206 research outputs found

    Improving Sampling-Based Motion Planning Using Library of Trajectories

    Get PDF
    Plánování pohybu je jedním z podstatných problémů robotiky. Tato práce kombinuje pokroky v plánování pohybu a hodnocení podobnosti objektů za účelem zrychlení plánování ve statických prostředích. První část této práce pojednává o současných metodách používaných pro hodnocení podobnosti objektů a plánování pohybu. Prostřední část popisuje, jak jsou tyto metody použity pro zrychlení plánování s využitím získaných znalostí o prostředí. V poslední části jsou navržené metody porovnány s ostatními plánovači v nezávislém testu. Námi navržené algoritmy se v experimentech ukázaly být často rychlejší v porovnání s ostatními plánovači. Také často nacházely cesty v prostředích, kde ostatní plánovače nebyly schopny cestu nalézt.Motion planning is one of the fundamental problems in robotics. This thesis combines the advances in motion planning and shape matching to improve planning speeds in static environments. The first part of this thesis covers current methods used in object similarity evaluation and motion planning. The middle part describes how these methods are used together to improve planning speeds by utilizing prior knowledge about the environment, along with additional modifications. In the last part, the proposed methods are tested against other state-of-the-art planners in an independent benchmarking facility. The proposed algorithms are shown to be faster than other planners in many cases, often finding paths in environments where the other planners are unable to

    Higher-order Graph Principles towards Non-rigid Surface Registration

    Get PDF
    This report casts surface registration as the problem of finding a set of discrete correspondences through the minimization of an energy function, which is composed of geometric and appearance matching costs, as well as higher-order deformation priors. Two higher-order graph-based formulations are proposed under different deformation assumptions. The first formulation encodes isometric deformations using conformal geometry in a higher-order graph matching problem, which is solved through dual-decomposition and is able to handle partial matching. Despite the isometry assumption, this approach is able to robustly match sparse feature point sets on surfaces undergoing highly anisometric deformations. Nevertheless, its performance degrades significantly when addressing anisometric registration for a set of densely sampled points. This issue is rigorously addressed subsequently through a novel deformation model that is able to handle arbitrary diffeomorphisms between two surfaces. Such a deformation model is introduced into a higher-order Markov Random Field for dense surface registration, and is inferred using a new parallel and memory efficient algorithm. To deal with the prohibitive search space, we design an efficient way to select a number of matching candidates for each point of the source surface based on the matching results of a sparse set of points. A series of experiments demonstrate the accuracy and the efficiency of the proposed framework, notably in challenging cases of large and/or anisometric deformations, or surfaces that are partially occluded.Ce rapport formalise le problème du recalage de surfaces 3D comme la recherche d’un ensemble de correspondances discrètes par la minimisation d’une fonction d’énergie, qui est composée de fonctions de coûts mesurant des similitudes géométriques et d’apparence, et des à priori d’ordre élevé sur la déformation. Deux formulations à base de graphes d’ordre élevé sont proposées sous différentes hypothèses de déformation. La première formulation encode la déformation isométrique, à partir de géométrie conforme, dans un problème d’appariement de graphes d’ordre élevé, qui est résolu par décomposition duale et est capable de gérer les cas de correspondance partielle. Malgré l’hypothèse d’isométrie, cette approche est capable de mettre en correspondance de manière robuste deux ensembles clairsemés de points sur deux surfaces, y compris lorsque celles-ci subissent une déformation fortement anisométrique. Cependant, sa performance se dégrade de manière significative lorsqu’elle est étendue au recalage anisométrique d’un ensemble de points à forte densité. Ce problème est rigoureusement traité par la suite à travers un nouveau modèle de déformation capable de gérer des difféomorphismes arbitraires entre deux surfaces. Ce modèle de déformation est introduit dans une formulation MRF d’ordre élevé pour le recalage dense de surfaces, et être inféré en utilisant un nouvel algorithme parallèle et efficace en termes de mémoire. Pour traiter l’espace de recherche prohibitif, nous concevons une méthode efficace pour sélectionner un ensemble de correspondants potentiels pour chaque point appartenant à la surface source. Cette méthode est basée sur les résultats d’appariement d’un ensemble clairsemé de points. Notre méthode est validée au moyen d’une série d’expériences qui démontrent sa précision et son efficacité, notamment dans les cas difficiles où des déformations importantes et/ou anisométriques sont présentes, ou lorsque les maillages sont partiellement cachés

    Robust Nonrigid Registration by Convex Optimization

    Full text link
    We present an approach to nonrigid registration of 3D surfaces. We cast isometric embedding as MRF opti-mization and apply efficient global optimization algorithms based on linear programming relaxations. The Markov ran-dom field perspective suggests a natural connection with robust statistics and motivates robust forms of the intrinsic distortion functional. Our approach outperforms a large body of prior work by a significant margin, increasing reg-istration precision on real data by a factor of 3. 1

    From scans to models: Registration of 3D human shapes exploiting texture information

    Get PDF
    New scanning technologies are increasing the importance of 3D mesh data, and of algorithms that can reliably register meshes obtained from multiple scans. Surface registration is important e.g. for building full 3D models from partial scans, identifying and tracking objects in a 3D scene, creating statistical shape models. Human body registration is particularly important for many applications, ranging from biomedicine and robotics to the production of movies and video games; but obtaining accurate and reliable registrations is challenging, given the articulated, non-rigidly deformable structure of the human body. In this thesis, we tackle the problem of 3D human body registration. We start by analyzing the current state of the art, and find that: a) most registration techniques rely only on geometric information, which is ambiguous on flat surface areas; b) there is a lack of adequate datasets and benchmarks in the field. We address both issues. Our contribution is threefold. First, we present a model-based registration technique for human meshes that combines geometry and surface texture information to provide highly accurate mesh-to-mesh correspondences. Our approach estimates scene lighting and surface albedo, and uses the albedo to construct a high-resolution textured 3D body model that is brought into registration with multi-camera image data using a robust matching term. Second, by leveraging our technique, we present FAUST (Fine Alignment Using Scan Texture), a novel dataset collecting 300 high-resolution scans of 10 people in a wide range of poses. FAUST is the first dataset providing both real scans and automatically computed, reliable ground-truth correspondences between them. Third, we explore possible uses of our approach in dermatology. By combining our registration technique with a melanocytic lesion segmentation algorithm, we propose a system that automatically detects new or evolving lesions over almost the entire body surface, thus helping dermatologists identify potential melanomas. We conclude this thesis investigating the benefits of using texture information to establish frame-to-frame correspondences in dynamic monocular sequences captured with consumer depth cameras. We outline a novel approach to reconstruct realistic body shape and appearance models from dynamic human performances, and show preliminary results on challenging sequences captured with a Kinect

    µMatch: 3D shape correspondence for biological image data

    Full text link
    Modern microscopy technologies allow imaging biological objects in 3D over a wide range of spatial and temporal scales, opening the way for a quantitative assessment of morphology. However, establishing a correspondence between objects to be compared, a first necessary step of most shape analysis workflows, remains challenging for soft-tissue objects without striking features allowing them to be landmarked. To address this issue, we introduce the ÎĽMatch 3D shape correspondence pipeline. ÎĽMatch implements a state-of-the-art correspondence algorithm initially developed for computer graphics and packages it in a streamlined pipeline including tools to carry out all steps from input data pre-processing to classical shape analysis routines. Importantly, ÎĽMatch does not require any landmarks on the object surface and establishes correspondence in a fully automated manner. Our open-source method is implemented in Python and can be used to process collections of objects described as triangular meshes. We quantitatively assess the validity of ÎĽMatch relying on a well-known benchmark dataset and further demonstrate its reliability by reproducing published results previously obtained through manual landmarking
    • …
    corecore