Finite Model Theory and Proof Complexity Revisited: Distinguishing Graphs in Choiceless Polynomial Time and the Extended Polynomial Calculus

Abstract

This paper extends prior work on the connections between logics from finite model theory and propositional/algebraic proof systems. We show that if all non-isomorphic graphs in a given graph class can be distinguished in the logic Choiceless Polynomial Time with counting (CPT), then they can also be distinguished in the bounded-degree extended polynomial calculus (EPC), and the refutations have roughly the same size as the resource consumption of the CPT-sentence. This allows to transfer lower bounds for EPC to CPT and thus constitutes a new potential approach towards better understanding the limits of CPT. A super-polynomial EPC lower bound for a Ptime-instance of the graph isomorphism problem would separate CPT from Ptime and thus solve a major open question in finite model theory. Further, using our result, we provide a model theoretic proof for the separation of bounded-degree polynomial calculus and bounded-degree extended polynomial calculus

    Similar works