25,067 research outputs found

    Limitations of Algebraic Approaches to Graph Isomorphism Testing

    Full text link
    We investigate the power of graph isomorphism algorithms based on algebraic reasoning techniques like Gr\"obner basis computation. The idea of these algorithms is to encode two graphs into a system of equations that are satisfiable if and only if if the graphs are isomorphic, and then to (try to) decide satisfiability of the system using, for example, the Gr\"obner basis algorithm. In some cases this can be done in polynomial time, in particular, if the equations admit a bounded degree refutation in an algebraic proof systems such as Nullstellensatz or polynomial calculus. We prove linear lower bounds on the polynomial calculus degree over all fields of characteristic different from 2 and also linear lower bounds for the degree of Positivstellensatz calculus derivations. We compare this approach to recently studied linear and semidefinite programming approaches to isomorphism testing, which are known to be related to the combinatorial Weisfeiler-Lehman algorithm. We exactly characterise the power of the Weisfeiler-Lehman algorithm in terms of an algebraic proof system that lies between degree-k Nullstellensatz and degree-k polynomial calculus

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Polynomial calculus space and resolution width

    Get PDF
    We show that if a k-CNF requires width w to refute in resolution, then it requires space square root of √ω to refute in polynomial calculus, where the space of a polynomial calculus refutation is the number of monomials that must be kept in memory when working through the proof. This is the first analogue, in polynomial calculus, of Atserias and Dalmau's result lower-bounding clause space in resolution by resolution width. As a by-product of our new approach to space lower bounds we give a simple proof of Bonacina's recent result that total space in resolution (the total number of variable occurrences that must be kept in memory) is lower-bounded by the width squared. As corollaries of the main result we obtain some new lower bounds on the PCR space needed to refute specific formulas, as well as partial answers to some open problems about relations between space, size, and degree for polynomial calculus

    Lower Bounds for Real Solutions to Sparse Polynomial Systems

    Get PDF
    We show how to construct sparse polynomial systems that have non-trivial lower bounds on their numbers of real solutions. These are unmixed systems associated to certain polytopes. For the order polytope of a poset P this lower bound is the sign-imbalance of P and it holds if all maximal chains of P have length of the same parity. This theory also gives lower bounds in the real Schubert calculus through sagbi degeneration of the Grassmannian to a toric variety, and thus recovers a result of Eremenko and Gabrielov.Comment: 31 pages. Minor revision

    Space complexity in polynomial calculus

    Get PDF
    During the last decade, an active line of research in proof complexity has been to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused on weak systems that are used by SAT solvers. There has been a relatively long sequence of papers on space in resolution, which is now reasonably well understood from this point of view. For other natural candidates to study, however, such as polynomial calculus or cutting planes, very little has been known. We are not aware of any nontrivial space lower bounds for cutting planes, and for polynomial calculus the only lower bound has been for CNF formulas of unbounded width in [Alekhnovich et al. ’02], where the space lower bound is smaller than the initial width of the clauses in the formulas. Thus, in particular, it has been consistent with current knowledge that polynomial calculus could be able to refute any k-CNF formula in constant space. In this paper, we prove several new results on space in polynomial calculus (PC), and in the extended proof system polynomial calculus resolution (PCR) studied in [Alekhnovich et al. ’02]: 1. We prove an Ω(n) space lower bound in PC for the canonical 3-CNF version of the pigeonhole principle formulas PHPm n with m pigeons and n holes, and show that this is tight. 2. For PCR, we prove an Ω(n) space lower bound for a bitwise encoding of the functional pigeonhole principle. These formulas have width O(log n), and hence this is an exponential improvement over [Alekhnovich et al. ’02] measured in the width of the formulas. 3. We then present another encoding of the pigeonhole principle that has constant width, and prove an Ω(n) space lower bound in PCR for these formulas as well. 4. Finally, we prove that any k-CNF formula can be refuted in PC in simultaneous exponential size and linear space (which holds for resolution and thus for PCR, but was not obviously the case for PC). We also characterize a natural class of CNF formulas for which the space complexity in resolution and PCR does not change when the formula is transformed into 3-CNF in the canonical way, something that we believe can be useful when proving PCR space lower bounds for other well-studied formula families in proof complexity

    Algebraic Proofs over Noncommutative Formulas

    Get PDF
    AbstractWe study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege, yielding a semantic way to define a Cook–Reckhow (i.e., polynomially verifiable) algebraic analog of Frege proofs, different from that given in Buss et al. (1997) and Grigoriev and Hirsch (2003). We then turn to an apparently weaker system, namely, polynomial calculus (PC) where polynomials are written as ordered formulas (PC over ordered formulas, for short). Given some fixed linear order on variables, an arithmetic formula is ordered if for each of its product gates the left subformula contains only variables that are less-than or equal, according to the linear order, than the variables in the right subformula of the gate. We show that PC over ordered formulas (when the base field is of zero characteristic) is strictly stronger than resolution, polynomial calculus and polynomial calculus with resolution (PCR), and admits polynomial-size refutations for the pigeonhole principle and Tseitinʼs formulas. We conclude by proposing an approach for establishing lower bounds on PC over ordered formulas proofs, and related systems, based on properties of lower bounds on noncommutative formulas (Nisan, 1991).The motivation behind this work is developing techniques incorporating rank arguments (similar to those used in arithmetic circuit complexity) for establishing lower bounds on propositional proofs

    A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

    Full text link
    We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. '99] also on proof size. [Alekhnovich and Razborov '03] established that if the clause-variable incidence graph of a CNF formula F is a good enough expander, then proving that F is unsatisfiable requires high PC/PCR degree. We further develop the techniques in [AR03] to show that if one can "cluster" clauses and variables in a way that "respects the structure" of the formula in a certain sense, then it is sufficient that the incidence graph of this clustered version is an expander. As a corollary of this, we prove that the functional pigeonhole principle (FPHP) formulas require high PC/PCR degree when restricted to constant-degree expander graphs. This answers an open question in [Razborov '02], and also implies that the standard CNF encoding of the FPHP formulas require exponential proof size in polynomial calculus resolution. Thus, while Onto-FPHP formulas are easy for polynomial calculus, as shown in [Riis '93], both FPHP and Onto-PHP formulas are hard even when restricted to bounded-degree expanders.Comment: Full-length version of paper to appear in Proceedings of the 30th Annual Computational Complexity Conference (CCC '15), June 201

    Finite Model Theory and Proof Complexity Revisited: Distinguishing Graphs in Choiceless Polynomial Time and the Extended Polynomial Calculus

    Get PDF
    This paper extends prior work on the connections between logics from finite model theory and propositional/algebraic proof systems. We show that if all non-isomorphic graphs in a given graph class can be distinguished in the logic Choiceless Polynomial Time with counting (CPT), then they can also be distinguished in the bounded-degree extended polynomial calculus (EPC), and the refutations have roughly the same size as the resource consumption of the CPT-sentence. This allows to transfer lower bounds for EPC to CPT and thus constitutes a new potential approach towards better understanding the limits of CPT. A super-polynomial EPC lower bound for a Ptime-instance of the graph isomorphism problem would separate CPT from Ptime and thus solve a major open question in finite model theory. Further, using our result, we provide a model theoretic proof for the separation of bounded-degree polynomial calculus and bounded-degree extended polynomial calculus

    Tight Size-Degree Bounds for Sums-of-Squares Proofs

    Full text link
    We exhibit families of 44-CNF formulas over nn variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) dd but require SOS proofs of size nΩ(d)n^{\Omega(d)} for values of d=d(n)d = d(n) from constant all the way up to nδn^{\delta} for some universal constantδ\delta. This shows that the nO(d)n^{O(d)} running time obtained by using the Lasserre semidefinite programming relaxations to find degree-dd SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP\mathsf{NP}-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in [Kraj\'i\v{c}ek '04] and [Dantchev and Riis'03], and then applying a restriction argument as in [Atserias, M\"uller, and Oliva '13] and [Atserias, Lauria, and Nordstr\"om '14]. This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and rank, respectively
    • …
    corecore