392 research outputs found

    An Accurate and Efficient Analysis of a MBSFN Network

    Full text link
    A new accurate analysis is presented for an OFDM-based multicast-broadcast single-frequency network (MBSFN). The topology of the network is modeled by a constrained random spatial model involving a fixed number of base stations placed over a finite area with a minimum separation. The analysis is driven by a new closed-form expression for the conditional outage probability at each location of the network, where the conditioning is with respect to the network realization. The analysis accounts for the diversity combining of signals transmitted by different base stations of a given MBSFN area, and also accounts for the interference caused by the base stations of other MBSFN areas. The analysis features a flexible channel model, accounting for path loss, Nakagami fading, and correlated shadowing. The analysis is used to investigate the influence of the minimum base-station separation and provides insight regarding the optimal size of the MBSFN areas. In order to highlight the percentage of the network that will fail to successfully receive the broadcast, the area below an outage threshold (ABOT) is here used and defined as the fraction of the network that provides an outage probability (averaged over the fading) that meets a threshold.Comment: 5 pages, 4 figures, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, to appea

    Efficient Multimedia Broadcast for Heterogeneous Users in Cellular Networks

    Get PDF
    Efficient Multimedia Broadcast and Multicast Services (MBMS) to heterogeneous users in cellular networks imply adaptive video encoding, layered multimedia transmission, optimized transmission parameters, and dynamic broadcast area definition. This paper deals with MBMS by proposing a multi-dimensional approach for broadcast area definition, which provides an effective solution to all of the above aspects. By using multi-criteria K-means clustering, our scheme provides users with high levels of Quality-of-Experience (QoE) of multimedia services. Adaptive video encoding and allocation of radio resources (i.e., time-frequency resource blocks, and modulation and coding scheme) are performed based on user spatial distribution, channel conditions, service request, and user display capabilities. Simulation results show that our solution provides a 70% improvement in user QoE and 86% in number of served customers, as compared to an existing multimedia broadcast scheme.© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Overview of evolved Multimedia Broadcast Multicast Services (eMBMS)

    Get PDF
    MBMS was introduced as a service to optimize the dissemination of common interest multimedia content. Recently, it evolved to eMBMS based on LTE-centered flexibilities. However, launch of eMBMS over LTE may support new services e.g. pushed content for M2M services and delivery of premium content to the users enjoying secured QoS. This document primarily focusses on the rules, procedures and architecture supporting MBMS based data exchanges, which have not seen any major changes since Release 9

    A model to evaluate MBSFN and AL-FEC techniques in a multicast video streaming service

    Get PDF
    This procceding of: 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). Took place 2014, October 08-10, in Lanarca (Chipre). The event Web site of http://conferences.computer.org/wimob2014/ .In a multicast video streaming service over a cellular network, the same content is sent to a mass audience using a common channel. However, users belonging to the same multicast channel perceive different characteristics of the radio channel. Moreover, in wireless environments, the radio interface introduces an important level of interference and noise, resulting in a high rate of transmission errors. Therefore, a protection of the information is needed at each receiver using Forward Error Correction (FEC) schemes, which allow the recovery of the lost packets sending redundancy together with the payload. FEC solutions can be used in combination with other techniques to overcome the existing limitations of the mobile network, in particular, the use of a single-frequency network to prevent the effect of destructive signal interference. This paper analyzes the performance of a video streaming service comparing different FEC schemes, Raptor and RaptorQ codes, where some system parameters can be tuned in a single-frecuency network.This work was supported in part by the Spanish Ministry of Economy and Competitiveness, National Plan for Scientific Research, Development and Technological Innovation (INNPACTO subprogram), LTExtreme project (IPT-2012-0525-430000).Publicad

    Area Formation and Content Assignment for LTE Broadcasting

    Get PDF
    Broadcasting and multicasting services in LTE networks are shaping up to be an effective way to provide popular content. A key requirement is that cells are aggregated into areas where a tight time synchronization among transmissions is enforced, so as to broadcast the same radio resources. Our paper addresses a facet of LTE broadcasting that has so far received little attention: the creation of broadcasting areas and the assignment of content to them in order to efficiently exploit radio resources and satisfy user requests. Our original clustering approach, named Single-Content Fusion, achieves these goals by initially aggregating cells into single-content areas and maximizing cell similarity in content interests. Aggregated areas are then merged into multiple-content areas by virtue of similar spatial coverage. We show the validity of our solution pointing out the advantages it provides in comparison to other approaches. We also discuss the impact of various system factors (e.g., number of served users, broadcast data rate, area size) and the scalability of our proposal in large, realistic scenarios with both static and time-varying user interest

    Analysis of the impact of FEC techniques on a multicast video streaming service over LTE

    Get PDF
    The proceeding at: European Conference on Networks and Communications (EuCNC 2015), took place in June 29/July 2, 2015, in Paris, France.In a multicast video streaming service the same multimedia content is sent to a mass audience using only one multicast stream. In multicast video streaming over a cellular network, due to the nature of the multicast communication, from a source to multiple recipients, and due to the characteristics of the radio channel, different for each receiver, transmission errors are addressed at the application level by using Forward Error Correction (FEC) techniques. However, in order to protect the communication over the radio channel, FEC techniques are also applied at the physical layer. Another important technique to improve the communication of the radio channel is the use of a single-frequency network. This paper analyzes the performance of a video streaming service over a cellular network taking into account the combined impact of different factors that affect the transmission, both the physical deployment of the service and the two levels of FEC.This work was supported in part by the Spanish Ministry of Economy and Competitiveness, National Plan for Scientific Research, Development and Technological Innovation (IN-NPACTO subprogram), LTExtreme project (IPT-2012-0525-430000).Publicad
    • …
    corecore