129 research outputs found

    Lower-Limb-Assisting Robotic Exoskeleton Reduces Energy Consumption in Healthy Young Persons during Stair Climbing

    Get PDF
    Many robotic exoskeletons for lower limb assistance aid walking by reducing energy costs. However, investigations examining stair-climbing assistance have remained limited, generally evaluating reduced activation of related muscles. This study sought to investigate how climbing assistance by a robotic exoskeleton affects energy consumption. Ten healthy young participants wearing a robotic exoskeleton that assists flexion and extension of hip and knee joints walked up nine flights of stairs twice at a self-selected speed with and without stair-climbing assistance. Metabolic cost was assessed by measuring oxygen consumption, heart rate, and the time to climb each flight of stairs. Net oxygen cost (NOC) and total heart beats (THB) were used as measures of metabolic cost, accounting for different climbing speeds. Stair-climbing assistance reduced NOC and THB by 9.3% (P < 0.001) and 6.9% (P = 0.003), respectively, without affecting climbing speed. Despite lack of individual optimization, assistive joint torque applied to the hip and knee joints reduced metabolic cost and cardiovascular burden of stair climbing in healthy young males. These results may be used to improve methods for stair ascent assistance.ope

    Design and Control of a Knee Exoskeleton for Assistance and Power Augmentation

    Get PDF
    Thanks to the technological advancements, assistive lower limb exoskeletons are moving from laboratory settings to daily life scenarios. This dissertation makes a contribution toward the development of assistive/power augmentation knee exoskeletons with an improved wearability, ergonomics and intuitive use. In particular, the design and the control of a novel knee exoskeleton system, the iT-Knee Bipedal System, is presented. It is composed by: a novel mechanism to transmit the assistance generated by the exoskeleton to the knee joint in a more ergonomic manner; a novel method that requires limited information to estimate online the torques experienced by the ankles, knees and hips of a person wearing the exoskeleton; a novel sensor system for shoes able to track the feet orientation and monitor their full contact wrench with the ground. In particular, the iT-Knee exoskeleton, the main component of the aforementioned system, is introduced. It is a novel six degree of freedom knee exoskeleton module with under-actuated kinematics, able to assist the flexion/extension motion of the knee while all the other joint\u2019s movements are accommodated. Thanks to its mechanism, the system: solves the problem of the alignment between the joint of the user and the exoskeleton; it automatically adjusts to different users\u2019 size; reduces the undesired forces and torques exchanged between the attachment points of its structure and the user\u2019s skin. From a control point of view, a novel approach to address difficulties arising in real life scenarios (i.e. noncyclic locomotion activity, unexpected terrain or unpredicted interactions with the surroundings) is presented. It is based on a method that estimates online the torques experienced by a person at his ankles, knees and hips with the major advantage that does not rely on any information of the user\u2019s upper body (i.e. pose, weight and center of mass location) or on any interaction of the user\u2019s upper body with the environment (i.e. payload handling or pushing and pulling task). This is achieved v by monitoring the full contact wrench of the subject with the ground and applying an inverse dynamic approach to the lower body segments. To track the full contact wrench between the subject\u2019s feet and the ground, a novel add on system for shoes has been developed. The iT-Shoe is adjustable to different user\u2019s size and accommodates the plantar flexion of the foot. It tracks the interactions and the orientation of the foot thanks to two 6axis Force/Torque sensors, developed in-house, with dedicated embedded MEMS IMUs placed at the toe and heel area. Different tasks and ground conditions were tested to validate and highlight the potentiality of the proposed knee exoskeleton system. The experimental results obtained and the feedback collected confirm the validity of the research conducted toward the design of more ergonomic and intuitive to use exoskeletons

    A Review of Lower Limb Exoskeletons

    Get PDF
    In general, exoskeletons are defined as wearable robotic mechanisms for providing mobility. In the last six decades, many research work have been achieved to enhance the performance of exoskeletons thus developing them to nearly commercialized products. In this paper, a review is made for the lower limb exoskeleton concerning history, classification, selection and development, also a discussion for the most important aspects of comparison between different designs is presented. Further, some concluding remarks are withdrawn which could be useful for future work. Keywords: Exoskeletons, Lower extremity exoskeleton, Wearable robot

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AωA \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AωA \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AωAOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AωA \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AωAOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201

    Design, control, and pilot study of a lightweight and modular robotic exoskeleton for walking assistance after spinal cord injury

    Get PDF
    Walking rehabilitation using exoskeletons is of high importance to maximize independence and improve the general well-being of spinal cord injured subjects. We present the design and control of a lightweight and modular robotic exoskeleton to assist walking in spinal cord injured subjects who can control hip flexion, but lack control of knee and ankle muscles. The developed prototype consists of two robotic orthoses, which are powered by a motor-harmonic drive actuation system that controls knee flexion–extension. This actuation module is assembled on standard passive orthoses. Regarding the control, the stance-to-swing transition is detected using two inertial measurement units mounted on the tibial supports, and then the corresponding motor performs a predefined flexion–extension cycle that is personalized to the specific patient’s motor function. The system is portable by means of a backpack that contains an embedded computer board, the motor drivers, and the battery. A preliminary biomechanical evaluation of the gait-assistive device used by a female patient with incomplete spinal cord injury at T11 is presented. Results show an increase of gait speed (+24.11%), stride length (+7.41%), and cadence (+15.56%) when wearing the robotic orthoses compared with the case with passive orthoses. Conversely, a decrease of lateral displacement of the center of mass (-19.31%) and step width (-13.37% right step, -8.81% left step) are also observed, indicating gain of balance. The biomechanical assessment also reports an overall increase of gait symmetry when wearing the developed assistive device.Peer ReviewedPostprint (published version

    Wearable exoskeletons to support ambulation in people with neuromuscular diseases, design rules and control

    Get PDF
    Neuromuscular diseases are degenerative and, thus far, incurable disorders that lead to large muscle wasting. They result in constant deterioration of activities of daily living and in particular of ambulation. Some common types include Duchenne muscular dystrophy, Charcot-Marie-Tooth disease, polymyositis and amyotrophic lateral sclerosis. While these diseases individually have a low rate of occurrence and are mostly unknown to most people, collectively they affect a significant part of the population. About 1 person in 2000 suffer from neuromuscular diseases, which means an approximate total of 370Ăą000 people over the European continent. Recent technology breakthroughs have made possible the realization of advanced powered orthotics, which are commonly called exoskeletons. The most advanced devices have successfully been able to support patients in walking despite a debilitating condition such as complete spinal cord injury. Such technology could be ideal for people with mid-stage neuromuscular diseases as it provides more mobility and independence. This work investigates the definitions and requirements that would need to be fulfilled for any proposed orthotic device to assist people living with neuromuscular diseases. To define the needs of patients with neuromuscular disease, a large literature review is conducted on gait compensation patterns. The research also includes the data collection of experimental gait measurements from fourteen people with heterogeneous neuromuscular diseases. Conclusions show that orthotics for people with neuromuscular diseases require tunable assistance at each joint and a collaborative control strategy in order to let the user control motion. Eventually, most people may not be able to use crutches. A full lower limb exoskeleton, AUTONOMYO, is designed, realized and evaluated. A particular attention is put on the optimization of the actuator and transmission units. In order to reduce the effects of inertia and weight of those units, a design is explored with actuation remotely located from the joints. The transmission is realized by custom cable wire and pulley systems, combined with standard planetary gears. The dynamics of different coupling between the hip and the knee flexion/extension joints are explored, and their benefits and tradeoffs analyzed. A novel control strategy based on a finite-state active impedance model is designed and implemented on the AUTONOMYO device. The controller consists of three states of different active impedances mimicking a visco-elastic behavior. The switching condition between states is uniquely based on the hip flexion velocity to detect the user intent. The performance of the strategy regarding the detection of intention and the modulation of the assistance is evaluated on a test bench and in real conditions with healthy pilots and with a person with limb girdle muscular dystrophy. The preliminary results are promising since all pilots (including the one with muscular dystrophy) are able to initiate and terminate assisted walking on demand. They are all able both to walk with a good stride rate and to reach moderate velocities. Healthy pilots are able to ambulate alone with the exoskeleton, while the pilot with muscular dystrophy requires human assistance for the management of balance

    Mobility related physical and functional losses due to aging and disease - a motivation for lower limb exoskeletons

    Get PDF
    Background: Physical and functional losses due to aging and diseases decrease human mobility, independence, and quality of life. This study is aimed at summarizing and quantifying these losses in order to motivate solutions to overcome them with a special focus on the possibilities by using lower limb exoskeletons. Methods: A narrative literature review was performed to determine a broad range of mobility-related physical and functional measures that are affected by aging and selected cardiovascular, respiratory, musculoskeletal, and neurological diseases. Results: The study identified that decreases in limb maximum muscle force and power (33% and 49%, respectively, 25–75 yrs) and in maximum oxygen consumption (40%, 20–80 yrs) occur for older adults compared to young adults. Reaction times more than double (18–90 yrs) and losses in the visual, vestibular, and somatosensory systems were reported. Additionally, we found decreases in steps per day (75%, 60–85 yrs), maximum walking speed (24% 25–75 yrs), and maximum six-minute and self-selected walking speed (38% and 21%, respectively, 20–85 yrs), while we found increases in the number of falls relative to the number of steps per day (800%), injuries due to falls (472%, 30–90 yrs) and deaths caused by fall (4000%, 65–90 yrs). Measures were identified to be worse for individuals with impaired mobility. Additional detrimental effects identified for them were the loss of upright standing and locomotion, freezing in movement, joint stress, pain, and changes in gait patterns. Discussion: This review shows that aging and chronic conditions result in wide-ranging losses in physical and sensory capabilities. While the impact of these losses are relatively modest for level walking, they become limiting during more demanding tasks such as walking on inclined ground, climbing stairs, or walking over longer periods, and especially when coupled with a debilitating disease. As the physical and functional parameters are closely related, we believe that lost functional capabilities can be indirectly improved by training of the physical capabilities. However, assistive devices can supplement the lost functional capabilities directly by compensating for losses with propulsion, weight support, and balance support. Conclusions: Exoskeletons are a new generation of assistive devices that have the potential to provide both, training capabilities and functional compensation, to enhance human mobility

    The design, validation, and performance evaluation of an untethered ankle exoskeleton

    Get PDF
    Individuals with neuromuscular impairment from conditions like cerebral palsy face reduced quality of life due to diminishing mobility and independence. Lower-limb exoskeletons, particularly ankle exoskeletons, have potential to aid mobility in impaired populations and augment performance in unimpaired populations and have been extensively researched for the past decade. Few untethered ankle exoskeletons exist due to the difficulty of providing enough mechanical power to offset the weight of the exoskeleton on top of improving human biomechanics and metabolic efficiency. Short battery life is also an obstacle to widespread adoption of untethered ankle exoskeletons in the clinic and at home. In this work, we assess the efficacy of our prototype devices during over-ground walking, design new exoskeleton controllers, develop a new ankle exoskeleton device from the ground up, and evaluate the potential for parallel elasticity to improve the performance of our refined exoskeleton platform. In the first study, we observed that our ankle exoskeleton prototype improved metabolic economy, increased walking speed, and lowered plantarflexor muscle activity in a small cohort of individuals with cerebral palsy during over-ground walking – a significant obstacle to the adoption of exoskeletons in free-living settings. In the second study, we presented a framework for developing adaptive, torque sensor-less open-loop controllers that were competitive with our standard closed-loop controllers in mechanical terms while reducing motor energy consumption and noise. The shortcomings of our prototypes in the first and second chapters inspired a third study to develop new lightweight and modular ankle exoskeleton design with a significantly higher torque and power output and joint-level sensing that improved metabolic economy in both unimpaired and impaired cohorts – our device is the second ever to improve metabolic economy in unimpaired adults. We also presented the first-ever lower-limb exoskeleton usability study. In the final study, we use our new hardware platform to design, validate, and demonstrate that a simple parallel elastic element can significantly improve the performance and battery life of our device. Together, these studies establish our untethered ankle exoskeletons as effective and versatile tools for rehabilitation and human augmentation and support the continued research of exoskeletons in clinical and at-home settings
    • 

    corecore