4,239 research outputs found

    Proliferative glioblastoma cancer cells exhibit persisting temporal control of metabolism and display differential temporal drug susceptibility in chemotherapy

    Get PDF
    Even in immortalized cell lines, circadian clocks regulate physiological processes in a time-dependent manner, driving transcriptional and metabolic rhythms, the latter being able to persist without transcription. Circadian rhythm disruptions in modern life (shiftwork, jetlag, etc.) may lead to higher cancer risk. Here, we investigated whether the human glioblastoma T98G cells maintained quiescent or under proliferation keep a functional clock and whether cells display differential time responses to bortezomib chemotherapy. In arrested cultures, mRNAs for clock (Per1, Rev-erbα) and glycerophospholipid (GPL)-synthesizing enzyme genes, 32 P-GPL labeling, and enzyme activities exhibited circadian rhythmicity; oscillations were also found in the redox state/peroxiredoxin oxidation. In proliferating cells, rhythms of gene expression were lost or their periodicity shortened whereas the redox and GPL metabolisms continued to fluctuate with a similar periodicity as under arrest. Cell viability significantly changed over time after bortezomib treatment; however, this rhythmicity and the redox cycles were altered after Bmal1 knock-down, indicating cross-talk between the transcriptional and the metabolic oscillators. An intrinsic metabolic clock continues to function in proliferating cells, controlling diverse metabolisms and highlighting differential states of tumor suitability for more efficient, time-dependent chemotherapy when the redox state is high and GPL metabolism low.Fil: Wagner, Paula Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Sosa Alderete, Lucas Gastón. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gorne, Lucas Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Gaveglio, Virginia Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Salvador, Gabriela Alejandra. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Pasquaré, Susana Juana. Universidad Nacional del Sur; ArgentinaFil: Guido, Mario Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentin

    Interaction between anandamide and sphingosine-1-phosphate in mediating vasorelaxation in rat coronary artery

    Get PDF
    <b>BACKGROUND AND PURPOSE</b> Anandamide and sphingosine-1-phosphate (S1P) both regulate vascular tone in a variety of vessels. This study aimed to examine the mechanisms involved in the regulation of coronary vascular tone by anandamide and S1P, and to determine whether any functional interaction occurs between these receptor systems. <br></br> <b>EXPERIMENTAL APPROACH</b> Mechanisms used by anandamide and S1P to regulate rat coronary artery (CA) reactivity were investigated using wire myography. Interactions between S1P and the cannabinoid (CB)2 receptor were determined using human embryonic kidney 293 (HEK293) cells that stably over-express recombinant CB2 receptor. <br></br> <b>KEY RESULTS</b> Anandamide and S1P induced relaxation of the rat CA. CB2 receptor antagonists attenuated anandamide-induced relaxation, while S1P-mediated relaxation was dependent on the vascular endothelium and S1P3. Anandamide treatment resulted in an increase in the phosphorylation of sphingosine kinase-1 within the CA. Conversely, anandamide-mediated relaxation was attenuated by inhibition of sphingosine kinase. Moreover, S1P3, specifically within the vascular endothelium, was required for anandamide-mediated vasorelaxation. In addition to this, S1P-mediated relaxation was also reduced by CB2 receptor antagonists and sphingosine kinase inhibition. Further evidence that S1P functionally interacts with the CB2 receptor was also observed in HEK293 cells over-expressing the CB2 receptor. <br></br> <b>CONCLUSIONS AND IMPLICATIONS</b> In the vascular endothelium of rat CA, anandamide induces relaxation via a mechanism requiring sphingosine kinase-1 and S1P/S1P3. In addition, we report that S1P may exert some of its effects via a CB2 receptor- and sphingosine kinase-dependent mechanism, where subsequently formed S1P may have privileged access to S1P3 to induce vascular relaxation

    Second trimester inflammatory and metabolic markers in women delivering preterm with and without preeclampsia.

    Get PDF
    ObjectiveInflammatory and metabolic pathways are implicated in preterm birth and preeclampsia. However, studies rarely compare second trimester inflammatory and metabolic markers between women who deliver preterm with and without preeclampsia.Study designA sample of 129 women (43 with preeclampsia) with preterm delivery was obtained from an existing population-based birth cohort. Banked second trimester serum samples were assayed for 267 inflammatory and metabolic markers. Backwards-stepwise logistic regression models were used to calculate odds ratios.ResultsHigher 5-α-pregnan-3β,20α-diol disulfate, and lower 1-linoleoylglycerophosphoethanolamine and octadecanedioate, predicted increased odds of preeclampsia.ConclusionsAmong women with preterm births, those who developed preeclampsia differed with respect metabolic markers. These findings point to potential etiologic underpinnings for preeclampsia as a precursor to preterm birth

    Enhancing adult hippocampal neurogenesis with lysophosphatidic acid: a proposal for erasing cocaine contextual memory

    Get PDF
    Stimulating adult hippocampal neurogenesis (AHN) has been uncovered as a promising approach in the manipulation of retrograde memories. This work aims to study whether increasing AHN with lysophosphatidic acid (LPA, an endogenous lysophospholipid with proneurogenic actions) promotes the forgetting of previously established cocaine-contextual associations. C57BL/6J mice previously trained in a cocaine-induced conditioned place preference (CPP) paradigm were submitted to 23 days of withdrawal, during which they received repeated intracerebroventricular infusions of LPA, ki16425 (a selective LPA1/3 receptors antagonist), or vehicle solution. Then, CPP maintenance was assessed, and the causal role of AHN in this process was evaluated using a mediation analysis. In a complementary experiment, wild-type and LPA1-null mice were acutely infused with LPA or ki16425 to determine the involvement of the LPA1 receptor in the in vivo proneurogenic actions of LPA. The chronic LPA treatment significantly weakened the long-term retention of a previously acquired cocaine-CPP memory, an effect clearly mediated by a LPA-induced increase in the number of adult-born dentate granule cells. In contrast, the ki16425-treated mice displayed aberrant responses of initially decreased CPP retention that progressively increased CPP across the extinction sessions, in absence of effects on AHN. The histological studies suggested that the proneurogenic actions of LPA were related to the enhancement of cell proliferation and critically depended on the LPA1 receptor function. Our results suggest that the LPA/LPA1-pathway acts as a potent in vivo modulator of AHN, and highlight the usefulness of a post-learning increase of adult-born hippocampal neurons as a strategy to promote the forgetting of cocaine-context associations.Plan Propio de Investigación y Transferencia. Campus de Excelencia Internacional Andalucía Tech. Spanish Ministry of Economy and Competitiveness (Agencia Estatal de Investigación), co‐funded by the European Research Development Fund (AEI/FEDER, UE) (PSI2013‐44901‐P and PSI2017‐82604‐R to L.J.S. and PSI2015‐73156‐JIN to E.C.O.); by the National System of Health‐Instituto de Salud Carlos III, which is co‐funded by AEI/FEDER, UE (Red de Trastornos Adictivos; RD16/0017/0001 to F.R.d.F.); and by the Andalusian R&D&I Programme, Regional Ministry of Economy and Knowledge (PAIDI CTS643 to G.E.T.). D.L.G.M. hold a FPU grant from the Spanish Ministry of Education, Culture and Sports (FPU13/04819 ). F.R.d.F. and G.E.T. are supported by Nicolas Monardes Programme, from the Andalusian Regional Ministry of Health. E.C.O. holds a ‘Jóvenes Investigadores’ grant (code: PSI2015‐73156‐JIN) from the Spanish Ministry of Economy and Competitiveness (Agencia Estatal de Investigación), which is co‐funded by the AEI/FEDER, UE

    Effects of lysophospholipid on utilizing different sources and levels of carbohydrate in rainbow trout (Oncorhynchus mykiss) diet

    Get PDF
    The aim of the present study was to investigate the effects of dietary lysophospholipid and carbohydrates (rye and corn meal) on growth performance, blood and biochemical parameters in rainbow trout. So, 480 fish (6.70 ± 0.99 g in weight) were fed with experimental diets containing 100 g/kg corn, 250 g/kg corn, 100 g/kg corn + 9 g/kg lysophospholipid, 250 g/kg corn + 9 g/kg lysophospholipid, 100 g/kg rye, 250 g/kg rye, 100 g/kg rye + 9 g/kg lysophospholipid and 250 g/kg rye + 9 g/kg lysophospholipid in triplicate. The experimental design was a 2 × 2 × 2 factorial arrangement. Results of growth performance demonstrated elevating in final weight, specific growth rate and feed intake in Tcorn100+lyso and Tray100+lyso, whereas Tcorn250+lyso and Tray250+lyso contrarily led to lower growth performance (p<0.05). Also, RBC and hematocrit indicated interaction effects between diet × lysophospholipid and lysophospholipid × carbohydrate level (p<0.05). RBC and hematocrit were elevated in Tcorn100+lyso and Tray100+lyso (p<0.05). Comparative results of biochemical parameters showed reaction effects of cholesterol between diet × lysophospholipid (p<0.05). Cholesterol values reduced by adding lysophospholipid to different levels of rye and corn and also higher value was observed in Tcorn100+lyso and Tray100+lyso compared to Tcorn250+lyso and Tray250+lyso (p<0.05). It seems that rainbow trout has potency of using 250 g rye and corn in diet containing fat powder without lysophospholipid, while lysophospholipid negatively affects this level of carbohydrates. However, lysophospholipid helps enhancing growth and erythropoiesis in the levels of 100 g rye and corn

    Platelet interaction with bioactive lipids formed by mild oxidation of low-density lipoprotein

    Get PDF
    Oxidation of low-density lipoprotein (LDL) generates pro-inflammatory and pro-thrombotic mediators that play a crucial role in cardiovascular and inflammatory diseases. Mildly oxidized LDL (mox-LDL) and minimally modified LDL (mm-LDL) which escape the uptake of macrophage scavenger receptors accumulate in the atherosclerotic intima. Oxidatively modified LDL is also present within the electronegative LDL fraction in blood, which is elevated in patients at high risk for cardiovascular diseases. Mox-LDL and mm-LDL, but not native LDL are able to induce platelet shape change and aggregation. LDL oxidation generates lipids with platelet stimulatory properties such as lysophosphatidylcholine, certain oxidized phosphatidylcholine molecules, F-2-isoprostanes and lysophosphatidic acid (LPA). Mox-LDL and mm-LDL are like a Trojan horse carrying these biologically active lipids and attacking cells through activation of physiological receptors and signaling mechanisms. LPA has been identified as the lipid responsible for platelet stimulation by mox-LDL, mm-LDL and also mox-HDL. These lipoproteins activate platelets by stimulating G-protein coupled LPA receptors and a Rho/Rho kinase signaling pathway leading to platelet shape change and subsequent aggregation. LPA-mediated platelet activation might contribute to arterial thrombus formation after rupture of atherosclerotic plaques and to the increased blood thrombogenicity of patients with cardiovascular diseases. Copyright (c) 2006 S. Karger AG, Basel
    corecore