disadvantage will incur big penalty when the environment becomes more

complex.

4.3.2 Metropolis sampling and simulated annealing on complex problems

As we can see above, for small and simple problems we can choose from either the

greedy algorithm (Algorithm 2), a greedy heuristics or sampling based on marginal

distribution (Algorithm 4). Furthermore, these problems can also be solved by a

standard IP solver in a reasonable running time. Now, we begin to look at much

more complex environments.

In Figure 4.2 we show two complex environments generated by our camera place-

ment GUI to place 8 cameras. We present the performances of IP solver, the greedy

algorithm, Metropolis sampling, and simulated annealing (SA) approach in Table 4.1.
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(a) problem topology and
optimal placement for 8
cameras

(b) Time comparison for 6
cameras

(c) objective comparison for 8
cameras

(d) objective comparison for 6
cameras

(e) objective comparison for 4
cameras

(f) objective comparison for 2
cameras

Figure 4.1: Performance comparison of four approximation algorithms

(a) Environment 1 (b) Environment 2

Figure 4.2: [Two complex topologies for algorithm comparison. Black objects are
obstacles and blue areas are secured areas with grid density 4 times higher than sur-
roundings.

We can conclude that both sampling algorithms are highly efficient when com-

pared with the IP solver. We can further see the change of temperatures plays an
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Table 4.1: Comparison of two Monte Carlo sampling methods with other algorithms.

Environment 1 Environment 2
Objective Time (s) Objective Time (s)

IP 353 1552.4 2336 101320.6
Greedy 339 0.002014 2164 0.1362
Heuristic 344 0.0297 2029 0.440203
Metropolis 352 0.6784 2290 1.109044

SA 350 1.957046 2336 7.739528

important role in escaping the local optimums and exploring the entire search spaces.

4.3.3 LP relaxation and SDP relaxation

At last, we show the effectiveness of using SDP on relaxation on a simple and a

moderate complex environments. The results are shown in Table 4.2. We can see

the SDP relaxation always gives a tighter bound comparing with LP relaxation. We

visualize the camera grid variables for the simple topology in Figures 4.3a and 4.3b,

with the variable indexes in the x axis and values in the y axis. We can see the SDP

relaxation gives results closer to the binary with smaller objective value. In fact, in

this particular example, the SDP relaxation solution coincides with the IP solution.

Table 4.2: Comparison of the objective values of SDP and LP relaxation

56 Grids, 2 Cameras 268 Grids, 8 Cameras
LP 11.5 32.25
SDP 11 31.34

Optimal 11 31
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(a) LP objective = 11.5 (b) SDP objective = 11

Figure 4.3: Comparison of IP and SDP relaxation
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Chapter 5 Sensor Fusion in Camera Network

Camera fusion refers to the sensor fusion techniques in camera network research. In

this chapter, we presents some key operations in camera fusion. The contribution of

this chapter concerns mainly the geometric fusion problem, which aims to align the

data from multiple cameras into one unified coordinate system. We also list a few

commonly used data fusion techniques.

5.1 The Camera Fusion Framework

Traditional sensor fusion theories, although they cover a wide range of sensor varieties,

lack detailed guidance concerning a specific sensor network. This section identifies

the most important tasks in camera fusion and a list of key operations for completing

those tasks. Our generic framework not only incorporates a variety of cameras, but

it also provides a range of viable techniques for different applications.

Figure 5.1: Camera fusion diagram
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As shown in Figure 5.1, there are two common concerns that need to be considered

when designing a camera fusion system:

1. Geometric Fusion: how to align the images from different cameras.

2. Data Fusion: once the data are aligned, how to make estimation or decision

based on all the data available.

A list of key operations are need in order to answer the questions above,

1. Determining a proper camera model is the first step of designing a camera fusion

algorithm. It has a big impact on the consequent steps, especially calibration

and on line registration. The pinhole camera model is the most popular choice;

however, there are a range of simplified models for specific applications, as well

as a few complications to better model the cameras in real life.

2. Calibration is the off-line operation that estimates the position and internal

parameters of all cameras in the network. The complexity of this procedure

mainly depends on the chosen camera model in the application.

3. Because of the line of sight property of cameras, data alignment is not an easy

task. Even for a static camera network, where the relative position between

cameras can be calibrated off-line, the relationship between images obtained

from different cameras also depends on the position of the object. Therefore,

an on-line registration is usually indispensable to mapping camera views.

4. Local processing is conducted to reduce the communication and computation

burden in a camera network. While it is important to carry out a case by
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case analysis when designing the local processing algorithm for a given camera

network, there are a range of image processing algorithms that are frequently

applied due to their simplicity and effectiveness. These are presented in Sec-

tion 5.2.4.

5. Lastly, a proper data fusion model is needed to make intelligent decision or

estimation, based on all the data in the camera network. Traditional sensor

fusion techniques are very handy in fusing image data. A lot of machine vision

algorithms can also be adapted to help the fusion process, such as background

modeling, object classification, object tracking and so on.

5.2 Geometric Fusion

5.2.1 Camera model

Depending on the application requirements, different camera models can be used to

formulate the process of projection. The most popular model is the pinhole cam-

era model. It successfully captures the key characteristics of the projection process

and has a very convenient mathematical representation in homogeneous coordinates.

However, it contains 11 parameters for each camera and it is sometimes not easy

to estimate efficiently. Parallel projective models are simplifications of the pinhole

camera model. Not only does it have less degrees of freedom, but it enables much

more convenient mapping between camera views. I also propose a model specially

designed for data alignment based on plane homography and reasonable assumptions

for surveillance applications.
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Pinhole Camera Model

The pinhole camera model is the most pervasively adopted model for camera networks

of all types. Under this model [7], a 3×4 projection matrix is used to map a 3D point,

which is represented in homogeneous coordinates as X = [x, y, z, 1]T into camera

coordinate x = [x′, y′, 1]T

x = PX

The camera projection matrix P can be decomposed into two matrices called

intrinsic matrix K and extrinsic matrix [R|t],

P = K[R|t]

The intrinsic matrix K encapsulates the camera’s internal specifications as,

K =





fx s cx
0 fy cy
0 0 1





where fx, fy are the focal length of the camera converted into image pixel units, cx, cy

are the center of the image plane, and the skew factor s is non-zero only when the x

and y axis in image is not perpendicular, which is quite unusual.

In the extrinsic matrix, R is a 3D rotation matrix and t is the 3D translation

vector. Together they depict the relationship between the camera center and the

origin of the world coordinate system.

The pinhole camera model involves 11 degrees of freedom. Since they are coupled

together during the projection process, a carefully designed calibration is required to

estimate them.

86



Lens Distortion

Camera lenses sometimes introduce non-linearity into the projection process. If the

camera suffers from significant lens distortion, an undistortion process is needed before

applying the pinhole camera model.

In this research, xd = [xd, yd]
T denotes the coordinate under distortion and xu =

[xu, yu]
T is the coordinate with the distortion corrected. xc = [xc, yc]

T is the center of

the image, and r is the distance to the image center. There are generally two types

of distortion [100]:

• Radial distortion tries to model the radially symmetric part of lens distortion.

In practice, it accommodates most of the distortion. It is usually modeled as a

polynomial series with only even orders:

xu = xc + (1 +

n
∑

i=1

kcir
2i)(xd − xc)

• Tangential distortion is caused by lens being improperly aligned. Its mathe-

matical formula is,

xu = xd +

(

P1(r
2 + 2(xd − xc)

2) + 2P2(xd − xc)(yd − yc)(1 +
∑n

i=1
Pi+3r

2i)
P2(r

2 + 2(yd − yc)
2) + 2P1(xd − xc)(yd − yc)(1 +

∑n

i=1
Pi+3r

2i)

)

Where kci’s are a set of parameters of the radial distortion, and Pi’s are parameters

for the tangential distortion.

Parallel Projection Model

In order to simplify the pinhole camera model, It can be assumed that the camera

center is at infinity, so that the projection lines become parallel. It is obviously an
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unrealistic assumption, but it generates different levels of approximations that create

mathematical convenience.

Under the parallel projection assumption, the projection matrix P becomes [7],

P∞ =





fx s cx
0 fy cy
0 0 1









r1,1 r1,2 r1,3 0
r2,1 r2,2 r2,3 0
0 0 0 1



 (5.1)

where ri,j are the elements of the rotation matrix R. Under this model, the intrinsic

matrix remains the same as in the pinhole camera model but the extrinsic matrix is

simplified, which leads to only 8 degrees of freedom.

The model in Equation ( 5.1) is called affine camera model, which is a generic

parallel projection model for all the subsequent approximation models I will present.

All of the following models reduce the model compolexity by applying coarser ap-

proximations to the affine camera model.

By setting the skew factor to 0, the weak projection model is obtained with only

7 degrees of freedom. It is a very good approximation when the average distant of

the object to the camera is much larger than the distance variation of the objects.

In fact, it is equivalent to first project the object onto the object plane by a set of

parallel rays orthogonal to the plane, then it project the image from the object plane

to the image plane by scaling the whole image by a fixed factor, which is proportional

to the inverse of the average depth of the object. This process is shown in Figure 5.2.

A further simplification for weak projection model is the scaled orthographic pro-

jection model, which is obtained by setting fx = fy and has only 6 degrees of freedom.

The orthographic projection model can be derived from the scaled orthographic pro-
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Figure 5.2: Weak Projection model. The object is firstly projected on to the image
plane by lines parallel to the image axis, then it is scaled by a factor related to the
average depth of the object.

jection model by setting fx = fy = 1.

Plane Homography Model and Blob Homography

Following the pinhole camera model, any 3D point observed in one camera can be

anywhere along the epipolar line in another camera view [7, ch.9]. Therefore, there

is no precise point-to-point mapping between the camera views. However, if only

considering 3D points that are co-plane, there does exist a bijective mapping between

the points in correspondent images between the two cameras. That is, for any corre-

spondent points, X1 and X2, on the correspondent blobs in the two images, there is

a linear mapping in the 2D homogeneous coordinate[7, ch.2] as follows,

X1 = HX2 (5.2)

where H is a 3 × 3 matrix with eight degrees of freedom, known as homography

matrix. Unfortunately, homography is variable with respect to the plane’s depth and

pose [7, ch. 13.1]. Therefore, the homography matrix has to be estimated on-line.
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Using plane homography, a blob homography model is proposed, which allows us

to segment the image into different foreground blobs, estimate blob to blob homog-

raphy and align those blobs by applying multiple mapping for each blob.

In 3D computer vision, it is common to rectify the camera views before estimating

the scene structure, so that the search for correspondent points can be significantly

expedited. The rectification process finds linear mappings in homogeneous coordi-

nate that move the epipoles of the camera pair into infinity. As a result, the pairs

of conjugate epipolar lines become collinear and parallel to one of the image axes.

Denoting the rectification matrices for the two cameras as H1 and H2, the points

after rectification in two images as X′
1
and X′

2
, and the homography between the two

rectified image planes as H ′,

X′
1

= H1X1

X′
2

= H2X2

X′
2

= H ′X′
1

(5.3)

From Equation (5.2) and (5.3),

H = H−1
1 H ′H2 (5.4)

Theorem 5.2.1 presents the form of homography matrix in rectified domain. After

decomposing the homography matrix H into rectified image plane, the number of

parameters that need to be estimated on line is reduced from eight to three.

Theorem 5.2.1 (Homography in rectified images) The homography H ′ in rec-
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tified image domain is in the form

H ′ =





a11 a12 a13
0 1 0
0 0 1





The proof of the theorem is as follows, since the homography matrix H ′ is up to

scale, it is in the form of

H ′ =





a11 a12 a13
a21 a22 a23
a31 a32 1





According to the definition of image rectification, epipoles of the two images are at

infinity and in the form of [1 0 0]T and [a 0 0]T . From Equation(5.3),

a11 = a

a21 = 0

a31 = 0

since

y′2 =
a22y

′
1 + a23

a32y′1 + 1
= y′1

the following equation will always hold,

a32y
′2
1 − (a22 − 1)y′1 − a23 = 0

Therefore, all of the coefficients have to be zero. Thus a32 = 0, a22 = 1, a23 = 0.

Q.E.D.

If the object in the scene is not too close to the camera, all parts of the object

can be assumed to have the same depth to the camera. This is a valid assumption

because in common surveillance scenarios, the foreground object is usually several
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meters away from the cameras, and the depth variation of the different parts of an

object is within several centimeters, which is very small portion of the overall depth.

From [10, ch. 11.1.1], our constant depth assumption induces constant disparity for

correspondent blobs. Based on this assumption, x′
2 − x′

1 = d for each correspondent

blob. Combining with the homography matrix H ′ in Theorem 5.2.1, we have the

following,

(a11 − 1)x′
1 + a12y

′
1 + a13 − d = 0

which will always hold regardless of the value of x′
1, y

′
1. Thus all of the coefficients

for all variables must be zero, so that a11 = 1, a12 = 0 and a13 = d. The homogra-

phies between correspondent blobs depends only on one coefficient, a13, which is the

disparity in the rectified image.

In fact, the blob homography model essentially uses different weak perspective

camera models for different blobs; it is a simplification of pinhole camera model, but

a complication from the weak perspective model. The projection process is shown in

Figure 5.3.

Figure 5.3: Blob Homography model. The foreground image is firstly segmented in
to blobs, then weak perspective model with different depth is applied for each blob
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5.2.2 Camera Network Calibration

Camera calibration has been studied for decades, and a handful of robust multi-

camera calibration toolboxes have emerged. I recommend [101] for estimating intrin-

sic parameters, including the distortion parameters for individual cameras. And the

tool proposed in[102, 103] is frequently adopted for estimating the extrinsic parame-

ters for multiple cameras in a unified world coordinate system.

However, these popular toolboxes are usually designed for homogeneous camera

networks with regular visible light cameras. When cameras with different modalities

are concerned, they must be adapted to handle the significant disparity between

views.

For example, when dealing with a depth camera and visible camera pair, I designed

a special calibration object by attaching a checkerboard pattern to a transparent glass

and removing the white blocks, as shown in Figure 5.4. From the calibration the

intrinsic parameters of each camera can be obtained, together with extrinsic matrix

to describe the rotation and translation between the two cameras.

Another example is the calibration of a pair of thermal and visible-light cameras.

Due to the phenomenological differences of objects in color and thermal images, this

is not easy to implement. Our calibration is carried out by collecting the correspon-

dent point pairs and using them to infer the geometry constraints. In fact, this is

much simpler, as it bypass the explicit estimation of cameras’ intrinsic and extrinsic

parameters, such as focal length, aspect ratio, translation and rotation matrices, and

it directly obtained the rectification matrices from correspondent points. A color tag
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(a) RGB camera (b) Depth camera

Figure 5.4: Special calibration object for depth and RGB camera pair

is sticed to a round metal slice as a calibration object. As shown in Figure 5.5, the

tag will be visible when heated. A color classifier using HSV color space, based on

Mixture of Gaussian model, is trained to identify the tag in the video camera. Both

cameras use a least square ellipse fitting algorithm to detect the center of the color

tag, using them as the feature points for calibration. This is by no means the only

method for calibration. Any tools that can provide unique correspondence between

the two views can be used, such as an incandescent lighting bulb.

(a) video camera (b) infrared result (c) color classifier

Figure 5.5: Calibration object for thermal and regular cameras. The pink tag in
5.5a is used as calibration object. 5.5b shows the fitting result in the thermal camera
and 5.5c shows the classification and fitting result in the visible-light camera
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Once the correspondent points are collected, Hartley’s method is used for recti-

fying uncalibrated cameras [104]. The method uses RANSAC algorithm to remove

the outliers, then it utilizes the points correspondence to estimate the fundamental

matrix. After finding the epipoles by decomposing the fundamental matrix, an it-

erative method is used to find two homograhies that map the epipoles into infinity

and minimize the mapping error given by the point correspondences. Note that after

rectification, the rectified images will have the same resolutions regardless of their

original resolutions.

After performing the rectification, the disparity range is measured by projecting

the calibration points onto the rectified domain and finding the minimum and max-

imum of the difference between the x coordinate of the correspondent points. This

will be used to help identify the outliers during the on-line registration stage.

5.2.3 On-line Registration

Even if all 11 parameters of the pinhole camera are known via calibration, it is still

not easy to align data from different camera views. This is because the mapping

between camera views is a function of object depth, which is changing in a dynamic

scene.

The emergence of the depth camera provides a very convenient solution to this

problem. Let’s consider a pair of depth and regular cameras. After obtaining the

calibration data, asssuming the depth camera as the origin of the world coordinate,





x′d

y′d

1



 = Kd
[

Rd | td
]

·









xd

yd

zd

1








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Where the superscribed d denotes depth camera.

Assuming the optical center of the depth camera to be the origin of the world

coordinate, I can solve the equation of variableXd, Y d, with all of the calibration data,

for each pixel with position (xd, yd) and its depth as the pixel value Xd = I(xd, yd),

xd =
zd(x′d − cdx)

f d
x

and

yd =
zd(y′d − cdy)

f d
y

.

After obtaining the 3D coordinate of each pixel of the depth camera, they can be

transformed into RGB camera’s coordinate system by





xr

yr

zr



 = R ·





xd

xd

xd



 + t

where R,t are the extrinsic parameters for the RGB camera. Then the depth image

can be aligned with the RGB image by applying the the projection matrix for the

RGB camera, mapping the 3D point onto the image plane. this process can also be

used to obtain the pixel appearance (R,G,B) value of each 3D point.

Of course, not all camera networks are equipped with depth camera. Alternatively,

the blob homography model introduced in Section 5.2.1 can also be used to register

two camera views. This method is extremely useful in a video surveillance scenarios,

where the target object of the network is human body.

Under this model, for each blob, only one parameter needs to be estimated on line.

This can be archived by tracking the sparse feature points between two views, such
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as Kanade-Lucas-Tomasi Feature Tracker [105] and matching between views using

normalized cross correlation. Since only one matching point is needed, the on line

algorithm is light-weight.

5.2.4 Local Processing

In order to handle the large amount of data collected in a camera network, a lot of

processing has to be conducted locally. Simple data reduction techniques, such as

video/image compression, are not sufficient. In this section, I present a list of useful

local processing techniques in camera network. Local processing is helpful for both

geometric fusion and data fusion.

1. Background subtraction extracts the foreground information by subtracting the

current image with a background image. It is one of the most commonly used

algorithms in ridding the redundant data, while keeping the useful information.

In the next chapter, background subtraction plays an important role in blob

homography based geometric fusion by first segmenting the foregrounds into

regions, which can be better approximated by a constant depth.

2. When the type of target object is known, feature/object detection can be used to

directly locate the interest part of the image and only send the image containing

the region of interest. Feature detection is widely applied in geometric fusion

when the motion between cameras can be modeled by a restrictive model.

3. Feature tracking updates the information about objects based on temporal

change of the images on a local camera. Since the temporal difference between
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successive frames is very small, tracking on local camera can be performed very

efficiently.

5.3 Data Fusion Models

This section presents three typical scenarios for data fusion in camera network, with

some common algorithms.

In some applications, data fusion means that the selection of the best fit data

collected from multiple cameras. Although data from multiple cameras will join the

contest, only data from one camera will have an actual impact on the result. This

scenario is usually called “winner takes all”, which is useful when we don’t want

to modify the data to introduce artifacts. The selection criteria can be a distance

function, a similarity metric or a likelihood function. This type of camera fusion is

called fusion by selection.

For instance, in 3D reconstruction applications, texture information needs to be

assigned for each 3D point. Sometimes multiple texture data are available for one 3D

point. Simply averaging those texture data will generate a texture with an unnatural

appearance. Therefore they need to be selected according to some criteria. Firstly all

the texture data are kept for each 3D point. When an application requires generating

a synthesis view by projecting those 3D points onto a virtual camera, the one that

best aligns with the virtual viewpoint is selected. from the camera with the smallest

angular distance to the viewpoint, as illustrated in Fig-5.6.

Other applications may require a certain measurement of the target. This de-

mands an informative inference based on all the data available. The fusion by tracking
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Figure 5.6: Fusion by selection. Selection of the cameras with least angular distance
for texture rendering

scheme is one of the best methods for this application. It provides a unified proba-

bilistic framework to fuse all the temporal and spatial information together with the

prior knowledge.

At last, a lot of data fusion applications use the network data to make a joint

decision, which can be called as fusion by classification. A lot of machine vision

techniques can be used in this process, such as Background Subtraction, Support

Vector Machine [106], Linear Discriminant Analysis [107], Boosting [108] and so on.

The data fusion process is usually embedded by concatenating available data from

all cameras into a huge feature vector. An example of fusion by classification using

background subtraction techniques is presented in Section 6.1.2.
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Chapter 6 Camera Fusion in Practice

This chapter presents several scenarios for camera fusion using different type of cam-

eras. However, in heterogeneous camera networks, there are infinite number of pos-

sible combinations with different camera types, number of cameras and application

specifications. This chapter focuses on fusion between visible-light cameras with ther-

mal and depth cameras.

6.1 Human Segmentation by Fusing Visible-light and Thermal Imaginary

The first example is a system for robust segmentation of human in video sequences

by fusing the visible-light and thermal imaginary. The blob homography model is

used, as in Section 5.2.1. The system first performs a simple calibration procedure to

rectify the two camera views without knowing the cameras’ intrinsic characteristics,

as mentioned in Section 5.2.2. Then a blob homography model is learned on-the-

fly by estimating the disparity of each blob so that a pixel level registration can

be achieved. The multi-modality information is then combined under a two-tier

tracking algorithm and a unified background model to attain precise segmentation,

as in Section 5.3. Preliminary experimental results shows significant improvement

over existing schemes under various difficult scenarios.
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6.1.1 Blob-wise Registration

Unlike most stereo vision systems, which use texture information to estimate the

depth of the object, the thermal-visible camera pair does not share any similarity

between the captured texture. Under the assumption of constant depth, Algorithm 7

estimates the disparity between corresponding blobs, by finding the mode of the

measured disparities between a large set of corresponding pairs of pixels. The algo-

rithm uses the contours of human blobs as the pool of correspondences and utilizes

the constrains obtained from previous calibration process to boost the estimation of

registration parameters.

Input: Rectification matrices H1, H2, disparity range [dmin, dmax] and
correspondent blob pairs

Output: Blob wise homography H
foreach pair of corresponding blobs B1 and B2 do

Extract the contours of B1, B2;
Rectify the contours using H1 and H2;
foreach Horizontal Scan line do

if Both contours have same number of points then
match the points between two blobs into pairs according to the scan
line order;
Filter out the pairs with disparity out of [dmin, dmax];
Collect the disparity histogram;

end
if there are enough counts in the histogram then

Get the mode of the disparity histogram d̄ ;
Obtain H ′ by setting a13 = d̄ ;
Obtain H by Equation(5.4) ;

else
return falure;

end

end
Algorithm 7: An on-line registration algorithm for thermal regular camera fusion

Two processes are used to efficiently filter out the massive outliers. Firstly, when
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a scan line have unequal number of points in two views, it is discarded without

calculating any disparity. This process helps to rule out some difficult situations due

to occlusion or defective segmentation. As shown in Figure 6.1, the green disparity

scanned by the green line is recorded in the histogram while the red line is not counted.

Secondly, disparities out of the disparity range due to false point match are simply

discarded. In Figure 6.1, the rightmost points of each image alone the blue line is a

false match and is likely to be filtered out by disparity range.

Figure 6.1: Scan line algorithm for register images from thermal and regular cameras.
Green line(upper) gives good match while red line (bottom) contains uneven number
of points due to the shadow, which will be ruled out by our algorithm. Along the blue
line (middle), the rightmost points of each image is a false match and is likely to be
filtered out by disparity range.

6.1.2 Robust Fusion via Tracking and Background Modeling

In reality, there can be multiple blobs in the views and due to the inaccuracy in blob

segmentation, it may not be easy to find correspondent blobs between the views.

Sometimes, it is simply too hard to obtain a good estimation of the blob-wise disparity

due to occlusion or defective segmentation. I handle these problems by designing a

two-tier tracking scheme together with a joint background subtraction.
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Firstly, background subtraction is performed individually to extract the blobs

from each camera. These blob information are fed into individual trackers to detect

long-existing objects and filter out possible false positives. A combined tracker is

then used to match objects between the two camera views, calculate and track of the

disparity of each object. Using the disparity estimated from combined tracker, the

homography matrix can be calculated using Equation (5.4) so that matched object

can be aligned to perform a joint background subtraction. Finally, the improved

segmentations from the joint background subtraction are fed back to the trackers to

improve estimation of the state of each tracker. The system flow chart is shown in

Figure 6.2.

Figure 6.3 is a snapshot of this process. In the previous time instant shown in

Fig. 6.3a, there is only one object in each view. However, in the next time instance in

Fig. 6.3b, due to the split of the shadow with the human body, the visible-light cam-

era has two blobs after background subtraction and the individual tracker mistakenly

takes the shadow blob as the new observation. In the combined tracker, there is no

observation of disparity because all the point pairs are filtered out by Algorithm 7.

However, thanks to temporal inferencing, the disparity estimated by the tracker is

still good. By a joint background subtraction, I are able to get much better segmen-

tation shown in Fig. 6.3c. The new information is passed back to the individual and

combined trackers to improve the estimation of their states.
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Figure 6.2: Block diagram for thermal-RGB camera fusion

Robust tracking

Each tier of the tracking process consists of simple trackers at two different levels —

the individual level and combined level. The individual tracker tracks the objects’

bounding box and velocity. The velocity is updated at a fixed adaption rate α.

vt = αvt−1 + (1− α)v̂t (6.1)
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(a) result in time t

(b) individual tracker at t+ 1

(c) fused result in t+ 1

Figure 6.3: Snapshot of segmentation result in successive frames. The color bounding
box shows the state in individual tracker, I see how the second tier of the tracking
correct the wrong estimation from individual tracker in the first tier
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where vt−1 is the previous velocity, v̂t is the current observed velocity. The tracker also

records the number of the times the object has been observed or missed to deal with

new object emergence, occlusion and noisy observation. An object will be regarded as

a new object only if it has been observed more than a number of times in successive

frames; an object will be deleted from the list only if it has been lost observation in

a number of successive frames.

The combined tracker attempts to infer the disparity of the object using observa-

tion from both camera views, which is calculated by Algorithm 7. The state of the

combined tracker is calculated by

z =
1

D − d̄
(6.2)

where the d̄ is the disparity output from Algorithm 7 and D is the largest positive

disparity during calibration. From [10, ch. 11.1.1] z is linearly proportional to the

depth of the object to the rectified image plane. Since the observation of the disparity

is much noisier than what of the individual sensor, I apply a “gating” process to rule

out the apparent false estimation. If ||ẑt−zt−1|| > ǫ1, the observation is discarded and

z is updated with zt = zt−1, where ǫ1 is a design parameter. When the observation is

valid, the state z is updated similar to Equation(6.1).

The two tiers of tracking basically adopt the same process. However, the result

of first tier is only used to provide an estimation of the registration between two

camera views. After obtaining the fused segmentation result, the state are restored

to previous time instance and the second tier of tracking is used estimate the state

with higher accuracy.
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Background Modeling

There are three different background modeling processes in our system, two of which

are performed individually in each camera view. Due to the significant temperature

difference between the environment and human body, the detection of human in

thermal image is relatively easy. Therefore, a static Gaussian model is used to model

each pixel in the background. By collecting a fixed amount of background frames, the

mean and variance (µ, σ2) are calculated to model each background pixel. By applying

this model to an incoming image, a probability map can be generated for foreground

detection. The label for each pixel x = (x, y) in thermal image is determined by,

foreground label lx =

{

1 (T (x)− µx)
2 > ǫ2 · σ

2
x

0 otherwise.
(6.3)

Where T (x, y) is the pixel intensity in thermal image, ǫ2 is a fixed threshold.

For color image, I adopt a recent non-parametric adaptive background modeling

algorithm [109]. In this model, background pixel is traced in a list of code word

including a color vector vm and a brightness range (Ǐ , Î). For a test pixel vector Cx =

(Rx, Gx, Bx), if it matched any code in the codebook, it is classified as background.

A match is defined if

• Color distortion: colorDist(Cx,vm) ≤ ǫ3, where the color distortion function is

defined as
√

||Cx||2 −
< vm, Cx >

||vm||2

where < · > is the inner product and ǫ3 is a design parameter.

• Brightness: Ǐ ≤ I(x) ≤ Î

107



When registered information from both cameras are available, I adapt the code-

book background model for fused background subtraction based on two observations:

1. The infrared camera generally gives more confident classification. Specifically,

in Tier 2, I can increase ǫ2 to achieve close to zero false positive rate. Note

that decreasing the false positive will decrease the detection rate as well. This

is why I don’t use it in Tier 1 because it will make the contour of the objects

less recognizable.

2. Shadows and high lights are major source of noise in indoor surveillance for

background subtraction in regular cameras, which usually have a high brightness

variation but not much color distortion

Therefore, our fused background subtraction algorithm basically tightens the

threshold for thermal image and uses it as a key reference and enlarges the range

of each code word in order to include the shadow and high light, as shown in Algo-

rithm 8

6.1.3 Experimental Result

Our system consists of a UnibrainTM Fire-i 400 video camera and a ElectroPhysicsTM

PV320 thermal camera. The two cameras are fixed in a horizontal bar and put

next to each other, as in Figure 6.4. The system runs on a Shuttle computer with

2GB memory and Athlon Dual core 3800+ CPU at 2.0GHz. Both cameras capture

images at resolution 320× 240. Our single-thread unoptimized code runs at 12.8 fps,

comparing with 7.5 fps in [55].
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Input: Registered thermal image T , color image I,X, codebook background
vm, Ǐ, Î, thermal background parameter (µ, σ), thresholding parameter
ǫ2, ǫ3, relaxed parameter ǫ′2, Ǐ

′, Î ′

Output: foreground label l
foreach pixel in video camera do

if (T (x)− µx)
2 > ǫ′2σ

2
x
in thermal image then

lx = 1;
else

lx = 1;

foreach code vm, Ǐ
′, Î ′ in the code book do

if colorDist(Cx,vm) ≤ ǫ3 and Ǐ ′ ≤ I(x) ≤ Î ′ then
lx = 0;
break;

end

end

end
Algorithm 8: fused background subtraction algorithm

Figure 6.4: Thermal-RGB camera fusion system setup
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In the first experiment, I show that most of pervasively adopted image warping

methods are not suitable for indoor surveillance application, where the depth of the

target object varies in the scene. I can see from Figure 6.5, our method described

in Algorithm 7 clearly outperform image warping. In the first row of Figure 6.5, I

can see both methods work equally well when the calibration points are at the same

depth of the object. However, when the depth of the object changed in the second

row of Figure 6.5, the single homography registration in image warping is no longer

accurate and the two blobs do not align. On the contrary, our registration algorithm

can successfully register object regardless of its depth variation.

(a) thermal image (b) registered by image warping (c) Registered by Alg. 7

(d) thermal image (e) registered by image warping (f) Registered by Alg. 7

Figure 6.5: Registration result between thermal and regular cameras. In the first row,
I can see the registration between thermal image and regular image are both fine by
using image warping and our method, shown in the red blob. However, in the second
row, the image warping method fails when there is a depth variation.

In the second experiment, I show the effectiveness of our combined tracker over
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the segmentation using the two modality separately. I adopted the OPENCV[110]

library for codebook implementation and use its default parameters. In background

subtraction in thermal image, the threshold ǫ2 is set to 2 to get roughly the best visual

segmentation. In the combined tracker, ǫ1 = 10, ǫ′2 = 3, Ǐ ′ = 20, and Î ′ = 10. Figure

6.6 is a snapshot of the tracking result. Comparing between Figure 6.6c and 6.6d,

the thermal image gives much better segmentation but still has some part missing

due to occlusion and low temperature appurtenance, while the code book background

subtraction in visible camera suffer from illumination changes and shadows. All of

these problem can be solved in the fused tracker in Figure 6.6e.

(a) thermal image (b) color image

(c) thermal background sub-
traction

(d) color background subtrac-
tion by codebook

(e) combined tracker

Figure 6.6: Comparison of our fused system with any single camera system. Our
result in 6.6e shows best results over using thermal camera alone in 6.6c or video
camera alone in 6.6d

At last, I perform quantitative measurement of our segmentation results powered
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by multi-modality, multi-pass background subtraction and fusion. Twelve frames are

randomly chosen and hand segmented by interactive graph cut algorithm[67]. I then

compare the accuracy of segmentation by background segmentation alone and with

fusion algorithm. In Figure 6.7, the three graphs in the first row are respectively image

segmentation, infrared segmentation and fused segmentation. The leftmost graph in

the second row is the ground truth segmentation. Then last two graphs are the image

segmentation and fused segmentation results overlapped with ground truth. The pink

part is the correct segment, red color denotes the false negative and the blue is the

false positive. The average accuracy for the 12 frames can be seen in Table 6.1. I can

see that through proper morphological operation, the fused segmentation algorithm

promotes a very low false negative rate (1.6%) which is crucial for privacy protection

and keep the false positive rate is at the same level as the image segmentation at the

same time.

Table 6.1: Segmentation error in single camera system and fused cameras

False Positive False Negative
(type I error) (type II error)

single camera Segmentation 0.2071 0.0965
Fused segmentation 0.1857 0.0160
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Figure 6.7: Quantitative measurement of the segmentation result. The three graphs
in the first row a) image segmentation, b) infrared segmentation and c) fused seg-
mentation. The second row:d) ground truth, e),f) image segmentation and fused
segmentation overlapped with ground truth, where pink part is the correct segment,
red color denotes the false negative and the blue is the false positive

6.2 View Dependent Rendering by Fusing Depth and Regular Cameras

Another example is proposed for real time view dependent image rendering based on

3D point clouds and color texture captured from a network of joint depth-and-color

cameras, the Microsoft Kinect devices. I will see how the 3D scene is acquired and

unified by a network of cameras with the help of depth information obtained by depth

camera under full pinhole camera model as in Section 5.2.1 and Section 5.2.3. The

texture rendering process with “winer takes all” approach is a simple example of data

fusion by selection in Section 5.3. An virtual mirror system is given as an possible

application of this system.

6.2.1 View Dependent Rendering System

Using the on-line registration scheme mention in Section 5.2.3, I can obtain a cloud

of 3D points with its R,G,B texture information from a joint depth-and-color camera
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pair, with the one of the camera center as the origin of world coordinate. In a

network of depth-and-color camera pairs, I can further apply another multiple camera

calibration [102] in order to unify the world coordinate system for each camera pair.

Therefore, a unified 3D point cloud can be obtained with each point associate with a

R,G,B value indicating its texture of the scene.

After obtaining the scene point cloud, a new view can be generated by projecting

those points using a new camera projection matrix. For each pixel area on the virtual

image plane, there might be zero to multiple projected 3D points. If there is only

one point, that pixel will take on the color value associated with the corresponding

3D scene point. If there are more than one points, they can either be from the same

3D scene point but originated from different cameras, or they are from different 3D

point with different depth but falls on the same projection line. For those belonging

to the first class, their depth values would be very close to each other. For those of

the second class, their depth values must be far apart and the one with the smallest

one would occlude the rest. This suggest a simple procedure of first clustering all

the scene points that share similar depth values and then selecting the group that

is closest to the viewpoint. The clustering algorithm adopted is simply based on

thresholding on the depth values. To compute the final color for the pixel, I use

the scheme of winner takes all to select the one that best aligns with the virtual

viewpoint, as I mentioned in Section 5.3

For the pixels with no display points, they need to be interpolated from neighbor-

ing pixels. A naive approach would be to perform spatial interpolation after obtaining

the color values for all the pixels that contain at least one display points. I notice that
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this approach creates a great deal of blending of scene objects at different depth. To

better preserve object boundaries, I separate the rendering into two phases based on

the depth values from the scene points – those that are at or closer than the viewer

and those that are beyond. Due to out unique mirror setting, these two sets typically

have very different depth values. I first start with the latter group with scene points

that are far away, apply the above process of identifying color for each pixel and then

perform interpolation on both depth and color values to fill in small gaps. These inter-

polated values are inserted back to the data structure of the “closer” pixels as if they

are from the true 3D point clouds. In the second phase, I render all these “closer”

pixels, select the correct color value based on both 3D point clouds and interpolated

results, and finally perform one more round of interpolation just on the color values.

Such a layered approach provides a far sharper object boundaries as it respects the

inherent depth values. It is possible to increase the number of depth levels to create

a better rendering but two levels are sufficient for our application.

6.2.2 Application to Virtual Mirror System

The proposed view generation system can be used to mimic a mirror in a camera-

display system. As shown in Figure- 6.8(a), the physical model of a mirror is very

straightforward. The mirror image is based on reflecting a light ray from the scene to

our eye, which can be modeled as a pinhole mirror. Three components are necessary

to reproduce this process in a virtual system:

1. Structure of the 3D scene.
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Figure 6.8: Physical and Virtual Mirror Modeling

2. 3D location of the viewpoint or more precisely, the optical center of the eye.

3. 3D location and pose of the mirror.

An important observation is that the mirror image is only determined by the location

of the viewpoint but not the pose of the viewer. When the eye ball rotates from V1

to V2 around the same viewpoint in Fig-6.8(a), the scene point A should appear at

the same spot A′ on the mirror regardless of the viewing pose V1 and V2. As the pose

of eye ball is irrelevant to the mirror image, I only need to track the position but not

the pose of the viewer.

To simulate the mirror experience, I need a camera-display system that can cap-

ture the 3D world, the viewer’s position and then render what a viewer should see on

a virtual mirror. Notice that the virtual mirror does not need to coincide with the

display. The generalized relationship between the mirror and the display is illustrated
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in Fig-6.8(b): a light ray from scene point A impinging on the mirror surface at point

A′ gets reflected along the ray
−−→
A′V towards the viewpoint V . The visual effect of

the virtual mirror is presented by rendering the point A” on the display, which is the

intersection between
−−→
A′V and the display plane. In a similar fashion, B′′ is rendered

as the mirror reflection of another scene point B with respect to the same virtual

mirror.

Our proposed system works much the same way as the physical model. The basic

work-flow of our system is illustrated in Fig-6.9. The system first records the scene

information as 3D point clouds and estimates the viewpoint position V . It then

traverses each point Si in the cloud to find the corresponding reflection point Ri on

the mirror, which determines its reflection ray to hit the view point V . Once the

reflection point is obtained, it computes the intersection point Pi between the display

surface Πd and
−−→
RiV on the display. A Z-buffer is used to determine if Pi is not

occluded and indeed visible to the viewer. If so, the local coordinates of Pi on the

display [Pi]d = (xi, yi) are calculated and the corresponding pixel value I(xi, yi) is

determined based on the color information stored at Si and the viewpoint V .

Viewpoint Tracking

To provide viewpoint dependent viewing, the system needs to track the viewer’s eyes’

position. As our display only renders a monocular view, I track the head position

rather than the actual locations of the two eyes. I approximate the head as a sphere

and treat the center as our target viewpoint. While there are many high-performance

sophisticated tracking algorithms in the literature, I take advantage of a single-user
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Figure 6.9: Proposed virtual mirror model

nature of the system and develop a very simple depth-based tracking algorithm. I

assume that the user is much closer to the depth camera than the rest of the 3D

scene points. As such, the histogram of depth values has a sharp peak of small values

corresponding to the viewer that can be easily separated from the rest using a single

threshold. These small depth values are then back-projected to the corresponding

2-D camera spatial coordinates. The actual depth values are not used anymore and

I only keep the 2-D binary shape of the viewer. Morphological opening and closing

are applied to fill in small holes and to smooth the outline of the silhouette. Starting

from the topmost point of the silhouette, our algorithm follows the outline in both

directions and calculates the curvature at each boundary point. The characteristic

omega shape of a head induces a curvature curve that has a sharp dip from positive

to negative at the two inflexion points. Detection of these two inflexion points define

the extent of the head curve which are then used to fit a circle. The estimated center
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of the circle on the camera plane is temporally smoothed with a Kalman filter. The

actual 3D coordinates of the viewpoint is then estimated to be the 3D point that

minimizes the sum of distances to each of the line formed between each camera’s

optical center and the center of the corresponding head circle.

Plane Mirror Image Rendering

From the virtual mirror model, I need to identify the the reflection point on the

mirror followed by the display point on the display surface. However, for plane

mirror, I have an alternative solution which can simplify the process and reduce

the computational complexity. By making a novel adaptation of camera projection

model, I can project the 3D point cloud directly onto the display plane without the

time consuming reflection points finding process.

Figure 6.10: A virtual mirror rendering for planar mirror

The identification of the reflection and display points can be viewed as a process

in which a scene point S is being projected on to the display plane by a virtual camera

with the center of projection at virtual view point V ′, as seen in Figure 6.10(b). Then

the whole process becomes estimating the camera projection matrix, detailed can be
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found in Appendix B.

Scalable client-server architecture

I adopt a Server-Client distributed system to deal with larger rendering space and

high computation complexity. Each client is responsible for one depth-color camera

pair (or one Kinect) and it also contains all the calibration information.

The client generates 3D point clouds according to its color and depth images and

calibration data. It also provide the first estimate of the viewpoint and the mirror

image based on the previously estimated viewpoint. The interpolation procedure is

postponed until each client’s generated virtual image is transferred to the server. The

reason of executing this operation on the server side is that the interpolation process

requires the availability of all color and depth pixels from different Kinects. As all the

Kinects have different views of the scene, some occluded or gap area in one Kinect

could be filled in by the other clients. The distributed algorithm is summarized

in Figure 6.11. The viewpoint estimation is refined and sent to all clients for the

rendering of next frame.

6.2.3 Experimental Results

In this section, I present the simulation results to evaluate our virtual mirror model

and analyzed the performance of the implemented system.
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Figure 6.11: Client-Server Architecture

Rendering accuracy verification

In order to validate the accuracy of our mirror model, I made a comparison between

the generated virtual image I1 on the display and a real image I2 taken by a digital

camera looking at a real mirror which is put aligned with the display. The camera

is in the same position as the asserted viewpoint that the mirror system uses for

rendering.

To compare the virtual mirror image with camera captured real mirror image,

I further project the captured mirror image on to the display plane by applying

a homography. Here I manually choose the 4 corners of the real mirror from the

taken picture to match the 4 points of generated virtual image as: p1 = (0 0)T ,

p2 = (0 1024× w2

w1

)T , p3 = (0 768× h2

h1

)T and p4 = (1024× w2

w1

768× h2

h1

)T . w1, h1 and

w2, h2 denote the size of the display and real mirror respectively. The mirror and

121



display are placed in the same plane with their top-left corner aligned. So with these

4 pairs of corresponding points, it is sufficient to compute homography matrix H , as

seen in Figure 6.12.

(a) Real Mirror Image (b) Homography Transfor-
mation on the 4 corners of
the mirror

(c) Generated Virtual Image

Figure 6.12: Compare our virtual mirror with a real mirror

100 matching points are manually selected on I1 and I2 for analysis. To reduce

random noise in hand pick points, Normalized Cross Correlation(NCC) are applied to

them: the maximum NCC value in the surrounding 3×3 pixels is chosen as matching

pairs. In Fig-6.14, the similarities between these selecting points the generated virtual

image and real mirror iamge are presented. They are measured by each point’s x− y

coordinate on the image. The mean error is 1.4865 with standard deviation 0.8156.

Figure 6.13: Benchmark points for rendering accuracy comparison
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Figure 6.14: Comparison of Plotting Result

Virtual Mirror System Experiment

The mirror system was implemented using non-optimized c++ code with Intel’s

OpenCV library to handle image processing. Each Kinect captures 640× 480 resolu-

tion video for scene points generation and the local client renders the virtual image

with resolution 1024 × 768, which is the same size as the final image on the server.

Up to this point, the system could run at frame rate 3 fps. However the speed would

be greatly increased if the programe were to be adapted to the GPU. The processors

details for the computers are:

• Server : Intel Xeon E5335 processor with 4-core CPUs at 2.0 GHz and 4.0Gb

of RAM.

• Client : Intel Core(TM) E8400 Duo CPU at 3.00 GHz and 8.0Gb of RAM
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I show one frame of a demo video in Figure 6.15. One may notice, there are

some black areas in the demo images, this because the scene is not fully covered by

the Kinects. This issue could be resolved by distributing more Kinects around the

display.

(a) Demo 1

(b) Capture Video 1

Figure 6.15: Virtual Mirror Demonstration
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Chapter 7 Discussion

This dissertation provides significant contributions to camera network research from

both camera planning and camera fusion aspects.

7.1 Discussion on the camera placement problem

First of all, in sensor planning research, a generic framework in modeling, measuring

and optimizing the placement of multiple cameras is proposed. Our framework is

suitable to model a variety of camera network applications for static cameras. By

using a camera placement metric that captures both self and mutual occlusion in

3-D environments, we have proposed two optimal camera placement strategies that

complement each other using grid based binary integer programming. Experimental

results have been presented to verify our model and to show the effectiveness of

our approaches. Equipped with an optimal camera placement, we have constructed

a multi-camera surveillance system capable of robustly identifying and obfuscating

individuals for privacy protection.

At the same time, I have presented and compared strengths and weaknesses of

various well-known optimization frameworks to solve the generic camera placement

problem including a greedy approach, MCMC methods, and LP and SDP relaxations.

There are many interesting issues in our proposed framework that deserve further

investigation. Environmental factors such as prior knowledge of the movement of

people, their inter-personal distances and configurations as well as the specifics of
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the back-end vision algorithms can and should be incorporated into the models to

further improve camera placement. The incorporation of models for different visual

sensors, such as omnidirectional and PTZ cameras, or even non-visual sensors and

other output devices such as projectors, is certainly a very interesting topic. The

optimality of our greedy approach can benefit from a detailed theoretical study. The

technical issues in combining wide-area calibration and visual targetging are also

important problems that we believe can be overcome in the very near future. Last

but not the least, the use of visual targetging in other application domains such as

immersive environments and surveillance visualization should be further explored.

In addition to our simulation study on the optimization tools suitable for camera

placement problem, it might be interesting to study how those algorithms can be

combined together to solve the generic camera placement problem even more effec-

tively. For example, the output of a greedy approach can be used as an initialization

for the sampling methods. And while SDP relaxations outperform LP relaxation in

terms of obtaining tighter bounds, it suffers from dimension increase due to the “lift

and project” process. Some dimension reduction approaches may be useful to reduce

the problem size and apply more layers of SDP relaxations.

7.2 Discussion on sensor fusion

Sensor fusion is yet another important topic in camera networks. Instead of applying

generic sensor fusion techniques, my research focuses on how to utilize the physical

camera model to improve the fusion process. Pinhole camera model is useful for

studying the imaging function of most light of sight visual sensors, and it has also
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a very convenient mathematical representation. Calibration is also important in the

fusion process and critical in a system with stringent time constraints, where a lot of

computation need to me moved into off-line process.

For example, a robust human segmentation system is presented by fusing video

and thermal imaginary. After a simple calibration procedure, a blob wise registration

is achieved by estimating the disparity of each correspondent blobs on the fly. The es-

timation of registration parameters is further improved by temporal inferencing via a

two-tier tracking algorithm. The segmentation under a fused background subtraction

shows significant improvement over that of using either modality alone.

Currently, the background subtraction in fused image is only a union of individual

modality with tightened thresholds. Further improvement can be obtained by fusing

the two modalities under a specific human body model. Also, the inference of disparity

using temporal information is performed by a simple weighted averaging together with

a gating process. A more sophisticated tracker, such as particle filter, may be used

to estimate the disparity under a probabilistic framework. Last but not least, our

system can only segment the human bodies out of the background; therefore it is

interesting to see how to obtain separate segments when there is occlusion between

multiple human blobs.

Depth cameras provide complementary depth information for regular visual sen-

sors. Therefore, a mixture of depth camera and regular cameras is extremely suitable

for acquiring 3D information of the scene. I propose a framework that can collect

precise 3D scene information in real time, and generate a virtual mirror based on

accurate physical model. The system can handle arbitrary position and orientation
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of the mirror that is independent of the display monitor. Future work includes im-

proving the efficiency of the system via parallelization and extending the reflection

points localization algorithm to more generic mirror surfaces.
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Chapter A Relationship between depth and disparity

As in Figure A.1, we can overlay the two rectified image planes into one plane. the

baseline O1O2 is parallel to the plane, where O1, O2 are centers of the two cameras.

A 3D point P is projected to the two camera through O1, O2 at X1, X2. Project

O1, O2 to line X2X1 at H1 and H2, H1, H2 is the zero positions in the two image

planes; draw a line from P perpendicular to the image plane, intersecting the plane

at H3; from O2, draw a line parallel to X2H, intersecting PH3 at A; Using Euclidean

geometry, we have,

O2O1

X2X1

=
PO2

PX2

=
PA

PH3

(A.1)

where O2O1 = b is the baseline; AH3 = f is the focal length; PA = z is the depth of

the point. The disparity

d = X2H2 −X1H1 = X2H2 +H1X1 = X2X1 − O2O1 (A.2)

From Equation (A.1), we have, X2X1 = PH3

PA
· O2O1, plug it into Equation (A.2) we

have

d =
f

z
· b

Since b and f are constant, if we assume the depth of each point within the same

blob has same depth, according to Equation (A.1), the disparity of these points also

have to be constant. Further more, we can see that the inverse of disparity and the

depth are linearly correlated.

O2F

PH
=

X2O2

PX2

(A.3)
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Add Equation (A.1) to Equation (A.3),

O1O1

X1X2

+
O2F

PH
= 1

Here, ; O2F is the focal length; Both of them are constant. If PH — the depth of

the point— is also constant, the disparity X1X2 has to be a constant.

Figure A.1: The relationship between depth and disparity in rectified image
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Chapter B Calculating the Projection Matrix for Plane Mirror

The intrinsic projection matrix K is in the form of:

K =





fx 0 cx
0 fy cy
0 0 1





In the matrix, fx, fy are the focal length in pixels, which can be computed by

the distance from the virtual view point to the display plane normalized by the pixel

dimension. cx and cy is the coordinate of the projection center of view point in

the image plane. To compute them, firstly we need to obtain the projection point

P (xp, yp, zp) from V ′ to plane πm:

xp = x0 −
a(ax0 + by0 + cz0 + d)

a2 + b2 + c2

yp = y0 −
b(ax0 + by0 + cz0 + d)

a2 + b2 + c2

zp = z0 −
c(ax0 + by0 + cz0 + d)

a2 + b2 + c2
(B.1)

Assume the mirror has rectangular shape and the 4 corners are denoted as P1,

P2, P3 and P4 (starting from top-left corner in clockwise). By convention, X and Y

directions on the plane are along the two edges starting from the top-left corner P1

as shown in Fig-6.10, then we can get the unit directional vectors:

−→n1 =

−−→
P1P2

‖P1P2‖
and −→n2 =

−−→
P1P4

‖P1P4‖

The offset cx and cy can be calculated by projecting
−−→
P1P on to the two orthogonal

vectors −→n1 and −→n2, cx =
−−→
P1P · −→n1 and cy =

−−→
P2P · −→n2.
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The extrinsic is composed of two parts: rotation R and translation T. The role is

to convert a scene point in the world coordinate into a point in the camera coordinate,

which is a prerequisite to the transformation of intrinsic matrix K.

Here the rotationR and translation T are 3×3 and 3×1 matrices respectively. For

details readers are referred to [7]. From the mirror plane’s equation and virtual point

V ′, it is not difficult to compute the translation matrix, as V ′ actually represents

the offset of virtual camera center to the world origin. So T = (V ′)T . For the

rotation matrix, since we can easily computer the unit vector of image plane ni, we

can estimate the rotation matrix which convert ni into vector nz = (0, 0, 1) as follows.

1. Estimate the rotation angle θ = arccos (ni · nz).

2. Estimate the rotation axis u = ni × nz where × stands for cross product.

3. the rotation matrix can be estimated by I cos θ + sin θ[u]x + (1 − cos θ)u ⊗ u,

where

[u]x =





0 −uz uy

uz 0 −ux

−uy ux 0





and

u⊗ u =





u2
x uxuy uxuz

uxuy u2
y uyuz

uxuz uyuz u2
z




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