research

Lower bounds for approximation schemes for Closest String

Abstract

In the Closest String problem one is given a family S\mathcal S of equal-length strings over some fixed alphabet, and the task is to find a string yy that minimizes the maximum Hamming distance between yy and a string from S\mathcal S. While polynomial-time approximation schemes (PTASes) for this problem are known for a long time [Li et al., J. ACM'02], no efficient polynomial-time approximation scheme (EPTAS) has been proposed so far. In this paper, we prove that the existence of an EPTAS for Closest String is in fact unlikely, as it would imply that FPT=W[1]\mathrm{FPT}=\mathrm{W}[1], a highly unexpected collapse in the hierarchy of parameterized complexity classes. Our proof also shows that the existence of a PTAS for Closest String with running time f(ε)no(1/ε)f(\varepsilon)\cdot n^{o(1/\varepsilon)}, for any computable function ff, would contradict the Exponential Time Hypothesis

    Similar works