5 research outputs found

    Lower bounds for approximation schemes for Closest String

    Get PDF
    In the Closest String problem one is given a family S\mathcal S of equal-length strings over some fixed alphabet, and the task is to find a string yy that minimizes the maximum Hamming distance between yy and a string from S\mathcal S. While polynomial-time approximation schemes (PTASes) for this problem are known for a long time [Li et al., J. ACM'02], no efficient polynomial-time approximation scheme (EPTAS) has been proposed so far. In this paper, we prove that the existence of an EPTAS for Closest String is in fact unlikely, as it would imply that FPT=W[1]\mathrm{FPT}=\mathrm{W}[1], a highly unexpected collapse in the hierarchy of parameterized complexity classes. Our proof also shows that the existence of a PTAS for Closest String with running time f(ε)no(1/ε)f(\varepsilon)\cdot n^{o(1/\varepsilon)}, for any computable function ff, would contradict the Exponential Time Hypothesis

    Approximation and Parameterized Complexity of Minimax Approval Voting

    Full text link
    We present three results on the complexity of Minimax Approval Voting. First, we study Minimax Approval Voting parameterized by the Hamming distance dd from the solution to the votes. We show Minimax Approval Voting admits no algorithm running in time O(2o(dlogd))\mathcal{O}^\star(2^{o(d\log d)}), unless the Exponential Time Hypothesis (ETH) fails. This means that the O(d2d)\mathcal{O}^\star(d^{2d}) algorithm of Misra et al. [AAMAS 2015] is essentially optimal. Motivated by this, we then show a parameterized approximation scheme, running in time O((3/ϵ)2d)\mathcal{O}^\star(\left({3}/{\epsilon}\right)^{2d}), which is essentially tight assuming ETH. Finally, we get a new polynomial-time randomized approximation scheme for Minimax Approval Voting, which runs in time nO(1/ϵ2log(1/ϵ))poly(m)n^{\mathcal{O}(1/\epsilon^2 \cdot \log(1/\epsilon))} \cdot \mathrm{poly}(m), almost matching the running time of the fastest known PTAS for Closest String due to Ma and Sun [SIAM J. Comp. 2009].Comment: 14 pages, 3 figures, 2 pseudocode

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    15th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2016, June 22-24, 2016, Reykjavik, Iceland

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore