
Algebraic Proofs over Noncommutative Formulas

Iddo Tzameret1

Institute for Theoretical Computer Science
The Institute for Interdisciplinary Information Science (IIIS), FIT building, Tsinghua University,

Beijing, 100084, China.

Abstract

We study possible formulations of algebraic propositional proof systems operating with
noncommutative formulas. We observe that a simple formulation gives rise to systems at
least as strong as Frege, yielding a semantic way to define a Cook-Reckhow (i.e., polyno-
mially verifiable) algebraic analog of Frege proofs, different from that given in Buss et al.
(1997) and Grigoriev & Hirsch (2003). We then turn to an apparently weaker system,
namely, polynomial calculus (PC) where polynomials are written as ordered formulas
(PC over ordered formulas, for short). Given some fixed linear order on variables, an
arithmetic formula is ordered if for each of its product gates the left subformula contains
only variables that are less-than or equal, according to the linear order, than the variables
in the right subformula of the gate. We show that PC over ordered formulas (when the
base field is of zero characteristic) is strictly stronger than resolution, polynomial calculus
and polynomial calculus with resolution (PCR), and admits polynomial-size refutations
for the pigeonhole principle and the Tseitin’s formulas. We conclude by proposing an
approach for establishing lower bounds on PC over ordered formulas proofs, and re-
lated systems, based on properties of lower bounds on noncommutative formulas (Nisan
(1991)).

The motivation behind this work is developing techniques incorporating rank ar-
guments (similar to those used in arithmetic circuit complexity) for establishing lower
bounds on propositional proofs.

Key words: Proof complexity, algebraic proof systems, Frege proofs, lower bounds,
noncommutative formulas, polynomial calculus

1. Introduction

This work investigates algebraic proof systems establishing propositional tautologies,
in which proof lines are written as noncommutative arithmetic formulas (noncommutative

1This work was supported in part by the National Basic Research Program of China Grant
2007CB807900, 2007CB807901, the National Natural Science Foundation of China Grant 61033001,
61061130540, 61073174. Part of this research was done while the author was a part of the Mathemati-
cal Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Prague 1, Czech Republic;
Supported by The Eduard Čech Center for Algebra and Geometry and The John Templeton Foundation.

Preprint submitted to Elsevier August 4, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28906951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

formulas, for short). Research into the complexity of algebraic propositional proofs is
a central line in proof complexity (cf. [Pit97, Tza08] for general expositions). Another
prominent line of research is that dedicated to connections between circuit classes and
the propositional proofs based on these classes. In particular, considerable efforts were
made to borrow techniques used for lower bounding certain circuit classes, and utilize
them to show lower bounds on proofs operating with circuits from the given classes. For
example, bounded depth Frege proofs can be viewed as propositional logic operating
with AC0 circuits, and lower bounds on bounded depth Frege proofs use techniques
borrowed from AC0 circuits lower bounds (cf. [Ajt88, KPW95, PBI93]). Pudlák [Pud99]
and Atserias et al. [AGP02] studied proofs based on monotone circuits, motivated by
known exponential lower bounds on monotone circuits. Raz and the author [RT08b,
RT08a, Tza08] investigated algebraic proof systems operating with multilinear formulas,
motivated by lower bounds on multilinear formulas for the determinant, permanent and
other explicit polynomials [Raz09, Raz06]. Atserias et al. [AKV04], Kraj́ıček [Kra08] and
Segerlind [Seg07] have considered proofs operating with ordered binary decision diagrams
(OBDDs).

The current work is a contribution to this line of research, where the circuit class is
noncommutative formulas. The motivation behind this work is the hope that certain rank
arguments, found successful in lower bounding the size of certain types of arithmetic cir-
cuits, might also help in establishing lower bounds for the corresponding algebraic proofs.
For this purpose, the choice of noncommutative formulas is natural, since such formulas
constitute a fairly weak circuit class, and the proof of exponential-size lower bounds on
noncommutative formulas, given by Nisan [Nis91], uses a considerably transparent rank
argument.

We will show that for certain formulations of propositional proof systems over non-
commutative formulas demonstrating lower bounds is likely to be hard, as the systems
we get are quite strong, and specifically, at least as strong as Frege proofs. On the other
hand, by formulating a proof system operating with fairly restricted formulas that com-
pute a certain type of noncommutative polynomials, we obtain a system that we show is
strictly stronger than known algebraic proof systems (like the polynomial calculus). For
this apparently weaker system, demonstrating lower bounds seems not to be outside the
reach of current techniques. In particular, we propose to study the complexity of these
proofs by measuring the maximal rank of a polynomial appearing in a proof, instead
of the maximal degree (the latter is done in the polynomial calculus). It is known that
the rank of a noncommutative polynomial (as defined for instance by Nisan [Nis91]) is
proportional to the minimal size of a noncommutative formula computing the polyno-
mial. We argue for the usefulness of measuring the maximal rank of a polynomial in
algebraic proofs, by demonstrating a certain property of ranks of “ordered polynomials”
(as defined formally), and relating it to proof complexity lower bounds (via an example
of a conditional lower bound).

1.1. Results and related work
We concentrate on algebraic proofs establishing propositional contradictions where

polynomials are written as noncommutative formulas. We deal with two kinds of proof
systems—both are variants (and extensions) of the polynomial calculus (PC) introduced
in [CEI96]. In PC we start from a set of initial polynomials from F[x1, . . . , xn], the ring

2

of polynomials with coefficients from F (the intended semantics of a proof-line p is the
equation p = 0 over F). We derive new proof-lines by using two basic algebraic inference
rules: from two polynomials p and q, we can deduce α · p+ β · q, where α, β are elements
of F; and from p we can deduce xi · p, for a variable xi (i = 1, . . . , n). We also have
Boolean axioms x2

i − xi = 0, for all i = 1, . . . , n, expressing that the variables range over
{0, 1} values. Our two proof systems extend PC as follows:

NFPC PC over noncommutative formulas. This proof system operates with noncommu-
tative polynomials over a field, written as noncommutative formulas, where every
proof-line consists of a polynomial p and can be written as any formula F that
computes p (these kind of algebraic proof systems are sometimes called semantic
proof systems). The rules of addition and multiplication are similar to PC, except
that multiplication is done either from left or from right. We also add a “Boolean”
axiom xixj − xjxi, for any pair of variables, that expresses the fact that for 0, 1
values to the variables, multiplication is in fact commutative (indeed, note that in
any noncommutative F-algebra this axiom must be true when the variables xi, xj

range over {0, 1} values; see Section 3.1).

OFPC PC over ordered formulas. This proof system is PC operating with ordered
polynomials written as ordered formulas, in which, as before, every ordered poly-
nomial p inside the proof can be written as any ordered formula F that computes
p. An ordered polynomial is a noncommutative polynomial such that the order of
products in all monomials respects a fixed linear order on the variables, and an
ordered formula is a noncommutative formula in which every subformula computes
an ordered polynomial (see Definition 4.1). The rules of OFPC are similar to PC,
namely, addition of two previously derived ordered polynomials and the product of
a previously derived ordered polynomial p with a variable xi (where now, the result
of multiplying p by xi is the corresponding ordered polynomial; e.g., multiplying
the ordered polynomial x1 · x4 + x3 by x2 results in x1 · x2 · x4 + x2 · x3, assuming
the order on variables is defined via the increasing order on their indices).

Both proof systems are shown to be Cook-Reckhow systems (that is, polynomial
verifiable, sound and complete proof systems for propositional tautologies).

(1) The first proof system NFPC is shown to polynomially simulate Frege (this is
partly because of the choice of Boolean axioms). This gives a semantic definition of a
Cook-Reckhow proof system operating with arithmetic formulas, simpler in some way
from that proposed by Buss et al. [BIK+97] and Grigoriev and Hirsch [GH03]: the pa-
per of Buss et al. discusses systems of equational logic based on axioms of commutative
rings with identity (Section 2.2 in [BIK+97]), and points out that when considered over
a finite field (or augmented with the Boolean axioms x2

i − xi over any field) these sys-
tems polynomially simulate Frege. Similarly, Grigoriev and Hirsch aim at formulating
a formal propositional proof system for establishing propositional tautologies (that is, a
Cook-Reckhow proof system), which is an algebraic analog of the Frege proof system. In
order to make their system polynomially-verifiable, the authors augment it with a set of
auxiliary rewriting rules, intended to derive arithmetic formulas from previous arithmetic
formulas via the polynomial-ring axioms (that is, associativity, commutativity, distribu-
tivity and the zero and unit elements rules). In this framework arithmetic formulas are
treated as syntactic terms, and one must explicitly apply the polynomial-ring rewrite

3

rules to derive a formula from previous ones. Our proof system NFPC is simpler in the
sense that we get a similar proof system to that in [GH03], while adding no rewriting
rules: both proof systems can simulate Frege and both are polynomially verifiable and
operate with arithmetic formulas, or in our case with noncommutative formulas. The
idea is that because we use noncommutative formulas as proof-lines, to verify that a line
was derived correctly from previous lines we can use the deterministic polynomial iden-
tity testing algorithm for noncommutative formulas devised by Raz and Shpilka [RS05]
(and so we do not need any rewriting rules).

(2) For the second proof system OFPC we show that, despite its apparent weakness, it
is stronger than Polynomial Calculus with Resolution (PCR; and hence it is also stronger
than both PC and resolution), and also can polynomially simulate a proof system oper-
ating with restricted forms of disjunctions of linear equalities called R0(lin) (introduced
in [RT08a]). The latter implies polynomial-size refutations for the pigeonhole principle
and the Tseitin graph formulas, due to corresponding upper bounds demonstrated in
[RT08a].

We then propose a simple lower bound approach for OFPC, based on properties of
products of ordered formulas (these properties are proved in a similar manner to Nisan’s
size lower bounds on noncommutative formulas, that is, by lower bounding the rank of
certain matrices associated with noncommutative polynomials). We show that certain
conditions are sufficient to yield super-polynomial lower bounds on OFPC proofs.
Note: All the results in this paper hold when one considers algebraic branching pro-
grams (ABPs) (Definition 6.1) instead of noncommutative formulas, and ordered -ABPs
instead of ordered-formulas. An ordered -ABP is an ABP such that the order of variables
appearing on the edges of every path from source to sink on the ABP graph, respects a
fixed linear order on the variables (see [JQS10] for a close model called π-ordered ABP).

Related work. There is some resemblance between noncommutative formulas (and
in fact, algebraic branching programs) and ordered binary decision diagrams (OBDDs)
(e.g., close techniques were used to obtain polynomial identity testing algorithms for
noncommutative formulas [RS05] and for OBDDs [Waa97]). Thus, proofs operating with
noncommutative formulas are reminiscent to the OBDD-based proof systems introduced
and studied in [AKV04, Kra08, Seg07]. Nevertheless, one difference between OBDD-
based proofs and noncommutative formulas-based proofs is that the feasible monotone
interpolation lower bound technique is applicable in the case of OBDD-based systems,
while this technique does not known to lead to super-polynomial size lower bounds even
on PC proofs (and thus, also on OFPC proofs which are shown to polynomially simulate
PC proofs).

Another proof system, that is even closer to OFPC, is that operating with multi-
linear formulas introduced in [RT08b] (under the name fMC). The upper bounds on
OFPC proofs are similar to that shown for multilinear proofs in [RT08b]. Moreover, the
technique used by Raz to establish super-polynomial lower bounds on multilinear formu-
las in [Raz09] is close (though more involved and includes additional ingredients) to that
used by Nisan in the lower bound proof for noncommutative formulas [Nis91]. There-
fore, proving lower bounds on OFPC proofs might help in establishing lower bounds on
multilinear proofs.

4

2. Preliminaries

For a natural number we let [n] = {1, . . . , n}.

2.1. Noncommutative polynomials and formulas
Let F be a field. Denote by F[x1, . . . , xn] the ring of (commutative) polynomials with

coefficients from F and variables x1, . . . , xn. We denote by F〈x1, . . . , xn〉 the noncom-
mutative ring of polynomials with coefficients from F and variables x1, . . . , xn. In other
words, F〈x1, . . . , xn〉 is the ring of polynomials (where a polynomial is a formal sum of
products of variables and field elements) conforming to all the polynomial-ring axioms
excluding the commutativity of multiplication axiom. For instance, if xi, xj are two dif-
ferent variables, then xi · xj and xj · xi are two different polynomials in F〈x1, . . . , xn〉
(note that variables do commute with field elements).

We say that A is an algebra over F, or an F-algebra, if A is a vector space over
F together with a distributive multiplication operation; where multiplication in A is
associative (but it need not be commutative) and there exists a multiplicative unity in
A.

A noncommutative formula is just a (standard, commutative) arithmetic formula,
except that product gates compute product of polynomials in the noncommutative ring
F〈x1, . . . , xn〉 (and thus children of product gates are ordered):

Definition 2.1 (Noncommutative formula). Let F be a field and x1, x2, . . . be vari-
ables. A noncommutative arithmetic formula (or noncommutative formula for short) is
a labeled tree, with edges directed from the leaves to the root, and with fan-in at most two,
such that there is an order on the edges coming into a node (the first edge is called the left
edge and the second one the right edge). Every leaf of the tree (namely, a node of fan-in
zero) is labeled either with an input variable xi or a field F element. Every other node of
the tree is labeled either with + or × (in the first case the node is a plus gate and in the
second case a product gate). We assume that there is only one node of out-degree zero,
called the root. A noncommutative formula computes a noncommutative polynomial in
F〈x1, . . . , xn〉 in the following way. A leaf computes the input variable or field element
that labels it. A plus gate computes the sum of polynomials computed by its incoming
nodes. A product gate computes the noncommutative product of the polynomials com-
puted by its incoming nodes according to the order of the edges. (Subtraction is obtained
using the constant −1.) The output of the formula is the polynomial computed by the
root. The depth of a formula is the maximal length of a path from the root to the leaf.
The size of a noncommutative formula f is the total number of nodes in its underlying
tree, and is denoted |f |.

Definition 2.2 (Arithmetic formula). An arithmetic formula is defined in a similar
way to a noncommutative formula, except that we ignore the order of multiplication
(that is, a product node does not have order on its children and there is no order on
multiplication when defining the polynomial computed by a formula).

Given a pair of noncommutative formulas F and G and a variable xi, we denote by
F [G/xi] the formula F in which every occurrence of xi is substituted by the formula G.

5

Raz and Shpilka [RS05] showed that there is a deterministic polynomial identity
testing (PIT) algorithm that decides whether two noncommutative formulas compute
the same noncommutative polynomial:

Theorem 2.3 (PIT for noncommutative formulas [RS05]). There is a determin-
istic polynomial-time algorithm that decides whether a given noncommutative formula
over a field F computes the zero polynomial 0.2

Let p ∈ F[x1, . . . , xn] be a polynomial. Then, p is said to be multilinear if the power
of every variable in all its monomials is at most one. Also, p is said to be homogenous
if the total degree of each of its monomials is the same. If p is a polynomial of (total)
degree d, then p =

∑d
i=0 p

(i), where p(i) is the ith homogenous component of p, that is,
the sum of all monomials of total degree i in p.

2.2. Proof systems and simulations
Let L ⊆ Σ∗ be a language over some alphabet Σ. A proof system for a language L is a

polynomial-time algorithm A that receives x ∈ Σ∗ and a string π over a binary alphabet
(“the [proposed] proof” of x), such that there exists a π with A(x, π) = true if and only
if x ∈ L. Following [CR79], a Cook-Reckhow proof system (or simply a propositional
proof system) is a proof system for the language of propositional tautologies in the de
Morgan basis {true, false,∨,∧,¬} (coded in some efficient [polynomial-time] way, e.g., in
the binary {0, 1} alphabet).

Assume that P is a proof system for the language L, where L is not the set of
propositional tautologies in De Morgan’s basis. In this case we can still consider P as a
proof system for propositional tautologies by fixing a translation between L and the set of
propositional tautologies in De Morgan basis (such that x ∈ L iff the translation of x is a
propositional tautology [and such that the translation can be done in polynomial-time]).
If two proof systems P1 and P2 establish two different languages L1, L2, respectively, then
for the task of comparing their relative strength we fix a translation from one language
to the other.

In some cases, we shall confine ourselves to proofs establishing propositional tautolo-
gies or unsatisfiable CNF formulas.

A propositional proof system is said to be a propositional refutation system if it
establishes the language of unsatisfiable propositional formulas (this is clearly a propo-
sitional proof system by the definition above, since we can translate every unsatisfiable
propositional formula into its negation and obtain a tautology).

Definition 2.4. Let P1,P2 be two proof systems for the same language L (in case the
proof systems are for two different languages we fix a translation from one language to
the other, as described above). We say that P2 polynomially simulates P1 if given a P1

proof (or refutation) π of a F , then there exists a proof (respectively, refutation) of F in
P2 of size polynomial in the size of π. In case P2 polynomially simulates P1 while P1

does not polynomially simulates P2 we say that P2 is strictly stronger than P1.

2We assume here that the field F can be efficiently represented (e.g., the field of rationals).

6

2.3. Polynomial Calculus
Algebraic propositional proof systems are proof systems for finite collections of poly-

nomial equations having no 0, 1 solutions over some fixed field. (Formally, each different
field yields a different algebraic proof system.) Proof-lines in algebraic proofs (or refu-
tations) consist of polynomials p over the given fixed field. Each such proof-line is inter-
preted as the polynomial equation p = 0. To consider the size of algebraic refutations
we fix the way polynomials inside refutations are written.
Notation: An inference rule is written as A

B or A B
C , meaning that given the proof-line

A one can deduce the proof-line B, or given both the proof-lines A,B one can deduce
the proof-line C, respectively.

The Polynomial Calculus is a propositional algebraic proof system first considered in
[CEI96]:

Definition 2.5. (Polynomial Calculus (PC)). Let F be some fixed field and let Q =
{Q1, . . . , Qm} be a collection of multivariate polynomials from F[x1, . . . , xn]. Let the set
of axiom polynomials be:

Boolean axioms xi · (1− xi) , for all 1 ≤ i ≤ n .

A PC proof from Q of a polynomial g is a finite sequence π = (p1, ..., p`) of multivariate
polynomials from F[x1, . . . , xn], where p` = g and for every 1 ≤ i ≤ `, either pi = Qj for
some j ∈ [m], or pi is a Boolean axiom, or pi was deduced from pj , pk , for j, k < i, by
one of the following inference rules:

Product
p

xr · p
, for 1 ≤ r ≤ n .

Addition
p q

a · p+ b · q
, for a, b ∈ F .

A PC refutation of Q is a proof of 1 (which is interpreted as 1 = 0, that is the unsat-
isfiable equation standing for false) from Q. The degree of a PC-proof is the maximal
degree of a polynomial in the proof. The size of a PC proof π is the total number of
monomials (with nonzero coefficients) in all the proof-lines, denoted |π|.

Important note: The size of PC proofs can be defined as the total formula sizes of
all proof-lines, where polynomials are written as sums of monomials, or more formally,
as (unbounded fan-in depth-2 arithmetic) ΣΠ formulas.3 This complexity measure is
equivalent up to a factor of n to the standard complexity measure counting the total
number of monomials appearing in the proofs (Definition 2.5).

3A ΣΠ formula F is an arithmetic formula whose underlying tree is of depth 2 and has unbounded
fan-in, such that the root is labeled with a plus gate, the children of the root are labeled with product
gates and the leaves are labeled with either variables or field elements.

7

Definition 2.6. (Polynomial Calculus with Resolution (PCR)). The PCR proof
system is defined similarly to PC (Definition 2.5), except that for every variable xi a new
formal variable x̄i and a new axiom xi + x̄i− 1 are added to the system, and the Boolean
axioms of PCR are as follows:

Boolean axioms xi · x̄i .

The inference rules, and all other definitions are similar to that of PC. Specifically, the
size of a PCR proof is defined as the total number of monomials in all proof-lines (where
now we count monomials in the variables xi and x̄i).

3. Polynomial calculus over noncommutative formulas

In this section we propose a possible formulation of algebraic propositional proof
systems that operate with noncommutative polynomials. We observe that dealing with
propositional proofs—that is, proofs whose variables range over 0, 1 values—makes the
variables “semantically” commutative. Therefore, for the proof systems to be complete
(for unsatisfiable collections of noncommutative polynomials over 0, 1 values), one may
need to introduce rules or axioms expressing commutativity. We show that such a natu-
ral formulation of proofs operating with noncommutative formulas polynomially simulate
the entire Frege system. This justifies—if one is interested in concentrating on proposi-
tional proof systems weaker than Frege (and especially on lower bounds questions)—our
formulation in Section 4 of algebraic proofs operating with noncommutative arithmetic
formulas with a fixed product order (called ordered formulas). The latter system can be
viewed as operating with commutative polynomials over a field precisely like PC, while
the complexity of proofs is measured by the total size of ordered formulas needed to write
the polynomials in the proof. In other words, the role played by the noncommutativity in
this system is only in measuring the sizes of proofs: while in PC-proofs the size measure
is defined as the number of monomials appearing in the proofs—or equivalently, the total
size of formulas in proofs in which formulas are written as (depth-2) ΣΠ circuits—the
proof system developed in Section 4 is measured by the total ordered formula size.

3.1. The proof system NFPC
We now define a proof system operating with noncommutative polynomials written

as noncommutative arithmetic formulas.
In algebraic proof systems like the polynomial calculus we transform unsatisfiable

propositional formulas into a collection Q of polynomials having no solution over a field
F. In the noncommutative setting we translate unsatisfiable propositional formulas into
a collection Q of noncommutative polynomials from F〈x1, . . . , xn〉 that have no solu-
tion over any noncommutative F-algebra (e.g., the matrix algebra with entries from F).
Although our “Boolean” axioms will not force only 0, 1 solutions over noncommutative F-
algebras, they will be sufficient for our purpose: every unsatisfiable propositional formula
translates (via a standard polynomial translation) into a collection Q of noncommutative
polynomials from F〈x1, . . . , xn〉, for which Q and the Boolean axioms have no (common)
solution in any noncommutative F-algebra. Furthermore, the Boolean axioms will in fact
force commutativity of variables product—as required for variables that range over 0, 1

8

values (although, again, the Boolean axioms do not force only 0, 1 values when variables
range over noncommutative F-algebras). Let us elaborate further on this point:

We say that an (algebraic) proof system is implicationally complete whenever for any
collection of polynomials q1, . . . , qm, p over a field F, if every assignment that satisfies
q1 = 0, . . . , qm = 0 also satisfies p = 0, then there is a proof of p from the assumptions
q1, . . . , qm. In our case, since the variables x1, . . . , xn intend to range over 0, 1 values, we
have the Boolean axioms x2

i − xi, for any i ∈ [n]. But since over any noncommutative
F-algebra, any assignment that satisfies x2

1 − x1 = 0, . . . , x2
n − xn = 0 must satisfy also

xi · xj − xj · xi = 0 (for all i, j ∈ [n]), any implicationally complete propositional proof
system for noncommutative polynomials over a noncommutative F-algebra must be able
to derive (from only the Boolean axioms) the polynomials xi ·xj−xj ·xi, for all i, j ∈ [n].

Definition 3.1 (Polynomial calculus over noncommutative formulas: NFPC).
Fix a field F and let Q := {q1, . . . , qm} be a collection of noncommutative polynomials
from F〈x1, . . . , xn〉. Let the set of axiom polynomials be:

Boolean axioms

xi · (1− xi) , for all 1 ≤ i ≤ n .
xi · xj − xj · xi , for all 1 ≤ i 6= j ≤ n .

Let π = (p1, . . . , p`) be a sequence of noncommutative polynomials from F〈x1, . . . , xn〉,
such that for each i ∈ [`], either pi = qj for some j ∈ [m], or pi is a Boolean axiom, or
pi was deduced by one of the following inference rules using pj , pk , for j, k < i:

Left/right product

p

xr · p
p

p · xr
, for 1 ≤ r ≤ n .

Addition
p q

a · p+ b · q
, for a, b ∈ F .

We say that π is an NFPC proof of p` from Q if all proof-lines in π are written as
noncommutative formulas. (The semantics of an NFPC proof-line pi is the polynomial
equation pi = 0.) An NFPC refutation of Q is a proof of the polynomial 1 from Q. The
size of an NFPC proof π is defined as the total size of all the noncommutative formulas
in π and is denoted |π|.

Remark: (i) The Boolean axioms might have roots different from 0, 1 over noncommuta-
tive F-algebras. (ii) The Boolean axioms are true for 0, 1 assignments: xi ·xj−xi ·xj = 0
for all xi, xj ∈ {0, 1}.

We now show that NFPC is a sound and complete Cook-Reckhow proof system. First
note that we have defined NFPC with no rules expressing the polynomial-ring axioms
(the latter are sometimes added to algebraic proof systems operating with arithmetic for-
mulas for the purpose of verifying that every formula in the proof was derived correctly
[via the deduction rules of the system] from previous lines; see discussion in Section 1.1).

9

Nevertheless, due to the deterministic polynomial-time PIT procedure for noncommuta-
tive formulas (Theorem 2.3) the proof system defined will be a Cook-Reckhow system
(that is, verifiable in polynomial-time [whenever the base field and its operations can be
efficiently represented]).

Proposition 3.2. There is a deterministic polynomial-time algorithm that decides
whether a given string is an NFPC-proof (over efficiently represented fields).

Proof: We can assume that the proof also indicates from which previous lines a new
line was inferred via the NFPC inference rules. Then, by Proposition 2.3, there is a
polynomial-time algorithm that, e.g., given two noncommutative formulas F1, F2 such
that the proof indicates that F2 was inferred from F1 via the Left product rule, decides
whether the formula xi × F1 and F2 computes the same noncommutative polynomial.
And similarly for the other deduction rules of NFPC.

Proposition 3.3. The systems NFPC is sound and complete. Specifically, let Q be a
collection of noncommutative polynomials from F〈x1, . . . , xn〉. Assume that for every F-
algebra, there is no 0, 1 solution for Q (that is, an 0, 1 assignment to variables that gives
all polynomials in Q the value 0), then the contradiction 1 = 0 can be derived in NFPC
from Q.

Proof: Soundness holds because both rules of inference are sound over any F-algebra.
Completeness stems by the simulation of F-PC shown in Theorem 3.6 below (and the
fact that if no F-algebra has a solution then also there is no solution in F itself, which
implies, by completeness of F-PC, that there exists an F-PC refutation of Q).

For the next statements we use the algebraic propositional proof system F-PC intro-
duced by Grigoriev and Hirsch [GH03] as an algebraic analog of the Frege system. The
proof system F-PC is an algebraic propositional proof system operating with (general,
that is, commutative) arithmetic formulas over a field, and it includes auxiliary rewriting
rules allowing to develop equal polynomials syntactically via the polynomial-ring axioms.
The proof system F-PC has the Boolean axioms of PC, the rules of PC and in addition
the rewrite rules expressing the polynomial-ring axioms. Each line in F-PC is treated as
a term, that is, a formula, and so the rules are also syntactic: addition of terms via the
plus gate and product of a term by a variable from the left. We first need to define the
notion of a rewrite rule:

Definition 3.4 (Rewrite rule). A rewrite rule is a pair of formulas f, g denoted f →
g. Given a formula Φ, an application of a rewrite rule f → g to Φ is the result of
replacing at most one occurrence of f in Φ by g (that is, substituting a subformula f
inside Φ by the formula g). We write f ↔ g to denote the pair of rewriting rules f → g
and g → f .

Definition 3.5 (F-PC [GH03]). Fix a field F. Let F := {f1, . . . , fm} be a collection
of formulas4 computing polynomials from F[x1, . . . , xn]. Let the set of axioms be the
following formulas:

4Note here that we are talking about formulas (treated as syntactic terms), and not polynomials. Also
notice that all formulas in F-PC are (commutative) formulas computing (commutative) polynomials.

10

Boolean axioms xi · (1− xi) , for all 1 ≤ i ≤ n .

A sequence π = (Φ1, . . . ,Φ`) of formulas computing polynomials from F[x1, . . . , xn] is
said to be an F-PC proof of Φ` from F , if for every i ∈ [`] we have one of the following:

1. Φi = fj , for some j ∈ [m];

2. Φi is a Boolean axiom;

3. Φi was deduced by one of the following inference rules from previous proof-lines
Φj ,Φk , for j, k < i:

Product
Φ

xr · Φ
, for r ∈ [n] .

Addition
Φ Θ

a · Φ + b ·Θ
, for a, b ∈ F .

(Where Φ, xr ·Φ,Θ, a·Φ, b·Θ are formulas constructed as displayed; e.g., xr ·Φ is the
formula with product gate at the root having the formulas xr and Φ as children.)5

4. Φi was deduced from previous proof-line Φj, for j < i, by one of the following
rewriting rules expressing the polynomial-ring axioms (where f, g, h range over all
arithmetic formulas computing polynomials in F[x1, . . . , xn]):

Zero rule 0 · f ↔ 0

Unit rule 1 · f ↔ f

Scalar rule t ↔ α, where t is a formula containing no variables (only field F
elements) that computes the constant α ∈ F.

Commutativity rules f + g ↔ g + f , f · g ↔ g · f
Associativity rule f + (g + h)↔ (f + g) + h , f · (g · h)↔ (f · g) · h
Distributivity rule f · (g + h)↔ (f · g) + (f · h)

(The semantics of an F-PC proof-line pi is the polynomial equation pi = 0.) An F-PC
refutation of F is a proof of the formula 1 from F . The size of an F-PC proof π is
defined as the total size of all formulas in π and is denoted by |π|.

Theorem 3.6. NFPC (over any field) polynomially-simulates Frege. Specifically, NFPC
polynomially-simulates F-PC in the following sense: let f1, . . . , fm be a set of commu-
tative formulas computing (commutative) polynomials that have no common 0, 1 root,
and assume that there is a size s F-PC refutation of f1, . . . , fm. Then, there exists an
NFPC refutation of the same set of formulas f1, . . . , fm (but now viewed as computing
noncommutative polynomials) of size polynomial in s.

5In [GH03] the product rule of F-PC is defined so that one can derive Θ · Φ from Φ, where Θ is
any formula, and not just a variable. However, the definition of F-PC in [GH03] and our Definition 3.5
polynomially-simulate each other.

11

Proof: By [GH03] (see Theorem 3 there), F-PC polynomially simulates Frege. We
proceed by showing a simulation of F-PC by NFPC by induction on the number of steps
in an F-PC proof.

Base case: Axioms and initial formulas. All axioms of F-PC are also axioms in NFPC.
Also, if the F-PC refutation uses an initial formula fi, then we use the same formula in
NFPC.

Induction step:
Case 1: Addition rule. Assume we derive in F-PC the formula p + q. By induction
hypothesis we already have the two formulas p, q in NFPC. Thus, we can add them via
the addition rule.
Case 2: Product rule. Assume we derive the formula xi · p from the formula p in F-PC.
By induction hypothesis we already have the formula p in NFPC. Thus, we can derive
xi · p by the Left product rule.
Case 3: Rewriting rules. Assume we derived a formula f using one of the rewriting rules
of F-PC. The rewriting rules of associativity, distributivity, scalar rule, and unit and zero
rules of F-PC do not change the noncommutative polynomial computed by an arithmetic
formula. Therefore, we get them “for free” in NFPC, in the sense that we can choose to
write a noncommutative polynomial p in the proof as any noncommutative formula, as
long as the chosen formula computes the noncommutative polynomial p. Thus, we only
need to show how to simulate the commutativity rule, namely to show how to simulate
commuting a term inside a formula. The key lemma for this is the following:

Lemma 3.7. Let F be any field and let f, g be two noncommutative formulas computing
(non-constant) polynomials from F〈x1, . . . , xn〉. Then, there is an NFPC proof of size
polynomial in |f |+ |g| of the formula f · g − g · f .

Proof: First, we need to show that NFPC allows for substitution of identities inside
proof-lines. Let A, h be noncommutative formulas and assume that the variable z occurs
inside A only once. Then A[h/z] denotes the noncommutative formula obtained from A
by replacing the leaf labeled z by the formula h.

Claim 3.8. Let A be a noncommutative formula, and let z be a variable that occurs only
once inside A. Let h, h′ be two noncommutative formulas h, h′ of maximal size s. Then,
there is an NFPC proof of A[h/z]−A[h′/z] from h− h′ of size polynomial in |A|+ s.

Proof of claim: Straightforward induction on the size of A. Claim

We get back to the proof of Lemma 3.7: proceed by induction on |f |+ |g| ≥ 2.
Base case: |f | + |g| = 2. By assumption the polynomials computed by f, g are both
non-constant, and so f = xi and g = xj , for some i, j ∈ [n]. Therefore, we are done by
the Boolean axiom xixj − xjxi .

Induction step: Either |f | > 1 or |g| > 1. Assume without loss of generality that |f | > 1.
Following Claim 3.8, we shall use freely substitutions in formulas.
Case (i): f = f1 + f2. Start from

f · g − f · g = f · g − (f1 + f2) · g = f · g − f1 · g − f2 · g . (1)
12

By induction hypothesis we have a proof of f1 ·g−g ·f1 and of f2 ·g−g ·f2. Thus, we can
substitute these identities in (1), to get f ·g−g ·f1−g ·f2 = f ·g−g ·(f1 +f2) = f ·g−g ·f .
Case (ii): f = f1 · f2. Start from

f · g − f · g = f · g − (f1 · f2) · g = f · g − f1 · (f2 · g) . (2)

By induction hypothesis we have a proof of f2 · g − g · f2. Thus, we can substitute this
identity in (2), to get f ·g−f1 ·(g ·f2) = f ·g−(f1 ·g) ·f2. By induction hypothesis again,
we have f1 ·g−g ·f1. And similarly, we get by substitution f ·g− (g ·f1) ·f2 = f ·g−g ·f .

This concludes the proof of Lemma 3.7

To conclude the simulation of the commutativity rewrite rule of F-PC (which will
also conclude the proof of Theorem 3.6) we notice that, by Claim 3.8 and by Lemma 3.7,
for any noncommutative formula A, such that z is a variable that occurs only once inside
A, there is an NFPC proof of A[(f ·g)/z]−A[(g ·f)/z] of size polynomial in |A[(f · g)/z]|.

4. Polynomial calculus over ordered formulas

In this section we formulate an algebraic proof system OFPC that operates with
noncommutative polynomials in which every monomial is a product of variables in non-
decreasing order (from left to right; and according to some fixed linear order on the
variables), and where polynomials in proofs are written as ordered formulas, as defined
below.

Let X = {x1, . . . , xn} be a set of variables and let F be a field. Let � be a linear
order on the variables X, that is, a total, reflexive and antisymmetric order on X.
Let f =

∑
j∈J bjMj be a commutative polynomial in F[x1, . . . , xn], where the bj ’s are

coefficient from F and the Mj ’s are monomials in the X variables. We define JfK ∈
F〈x1, . . . , xn〉 to be the (unique) noncommutative polynomial

∑
j∈J bj · JMjK, where

JMjK is the (noncommutative) product of all the variables in Mj such that the order
of multiplications respects �. We denote the image of the map J·K : F[x1, . . . , xn] →
F〈x1, . . . , xn〉 by G. We say that a polynomial is an ordered polynomial if it is a polynomial
in G.

Definition 4.1 (Ordered formula). Assume we fix some linear order � on variables
x1, . . . , xn. A noncommutative formula (Definition 2.1) is said to be an ordered formula
if the noncommutative polynomial computed by each of its subformulas is ordered. We
say that an ordered formula F computes the commutative polynomial f ∈ F[x1, . . . , xn]
whenever F computes JfK.

When we speak about ordered formulas and ordered polynomials, we shall assume
we have some fixed linear order � on the variables in the background (and so ordered
formulas and ordered polynomials are always considered with respect to this ordering).

We characterize ordered formulas in a simple syntactic way, different from Definition
4.1, and then prove the equivalence of the two characterizations (Proposition 4.4):

13

Definition 4.2 (Syntactic ordered formula). An ordered formula is a syntactic or-
dered formula if for each of its product gates the left subformula contains only variables
that are less-than or equal, via �, than the variables in the right subformula of the gate.

Definition 4.3. We say that a variable xi occurs in the polynomial h (commutative or
noncommutative) if there is a monomial with a nonzero coefficient in h in which xi has
a positive power.

Note that a variable can appear (or “occur”) inside a formula while not occur in the
polynomial the formula computes.

Proposition 4.4. There is a polytime algorithm that receives a noncommutative formula
Φ and a linear order on its variables, and returns false if Φ is not an ordered formula
(with respect to the given linear order), and otherwise returns a syntactic ordered formula
of the same size as Φ that computes the same (ordered) polynomial.

Proof:
First note that for any noncommutative formula F , the formula F [0/xi] computes the

polynomial f�xi=0 (namely, the polynomial f in which xi is assigned 0) and so F [0/xi]
computes f iff xi does not occur in f .

The algorithm is as follows:

1. Search for a product node in F that has on its left subformula a variable that is
strictly greater (via the order �) from some variable in its right subformula. If
there is no such product node, then F itself is a syntactic ordered formula, and the
algorithm returns F .

2. Otherwise, let v be a product gate in F , with F1 and F2 its left and right subfor-
mulas, respectively. And suppose that F1 contains the variable xi and F2 contains
the variable xj , such that xi � xj (i.e., xi � xj and xi 6= xj). Let h1, h2 be the
polynomials computed by F1 and F2, respectively. Check whether xi occurs in h1.
To this end:

Check if the resulted formula F1[0/xi] computes the same noncommutative poly-
nomial as F1 computes (using the PIT algorithm for noncommutative formulas).

Case I If the answer is “yes”, then conclude that xi does not occur in the poly-
nomial h1, and run the algorithm with the input formula F in which F1 is
substituted by F1[0/xi].

Case II If the answer is “no”, we know that the variable xi does occur in the
polynomial h1. We check in a similar manner whether xj occurs in h2.

(a) If xj does not occur in h2 run the algorithm with the formula F in which
F2 is substituted by F2[0/xj].

(b) Otherwise, xj does occur in the polynomial h2. We already know that xi

occurs in h1, and so it must be that h1 ·h2 is not an ordered polynomial6,
and so the polynomial computed at v is not ordered and we return false.

14

Note that the algorithm described above returns either false (in case F is not an
ordered formula) or a new formula that computes the same noncommutative polynomial
as F and with the same size as F (because the only changes applied to the original
formula F is substitution of variables by the constant 0). The running time of the
algorithm is polynomial in the size of F .

We can now define OFPC in a convenient way, without referring to noncommutative
polynomials: the system OFPC is defined similarly to PC, except that the proof-lines
are written as ordered formulas.

Definition 4.5 (PC over ordered formulas: OFPC). Let π = (p1, . . . , pm) be a PC
proof of pm from some set of initial polynomials Q (that is, pi are commutative poly-
nomials from the ring of polynomials F[x1, . . . , xn]), and let � be some linear order on
the variables x1, . . . , xn. The sequence (f1, . . . , fm) in which fi is an ordered formula
computing pi (according to the order �), is called an OFPC proof of pm from Q. The
size of an OFPC proof is the total size of all the ordered formulas appearing in it.

Similar to the proof system NFPC we have defined OFPC with no rules expressing
the polynomial-ring axioms. Also, similar to NFPC, the system OFPC will constitute a
Cook-Reckhow proof system, that is, there is a deterministic polynomial-time algorithm
that decides whether a given string is an OFPC proof or not (whenever the base field
and its operations can be efficiently represented):

Proposition 4.6. For any linear order on the variables, OFPC is a sound, complete
and polynomially-verifiable refutation system for establishing that a collection of (com-
mutative) polynomial equations over a field does not have 0, 1 solutions. Specifically,
(considering the language of polynomial translations of Boolean contradictions) OFPC is
a Cook-Reckhow proof system.

Proof: The soundness and completeness of OFPC stem from the soundness and com-
pleteness of PC. The fact that OFPC is a Cook-Reckhow proof system is proved in
Proposition 4.8 below.

We first need the following lemma:

Lemma 4.7. For any linear order � on variables, there exists a polytime algorithm
that receives an ordered formula Φ computing JfK ∈ F〈x1, . . . , xn〉 (for some polynomial
f ∈ F[x1, . . . , xn]) and a variable xr, for some 1 ≤ r ≤ n, and outputs a new ordered
formula that computes Jxr · fK.

Proof: We can assume that Φ is a syntactic ordered formula, as otherwise we can
transform it into such a formula by the algorithm in Proposition 4.4. We show that there
is an algorithm A(Φ, xr) that outputs the desired formula by induction on the size of Φ.

Base case:

6Note that h1, h2 are polynomials (not formulas) and so if xi occurs in h1 and xj occurs in h2, it
must be that there is a monomial with a nonzero coefficient in h1 · h2 in which xi multiplies from left
xj .

15

1. A(c, xr) := c · xr, for c ∈ F.

2.

A(xi, xr) :=
{
xi · xr, if xi � xr;
xr · xi, otherwise.

Induction step:

1. A(Φ1 + Φ2, xr) := A(Φ1, xr) +A(Φ2, xr).

2.

A(Φ1 · Φ2, xr) :=
{
A(Φ1, xr) · Φ2, if xr is � from every variable in Φ2;
Φ1 ·A(Φ2, xr), otherwise.

Proposition 4.8. For any linear order � on variables, there exists a polytime algorithm
that given a sequence π of ordered formulas and another sequence (Q1, . . . , Qm, G) of
ordered formulas, outputs true iff π is an OFPC proof of the polynomial computed by G
from the polynomials computed by Q1, . . . , Qm.

Proof: We verify the following:

1. All formulas in π are ordered formulas (according to the fixed linear order). By
Proposition 4.4, this can be done in polynomial-time in the size of π.

2. The last formula in π computes the same polynomial as G (using the PIT algorithm
for noncommutative formulas).

3. For every proof-line f ∈ π, one of the following holds:

(i) The formula f computes an axiom. This can be verified by checking whether
f computes the same noncommutative polynomial as the formula x2

i − xi, for
some 1 ≤ i ≤ n, or whether f computes some polynomial computed by Qi,
for some 1 ≤ i ≤ m (by Theorem 2.3).

(ii) The formula f computes the same ordered polynomial as F1 + F2, for some
pair F1, F2 of ordered formulas in previous proof-lines (Theorem 2.3).

(iii) The formula f computes Jxi · hK, for some 1 ≤ i ≤ n, where h is a polynomial
computed by some previous proof-line. This can be checked as follows. Con-
sidering all possible pairs H and xi, for H being a proof-lines (preceding f in
π) and i = 1, . . . , n, run the algorithm in Lemma 4.7 where the inputs are H
and xi. We get a new ordered formula H ′, and we check if H ′ computes the
same noncommutative polynomial as f .

Note: Formally, for different n’s, every set of variables x1, . . . , xn may have linear orders
that are incompatible with each other. Nevertheless, in this paper, given a family Q of
collections of initial polynomials {Qn |n ∈ N} parameterized by n, and assuming that

16

Qn ⊆ F[x1, . . . , xn] for all n, we will consider only linear orders such that: for every
n > 1, the linear order on x1, . . . , xn is an extension of the linear order on x1, . . . , xn−1.
Equivalently, we can consider one fixed linear order on a countable set of variables X =
{x1, x2, . . .}.

5. Simulations, short proofs and separations for OFPC

In this section we are concerned with the relative strength of OFPC. Specifically,
we show that OFPC, when operating with polynomials over fields of characteristic 0,
is strictly stronger than the polynomial calculus, polynomial calculus with resolution
(PCR) and resolution (for a definition of resolution, see for example [ABSRW02]). For
this purpose, we show first that, for any linear order on the variables OFPC polynomially
simulates PCR. Since PCR polynomially simulates both PC and resolution, we get that
OFPC also polynomially simulates PC and resolution. Second, we show that OFPC
admits polynomial-size refutations of hard tautologies for PCR (that is, tautologies that
do not have polynomial-size PCR proofs). This is done by demonstrating that OFPC
over fields of characteristic 0 polynomially simulates the R0(lin) refutation system for the
language of CNF formulas. The system R0(lin) is an extension of resolution introduced
in [RT08a]. Since R0(lin) is provably stronger than PCR [RT08a], the result will follow.

5.1. OFPC polynomially simulates PCR
Let τ denote the linear transformation that maps the variables xi, for any i ∈ [n], to

(1− xi), and denote p�τ the polynomial p under the transformation τ .

Proposition 5.1. For any linear order on the variables, OFPC polynomially simu-
lates PCR (and PC and resolution). Specifically, if there is a size s PCR proof (with
the variables x1, . . . , xn, x̄1, . . . , x̄n) of p from the axioms pj1 , . . . , pjk

, then there is an
OFPC proof of p�τ from pj1�τ, . . . , pjk

�τ of size O(n · s).

Proof: Given some linear order on the variables, we assume that all ordered formulas
respect this linear order (and so we do not refer explicitly to this order).

Let π = (p1, . . . , pt) be a PCR proof of size s from the axioms pj1 , . . . , pjk
(that is,

pi’s are [commutative] polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n], for some field F, such
that the total number of monomials occurring in all proof-lines in π is s). We need to
show that there is an OFPC proof π′ of pi from the axioms, such that π′ has size O(n ·s).

Let Γ be the sequence obtained from π by replacing every product rule application
in π, deriving x̄i · p from p (for any i = 1, . . . , n), by the following proof sequence:

1. p

2. xi · p

3. (1− xi) · p

(the second polynomial is derived by the product rule from the first polynomial, and the
third polynomial is derived by the addition rule from the first and second polynomials).

17

Let Γ� τ be the sequence obtained from Γ by applying the substitution τ on every
proof-line in Γ. We claim that Γ� τ is a PC proof of pt� τ from the initial polynomials
pj1 � τ, . . . , pjk

� τ : first, note that all product rule applications using x̄i variables were
eliminated in Γ � τ , and thus all product rule applications in Γ � τ are legitimate PC
product rule applications. Second, note that for any pair of polynomials g, h we have
g�τ + h�τ = (g+ h)�τ . Third, note that the axioms of PCR transform under τ to either
0 (which we can ignore in the new proof sequence) or to the PC axiom xi(1− xi).

By construction, every proof-line in Γ�τ is either pi�τ or xj · (pi�τ), for some pi ∈ π
and j ∈ [n]. Therefore, by definition of OFPC, it suffices to show that every pi� τ and
xj · (pi�τ), for some pi ∈ π and j ∈ [n], have ordered formulas of size at most O(m · n),
where m is the number of monomials in pi. For this purpose it is enough to show that for
every monomial M in pi there exists an O(n) ordered formula computing the polynomial
M � τ . The latter is true since every such polynomial is a product of at most n terms,
where each term is either xi or 1 − xi, for some i ∈ [n]; such a product can be clearly
written as an ordered formula of size O(n).

In the rest of this section we show that OFPC polynomially simulates the proof
system R0(lin), and then use it to establish short proofs in OFPC.

5.2. Resolution over linear equations R(lin) and its subsystem R0(lin)
Here we follow [RT08a] and define the refutation systems R(lin) and R0(lin). The

system R(lin) is an extension of the resolution refutation system that works with dis-
junctions of linear equations instead of disjunction of literals. R0(lin) is defined to be a
subsystem of R(lin) in which certain restrictions are put on proof-lines in a proof.

Disjunctions of linear equations.. Let L be a linear equation a1x1 + . . . + anxn =
a0. Then, the right hand side a0 is called the free-term of L and the left hand side
a1x1 + . . .+ anxn is called the linear form of L (the linear form can be 0). A disjunction
of linear equations is of the following form:(

a
(1)
1 x1 + . . .+ a(1)

n xn = a
(1)
0

)
∨ · · · ∨

(
a

(t)
1 x1 + . . .+ a(t)

n xn = a
(t)
0

)
, (3)

where t ≥ 0 and the coefficients a(j)
i are integers (for all 0 ≤ i ≤ n, 1 ≤ j ≤ t). We remove

duplicate linear equations from a disjunction of linear equations. The semantics of such
a disjunction is the following: an assignment of integral values to the variables x1, ..., xn

is said to satisfy (3) if and only if there exists j ∈ [t] so that a(j)
1 x1 + . . .+ a

(j)
n xn = a

(j)
0

holds under the given assignment. The size of a linear equation a1x1 + . . .+ anxn = a0

is defined to be
∑n

i=0 |ai|, that is, the sum of the bit sizes of all ai written in unary
notation. Accordingly, the size of the linear form a1x1 + . . .+anxn is

∑n
i=1 |ai|. The size

of a disjunction of linear equations is the total size of all linear equations in it. Similar
to resolution, the empty disjunction is unsatisfiable and stands for the truth value false.
We will consider only disjunctions of linear equations with integral coefficients. Given a
vector ~a of n integers and a vector ~x of n variables x1, . . . , xn, we write ~a ·~x to abbreviate∑n

i=1 aixi.

18

Translation of clauses.. We can translate any CNF formula to a collection of dis-
junctions of linear equations as follows: every clause

∨
i∈I xi ∨

∨
j∈J ¬xj in the CNF is

translated into the disjunction
∨

i∈I(xi = 1) ∨
∨

j∈J(xj = 0). Any Boolean assignment
to the variables x1, . . . , xn satisfies a clause D if and only if it satisfies its translation
into disjunction of linear equations (where true is identified with 1 and false with 0).

The refutation system R(lin)..

Definition 5.2 (R(lin)). Let K := {K1, . . . ,Km} be a collection of disjunctions of
linear equations in the variables x1, . . . , xn. An R(lin)-proof from K of a disjunction of
linear equations D is a finite sequence π = (D1, ..., D`) of disjunctions of linear equations,
such that D` = D and for every i ∈ [`] one of the following holds:

1. Di = Kj, for some j ∈ [m];

2. Di is a

Boolean axiom (xt = 0) ∨ (xt = 1), for some t ∈ [n];

3. Di was deduced by one of the following R(lin)-inference rules, using Dj , Dk for
some j, k < i:

Resolution Let A,B be two, possibly empty, disjunctions of linear equations
and let L1, L2 be two linear equations. From A ∨ L1 and B ∨ L2 derive A ∨
B ∨ (L1 − L2).

Weakening From a possibly empty disjunction of linear equations A derive A∨
L , where L is an arbitrary linear equation over the variables x1, . . . , xn.

Simplification From A ∨ (0 = k) derive A, where A is a possibly empty dis-
junction of linear equations and k 6= 0.

An R(lin) refutation of a collection of disjunctions of linear equations K is a proof
of the empty disjunction from K. The size of an R(lin) proof π is the total size of
all the disjunctions of linear equations in π (where coefficients are written in unary
representation) denoted |π|.

In light of the translation between CNF formulas and collections of disjunctions of
linear equations, we can consider R(lin) to be a proof system for the set of unsatisfiable
CNF formulas.

The refutation system R0(lin).. For our purposes we need to consider the restriction
of R(lin), denoted R0(lin) [RT08a]. The system R0(lin) operates with disjunctions of
(arbitrarily many) linear equations with constant coefficients excluding the free terms,
under the following restriction: every disjunction can be partitioned into a constant
number of sub-disjunctions, where each sub-disjunction either consists of linear equations
that differ only in their free-terms or is a (translation of a) clause. Any linear inequality
with Boolean variables can be represented by a disjunction of linear equations that differ
only in their free-terms. So the R0(lin) proof system resembles, to some extent, a proof
system operating with disjunctions of constant number of linear inequalities with constant
integral coefficients.

19

Example: The following is an example of an R0(lin) proof-line:

(x1 + . . .+ x` = 1) ∨ · · · ∨ (x1 + . . .+ x` = `) ∨ (x`+1 = 1) ∨ · · · ∨ (xn = 1),

for some 1 ≤ ` ≤ n. Note that in the left part (x1 + . . .+x` = 1)∨· · ·∨ (x1 + . . .+x` = `)
every disjunct has the same linear form with coefficients 0, 1, and the right part (x`+1 =
1) ∨ · · · ∨ (xn = 1) is a translation of a clause.

To formally define the R0(lin) proof system we introduce the following definition:

Definition 5.3 (Rc,d(lin)-line). Let D be a disjunction of linear equations whose vari-
ables have integer coefficients with absolute values at most c (the free-terms are un-
bounded). Assume D can be partitioned into at most d sub-disjunctions D1, . . . , Dd,
where each Di either consists of (an unbounded) disjunction of linear equations that dif-
fer only in their free-terms, or is a translation of a clause. Then the disjunction D is
called an Rc,d(lin)-line. The size of an Rc,d(lin)-line D is defined as before, that is, as the
total bit-size of all equations in D, where coefficients are written in unary representation.

Thus, any Rc,d(lin)-line is of the following general form:∨
i∈I1

(
~a(1) · ~x = `

(1)
i

)
∨ · · · ∨

∨
i∈Ik

(
~a(k) · ~x = `

(k)
i

)
∨
∨
j∈J

(xj = bj) , (4)

where k < d and for all r ∈ [n] and t ∈ [k], a(t)
r is an integer such that |a(t)

r | ≤ c, and
bj ∈ {0, 1} (for all j ∈ J), and the `(k)

i ’s are (unbounded) integers (and I1, . . . , Ik, J are
unbounded sets of indices). Since a disjunction of clauses is a clause in itself, we can
assume that in any Rc,d(lin)-line only a single (translation of a) clause occurs.

The R0(lin) proof system is a restriction of R(lin) in which each proof-line is an
Rc,d(lin)-line, for some fixed constants c, d:

Definition 5.4 (R0(lin)). Let K := {Kn | n ∈ N} be a family of collections of disjunc-
tions of linear equations. Then {Pn | n ∈ N} is a family of R0(lin)-proofs of K if there
exist constant integers c, d independent of n, such that: (i) each Pn is an R(lin)-proof of
Kn; and (ii) for all n, every proof-line in Pn is an Rc,d(lin)-line. The size of an R0(lin)
proof is defined the same way as the size of R(lin) proofs, that is, as the total size of all
the proof-lines.

If Kn is a collection of disjunctions of linear equations parameterized by n ∈ N, we
shall say that Kn has a polynomial-size (in n) R0(lin) proof, if there are some constants
c, d independent of n and a polynomial p, such that for every n, Kn has R(lin) proof of
size at most p(n) in which every proof-line is an Rc,d(lin)-line.

Both R(lin) and R0(lin) are sound and complete Cook-Reckhow refutation systems
for unsatisfiable CNF formulas (see Section 3.2 in [RT08a]).

5.3. OFPC polynomially simulates R0(lin)
Here we prove that OFPC over fields of characteristic 0 polynomially simulates R0(lin)

for the language of unsatisfiable CNF formulas. We translate a CNF, that is, a collection
of clauses, into a collection of polynomials as follows: every clause

∨
i∈I xi ∨

∨
j∈J ¬xj in

the CNF is translated into
∏

i∈I(1− xi) ∨
∏

j∈J xj .
20

Theorem 5.5. For any linear order on the variables, OFPC operating with polynomials
over a field of characteristic 0 polynomially simulates R0(lin) for the language of unsatis-
fiable CNF formulas. Moreover, we can assume that all formulas appearing in the OFPC
proofs simulating R0(lin) are ordered formulas of depth at most 3.

In the rest of this subsection we work out the proof of Theorem 5.5.
Assume we have a family of R0(lin) refutations {π` : ` ∈ N} of a CNF family

{K` : ` ∈ N}, in which every line is an Rc,d(lin)-line for two constants c, d independent
of `. We wish to show an OFPC refutation of K` with size polynomial in |π`|. Thus,
consider a refutation π = π` = (D1, . . . , Dm), for some `. The proof is almost similar to
the proof that multilinear proofs can polynomial simulate R0(lin), given in [RT08a]. We
begin by providing an overview of the simulation:

Step I First we translate disjunctions of linear equations into polynomials. This is easy
to do by considering a disjunction as a product, and turning any linear equation
into its corresponding homogenous linear form. Thus, π = (D1, . . . , Dm) can be
transformed into a sequence π̃ = (D̃1, . . . , D̃m) of polynomials.

Step II We then show how to transform the sequence π̃ into a PC refutation by adding
new PC proof-lines, so that if Dk was derived from previous lines Di, Dj by one of
R(lin) rules, then the added proof-lines will constitute a PC derivation of D̃k from
previous lines D̃i, D̃j . This is not hard to do, but we have to take care that:

1. the number of added lines is polynomial in the size of the original R0(lin)
refutation; and

2. every newly added PC proof-line is a polynomial translation D̃ of some
Rc′,d′(lin)-line D (Definition 5.6 below), where D is of size polynomial in
|π| and c′, d′ are constants independent of n.

Step III We now have a PC proof π′ whose number of lines is polynomial in |π| in
which every line is a polynomial translation D̃ of some Rc′,d′(lin)-line D, such
that |D| is polynomial in |π|. For the current step we extend the system PCR
with the Product Rule p

g·p , for any polynomial g (note that g is not necessarily a
variable), and denote this extended system by PCR?. We then transform π′ into
a PCR? proof π? in which every line is roughly a multilinearization M[D̃] of a
polynomial translation D̃ of some Rc′,d′+1(lin)-line D, where |D| is polynomial in
|π|; However, the variables in π? will be {x1, . . . , xn, x̄1, . . . , x̄n}. Also, note that if
D is a clause, then D̃ is already multilinear, which means that M[D̃] = D̃, and so
π? is a refutation of the original CNF.

Step IV In this step we show that every proof-line in π? can be written as a certain
simple depth-3 formula of polynomial-size in |π|. This step is accomplished by
observing that the multilinearization of a polynomial translation of an Rc,d(lin)-
line is close to a product of constantly many symmetric polynomials (cf. [RT08a]).
And then showing that any such product has a ΣΠΣ depth-3 formula whose size is
polynomial in the size of the original Rc,d(lin)-line, over large enough fields (that
is, over fields with at least 2n+ 1 elements, for 2n being the number of variables),
and whose bottom level linear forms have only a single variable.

21

Step V We now have a PCR? proof π? of the original CNF formula with polynomial
in |π| many lines and in which the following invariant holds: every proof-line
can be written as a ΣΠΣ depth-3 formula of polynomial-size in |π| in which the
bottom level linear polynomials have only a single variable. Since in OFPC the
product rule can only multiply previous lines by a variable, we first show how to
polynomially simulate in PCR, applications of the extended PCR? product rules
p

g·p that occur in π?, while keeping the above invariant. Second, we need to change
the resulting refutation into a PC refutation of the same CNF formula K having
only the {x1, . . . , xn} variables (and not using the axioms xi · x̄i and xi + x̄i − 1),
and where the above invariant on the structure of lines still holds. This is easy
to do by applying the linear transformation x̄i 7→ 1− xi on all polynomials in the
refutation. We then claim that every line in the obtained PC refutation of K can
be written as an ordered formula of depth-3 and of polynomial-size in |π| (for any
given order on variables).

We now turn to the formal construction.

Step I. Here we show how to transform disjunctions of linear equations D into polyno-
mials D̃. We turn a disjunction into a product and a linear equation L = d, for d the free
term, into the polynomial L− d. Note that R0(lin) operates with unbounded free-terms:
the number d in the example above (or the `(t)i ’s in (4)) are unbounded (their values may
depend on n). Since we translate an integer d ∈ Z to the field element 1 + . . . + 1 (d
times), we need to use a field whose characteristic is big enough to include (an isomorphic
copy of) the integers up to d. We will simply assume that our field has characteristic 0,
which means it includes every integer.

More concretely, our polynomial translation is as follows. A polynomial translation
of a clause

∨
j∈J(xbj

j) is any product of the form
∏

j∈J(xj− bj), where bj ∈ {0, 1} for all

j ∈ J , and where xbj

j is the literal xj if bj = 1 and ¬xj if bj = 0. Accordingly, we define
the polynomial translation of a CNF formula as the set consisting of the polynomial
translations of the clauses in the CNF.

Definition 5.6 (Polynomial translation of Rc,d(lin)-lines). A polynomial transla-
tion of an Rc,d(lin)-line is a product of linear polynomials (that is, polynomials of the
form

∑n
i=1 aixi + a0), such that:

1. All variables in the linear polynomials have integer coefficients with absolute values
at most c (the constant terms [that correspond to the free-terms] are unbounded).

2. D can be written as
∏d

i=1Di, where each Di either consists of (an unbounded)
product of linear forms that differ only in their free-terms, or is a polynomial
translation of a clause.

The degree of a polynomial-translation of an Rc,d(lin)-line D is defined to be the total
degree of the polynomial D.

In other words, any polynomial translation of an Rc,d(lin)-line has the following gen-
eral form:

22

∏
j∈J

(xj − bj) ·
k∏

t=1

∏
i∈It

(
n∑

r=1

a(t)
r xr − `(t)i

)
, (5)

where k < d and for all r ∈ [n] and t ∈ [k], a(t)
r is an integer such that |a(t)

r | ≤ c, and
bj ∈ {0, 1} (for all j ∈ J) and the `(t)i ’s are integers (and I1, . . . , Ik, J are unbounded sets
of indices).

Notation: As noted earlier, given an Rc,d(lin)-lineD we write D̃ to denote its polynomial
translation.

Step II. We now show how to obtain a PC proof π′ from the R(lin) proof π, using the
polynomial translation in Step I.

Proposition 5.7 (Translating R0(lin) proofs to PC proofs). Let K =
{Km | m ∈ N} be a family of unsatisfiable CNF formulas translated into disjunc-
tions of linear equations and let {Pm | m ∈ N} be a family of R0(lin)-proofs of K, where
each proof line in every Pm is an Rc,d(lin)-line, for two constants c, d independent of m.
Then, there are two constants c′, d′ depending only on c, d and a family of PC refutations
{P ′m | m ∈ N} of (the polynomial translations of) K, such that for every m ∈ N:

(i) the number of lines in P ′m is polynomial in |Pm|; and

(ii) every line in P ′m is a polynomial translation of an Rc′,d′(lin)-line of degree polyno-
mial in |Pm|.

Proof: We proceed by induction on the number of lines in Pm.

Base case: An R0(lin) Boolean axiom (xi = 0) ∨ (xi = 1) is translated into xi · (xi − 1)
which is already an axiom of PC (or can be derived from an axiom by multiplying b
the scalar −1). An initial disjunction of linear equations from Kn is translated into its
corresponding polynomial translation (Definition 5.6). In both cases we get polynomial
translations of Rc,d(lin)-lines with a polynomial (in |Pm|) degree (note that the initial
disjunctions in K are Rc,d(lin)-lines since they are clauses).

Induction step: We translate every R0(lin) inference rule application into a PC proof
sequence with polynomial in |Pm| number of lines, and with each line being a polynomial
translation of an Rc′,d′(lin)-line for two constants c′, d′ depending only on c, d, whose
degree is bounded by a polynomial in |Pm|. We use the following claim:

Claim 5.8. Let p, q ∈ F[x1, . . . , xn] be two polynomials and let s be the minimal size of an
arithmetic formula computing q. Then one can derive from p in PC the polynomial q · p,
with only a polynomial in s number of steps. Furthermore, assume that q, p are polynomial
translations of Rc,d(lin)-lines Q,P , respectively, for some constants c, d independent of n
and with |Q|, |P | ≤ t, then the PC derivation of q · p from p has polynomial in t number
of lines and contains only polynomial translations of Rc′,d′(lin)-lines of degree polynomial
in t, for some constants c′, d′ independent of n.

23

Proof of claim: By induction on s (and t in the second statement). We omit the details.
Claim

Assume that Di = Dj ∨L was derived from Dj using the weakening inference rule of
R0(lin), and L is some linear equation. Then, by Claim 5.8, D̃i = D̃j · L̃ can be derived
from D̃j with a PC derivation having at most polynomial in |Dj ∨ L| many steps, in
which every line is a polynomial translation of an Rc′,d′(lin)-line of degree polynomial in
t, for some constants c′, d′ independent of n.

Otherwise, assume that Di was derived from Dj where Dj is Di ∨ (0 = k), using
the simplification inference rule of R0(lin), and k is a non-zero integer. Then, D̃i can be
derived from D̃j = D̃i · −k by multiplying with −k−1 (via the Addition rule of PC, and
using the fact that we work in a field).

Thus, it remains to simulate the resolution rule application of R0(lin). Let A,B be
two disjunctions of linear equations and assume that

A ∨B ∨
(

(~a−~b) · ~x = a0 − b0
)

was derived in Pm from A ∨ (~a · ~x = a0) and B ∨ (~b · ~x = b0).
We need to derive

Ã · B̃ ·
(

(~a−~b) · ~x− a0 + b0

)
from Ã · (~a · ~x − a0) and B̃ · (~b · ~x − b0). This is done by multiplying Ã · (~a · ~x − a0)
with B̃ and multiplying B̃ · (~b · ~x− b0) with Ã and then subtracting the second resulted
polynomial from the first resulted polynomial. By Claim 5.8, this can be done in PC
with polynomial in t = |A ∨ (~a · ~x− a0)|+ |B ∨ (~b · ~x− b0)| many steps and where each
proof-line is a polynomial translation of an Rc′,d′(lin)-line, where the degree of every such
Rc′,d′(lin)-line is polynomial in t (which also implies that the degree of such lines is also
upper bounded by |Pm|).

By Proposition 5.7, given our refutation π of a CNF, there exists a PC refutation π′

of K with polynomial in |π| number of lines, and with every line a polynomial translation
D̃ of an Rc′,d′(lin)-line D with degree at most polynomial in |π|, for two constants c′, d′.

Step III. Recall that a polynomial p ∈ F[x1, . . . , xn] is said to be multilinear if the
power of every variable in all its monomials is at most one. Given the PC refutation π′

from the previous step, we construct a PCR? refutation π? of the same CNF, and where
PCR? is an extension of PCR, defined as follows:

Definition 5.9 (PCR?). The proof systems PCR? is an extension of the PCR system
(Definition 2.6) with the following product rule:

Product
p

g · p
, for any polynomial g ∈ F[x1, . . . , xn, x̄1, . . . , x̄n].

Definition 5.10 (Multilinearization operator). Given a field F and a polynomial
q ∈ F[x1, . . . , xn], we denote by M[q] the unique multilinear polynomial equal to q modulo
the ideal generated by all the polynomials x2

i − xi, for all variables xi.
24

For example, if q = x2
1x2 + ax3

4 + 1 (for some a ∈ F) then M[q] = x1x2 + ax4 + 1 .

The main idea in Step III is formulated in the next proposition. It states that a PC
refutation consisting of only translations of Rc′,d′(lin)-lines can be transformed without
much increase in the number of lines into a “multilinearized” refutation, in which every
line is roughly a multilinearization of (a polynomial translation of) an Rc′,d′(lin)-line.
Formally, we have:

Proposition 5.11. Let P be a PC refutation from an initial set K of multilinear polyno-
mials in F[x1, . . . , xn], and assume that every proof line in P is a polynomial translation
of an Rc′,d′(lin)-line D of size at most t, for some fixed c′, d′. Then there exists a PCR?

refutation P ′ of K, such that:

1. the number of lines in P ′ is polynomially bounded in the number of lines in P ;

2. for every polynomial p in P ′, p is a multilinear polynomial in
F[x1, . . . , xn, x̄1, . . . , x̄n] that can be written as a sum

∑h
i=1 M[D̃i], where h

is a constant (independent of n, c′, d′) and where each D̃i is a degree O(t)
polynomial translation of an Rc′,d′+1(lin)-line.

Proof: Let (p1, . . . , pm) be the PC refutation P , where for any i ∈ [m], pi is a polynomial
in F[x1, . . . , xn]. The desired PCR? proof P ′ is constructed as follows.

First, we put Q = (M[p1] , . . . ,M[pm]). We construct the PCR? refutation P ′ of K
by adding appropriate PCR? proof-sequences to Q. This is done as follows:
Case A: If pi is from K then by multilinearity of pi we have pi = M[pi]. And condition
(2) in the statement of the proposition holds by assumption that pi is a polynomial
translation of an Rc′,d′(lin)-line D, where the size of D is at most t (and hence t is an
upper bound on the degree of pi).
Case B: If pi was derived in P by the addition rule from previous lines pj , pk, for some
j, k < i, then pi = αpj +βpk, for some α, β ∈ F. Thus, M[pi] = αM[pj] +βM[pk] can be
derived in PCR? from previous lines M[pj] and M[pk]. Similarly to Case A, condition
(2) holds by assumption that pi is a polynomial translation of an Rc′,d′(lin)-line D of size
at most t.
Case C: If pi = xj · pk, for some j ∈ [n] and k < i, was derived in P by the product
rule from a previous line pk, then M[pi] can be derived in P ′ as follows:

If xj does not appear with a positive power in pk, then we can derive M[pi] =
M[xj · pk] = xj ·M[pk] from M[pk] via the product rule. Otherwise, assume that xj

appears with a positive power in pk. Then we have

M[pk] = xj · f1 + f2

for some two multilinear polynomials f1, f2, where xj does not appear with a positive
power in f1 and xj does not appear with a positive power in f2. We add the following

25

PCR? proof-sequence to Q:

1. xj · f1 + f2 this is M[pk]
2. x̄j · (xj · f1 + f2) product of (1)
3. (1− x̄j) · (xj · f1 + f2) (1) minus (2)
4. xj · x̄j Boolean axiom
5. (xj · x̄j) · f1 product of (4)
6. (1− x̄j) · (xj · f1 + f2) + (xj · x̄j) · f1 (3) plus (5)
7. xj + x̄j − 1 Boolean axiom
8. (xj + x̄j − 1) · f2 product of (7)
9. (1− x̄j) · (xj · f1 + f2) + (xj · x̄j) · f1 + (xj + x̄j − 1) · f2 (6) plus (8)

The last line (line 9) equals xj · f1 + xj · f2 = M[xj · pk] = M[pi], which is the desired
line.

Observe that (by opening brackets) every line in the sequence above is a linear com-
bination of at most four of the following polynomials:

xj · x̄j , xj · f1, f2, x̄j · xj · f1, x̄j · f2, xj · f2. (6)

We need the following claim:

Claim 5.12. Every polynomial in (6) can be written as a sum M[D̃1]+M[D̃2], such that
D̃1, D̃2 are (possibly zero) polynomial translations of Rc′,d′+1(lin)-lines of degree O(t).

Proof of claim: The first polynomial x̄j ·xj is of the required form since it is a translation
of a clause. We now consider the rest of the polynomials in (6).

Consider the polynomials f1 and f2. By assumption, we know that xj · f1 + f2 =
M[pk] = M[D̃], for some Rc′,d′(lin)-line D of size at most t, where xj does not appear
in f1 and in f2. Therefore,

f1 = M[D̃]�xj=1 −M[D̃]�xj=0 = M
[
D̃�xj=1

]
−M

[
D̃�xj=0

]
, and

f2 = M
[
D̃�xj=0

]
(where the notation p� xj=b means that we assign the value b to the variable xj in the
polynomial p).

We thus get:

xj · f1 = xj ·M
[
D̃�xj=1

]
− xj ·M

[
D̃�xj=0

]
= M

[
xj · D̃�xj=1

]
−M

[
xj · D̃�xj=0

]
,

where xj · D̃�xj=1 and xj · D̃�xj=0 are both polynomial translations of Rc′,d′+1(lin)-lines,
of degree at most t+ 1.

The rest of the polynomials in (6), namely, f2, x̄j ·xj ·f1, x̄j ·f2, xj ·f2, can be treated
in a similar manner (note also that x̄j does not appear in f1 and f2). Claim

Notice that if a polynomial translation D̃ of an Rc′,d′+1(lin)-line D is of degree at
most |π|, then D is of size at most O(n · |π|) (for constants c′, d′). Thus, Proposition 5.11

26

shows that we can transform the PC refutation π′ from Step II into a PCR? refutation
π? of the same CNF, in which every line is a sum

∑
i∈I M[D̃i] such that:

1. |I| is constant (independent of n, c, d);

2. every D̃i is a polynomial translation of some Rc′,d′+1(lin)-line Di such that the size
|Di| is polynomial in the size |π| of the original refutation π (for constants c′, d′

independent of n).

3. The number of lines in π? is polynomially bounded in the number of lines in π.

Note again that the new PCR? proof may contain the “negative” variables x̄1, . . . , x̄n.

Step IV. We now show that every PCR? proof-line in π? has a certain simple depth-3
arithmetic formula. We shall use the fact that Rc,d(lin)-lines are close to a product of
d symmetric polynomials, and the fact that multilinear symmetric polynomials can be
computed by small ordered formulas (of depth-3) over large enough fields [Ben80] (cf.
[Tza08] for a proof).

We say that an arithmetic formula Φ is a ΣΠΣ formula if every path from the root
to the leaf in the formula tree starts with a plus gate and the number of alternations in
the path between plus and product gates is at most two, where field elements α ∈ F can
label any edge e in the formula, meaning that the polynomial computed in the tail of e
(i.e., the node the edges e emanates from) is multiplied by α. In other words, Φ can be
written as a sum of products of linear polynomials.

We need the following proposition, proved in [RT08b]:

Proposition 5.13 ([RT08b], Proposition 7.27). Let F be a field such that |F| > n.
For a constant c, let X1, . . . , Xc be c finite sets of variables (not necessarily disjoint),
where

∑c
i=1 |Xi| = n . Let f1, . . . , fc be c symmetric polynomials over X1, . . . , Xc

(over the field F), respectively. Then, there is a ΣΠΣ formula Φ for M[f1 · · · fc] of size
polynomial (in n), such that all bottom level linear forms consist of only a single variable
(that is, axi + b, for some a, b ∈ F).

Observation: Note that for any order on variables, every ΣΠΣ formula Φ as in Propo-
sition 5.13 can be transformed into an ordered formula with the same size: since all
products are of linear forms, each with a single variable, for any order � on variables
one can order the products in the formula in a way that respects �.

The key lemma of the simulation is the following:

Lemma 5.14. Let F be a field such that |F| > n. Let s, t be two constants, let D be
an Rs,t(lin)-line with n variables and let D̃ be the polynomial translation of D. Then,

M
[
D̃
]

has a ΣΠΣ formula Φ of size polynomial in |D| over F, such that all bottom level
linear forms consist of only a single variable (that is, axi + b, for some a, b ∈ F).

Proof: Assume that the underlying variables of D are ~x = {x1 . . . , xn}.7 By assumption,
we can partition the disjunction D into a constant number t of disjuncts, where each

7We will apply Lemma 5.14 on lines with 2n variables {x1, . . . , xn, x̄1, . . . , x̄n}. For the sake of
simplicity, in this lemma we assume that our underlying variables are {x1, . . . , xn}.

27

disjunct is a (possibly empty translation of a) clause C (if there is more than one clause
in D we combine all the clauses into a single clause) and all other disjuncts have the
following form:

m∨
i=1

(~a · ~x = `i) , (7)

where the `i’s are integers, m is bounded by |D| and ~a denotes a vector of n constant
integer coefficients, each having absolute value at most s.

Suppose that the clause C is
∨

i∈I xi ∨
∨

j∈J ¬xj , and let

q =
∏
i∈I

(xi − 1) ·
∏
j∈J

xj (8)

be the polynomial representing C.
Consider a disjunct as shown in (7). Since the coefficients ~a are constants (having

absolute value at most s), ~a · ~x can be written as a sum of constant number of linear
forms, each with the same constant coefficient. In other words, ~a · ~x can be written as
z1 + . . .+ zd, for some constant d (depending on s only), where for all i ∈ [d]:

zi := b ·
∑
j∈J

xj , (9)

for some J ⊆ [n] and some constant integer b. We shall assume without loss of generality
that d is the same constant for every disjunct of the form (7) in D (otherwise, take d to
be the maximal such d). Thus, (7) is translated (as in Definition 5.6) into:

m∏
i=1

(z1 + ...+ zd − `i) . (10)

By fully expanding the product in (10), we arrive at:

∑
r1+...+rd+1=m

(
α~r ·

d∏
k=1

zrk

k

)
, (11)

where the ri’s are non-negative integers, and where each α~r’s, for ~r = 〈r1, . . . , rd+1〉, is
an integer coefficient.

Claim 5.15. The polynomial translation D̃ of D is a linear combination (over F) of
polynomially (in |D|) many terms, such that each term can be written as

q ·
∏
k∈K

zrk

k , (12)

where K is a collection of a constant number of indices, rk’s are non-negative integers,
and the zk’s and q are as above (that is, the zk’s are linear forms, where each zk has a
single coefficient for all variables in it, as in (9), and q is from (8)).

28

Proof of claim: By assumption, the total number of disjuncts of the form (7) in D is
≤ t. In D̃, we actually need to multiply at most t many polynomials of the form shown
in (11) and the polynomial q.

For every j ∈ [t] we write the (same) linear form in the jth disjunct as a sum of
constantly many linear forms zj,1 + . . .+ zj,d, where each (sub-)linear form zj,k has the
same coefficient for every variable in it. Thus, D̃ can be written as:

q ·
t∏

j=1


∑

r1+...+rd+1=mj

(
α

(j)
~r ·

d∏
k=1

zrk

j,k

)
︸ ︷︷ ︸

(?)

 , (13)

(where the mj ’s are bounded by |D|, and the coefficients α(j)
~r are as above except that

here we add the index (j) to denote that they depend on the jth disjunct in D). Denote
the maximal mj , for all j ∈ [t], by m0. We have m0 ≤ |D|. Note that since d is a
constant (depending only on s) the number of summands in each of the big (middle)
sums in (13) is polynomial in m0, which is at most polynomial in |D| (specifically, it is
≤
(
m0+d

m0

)
< (m0 + d)d). Therefore, since t is constant (independent of n), by expanding

the outermost product in (13), we arrive at a sum of polynomially in |D|many summands.
Each summand in this resulting sum is a product of t terms (each of the form designated
by (?) in Equation (13)) multiplied by q. But this is precisely the required form of a
summand in (12); where also, since d, t are constants, |K| is a constant independent of
n. Claim

To finish the proof of Lemma 5.14 it remains to apply the multilinearization operator
(Definition 5.10) on D̃, and verify that the resulting polynomial has the desired form.
Since M[·] is a linear operator, it suffices to show that when applying M[·] on each
summand in D̃, as described in Claim 5.15, one obtains a polynomial that has a ΣΠΣ
formula of size polynomial in |D| over F, such that all bottom level linear forms consist
of only a single variable. This is established in the following claim:

Claim 5.16. (Under the same notation as in Claim 5.15) the polynomial
M
[
q ·
∏

k∈K zrk

k

]
has a ΣΠΣ formula (over F) of polynomial-size in the number

of variables n and with a plus gate at the root, such that all bottom level linear forms
consist of only a single variable (that might be different for each linear form).

Proof of claim: Note that a power of a symmetric polynomial is a symmetric polynomial
in itself. Thus, since for any k ∈ K, zk is a symmetric polynomial, zrk

k is also symmetric.
The polynomial q is a translation of a clause, hence it is a product of two symmetric
polynomials (over different variables): the symmetric polynomial that is the translation
of the disjunction of literals with positive signs, and the symmetric polynomial that is the
translation of the disjunction of literals with negative signs. Therefore, q ·

∏
k∈K zrk

k is
a product of constant number of symmetric polynomials (over different, though possibly
not disjoint, sets of variables). By Proposition 5.13, M

[
q ·
∏

k∈K zrk

k

]
(where here the

M[·] operator operates on the ~x variables in the zk’s and q) is a polynomial for which
there is a ΣΠΣ polynomial-size (in n) formula such that all bottom level linear forms
consist of only a single variable (over F). Claim

29

Step V. In the previous step we obtained a PCR? refutation π? = (q1, . . . , qr) of the
CNF K with r polynomial in |π|, and such that every qi can be computed by a ΣΠΣ
formula Qi of polynomial-size in |π|, and where each bottom level in Qi consists of only
a single variable (that is, axi + b, for some a, b ∈ F).

Note that π? is not a legal PCR refutation of K since π? used the extended PCR?

product rule p
g·p , for some polynomial g, while in PCR we only have the rule p

x·p , for some
variable x. We now show that we can add new PCR proof-sequences to π? to obtain a
PCR refutation of K with the appropriate properties:

Claim 5.17. Assume that in π? the polynomial qi = g ·p was derived from qj = p by the
PCR? product rule. Then, there exists a PCR proof of Qi from Qj with size polynomial
in |Qi| (where Qi, Qj are the corresponding formulas for qi, qj, respectively), such that
every proof-line can be written as a ΣΠΣ formula of polynomial-size in |Qi| in which
each bottom level consists of only a single variable.

Proof of claim: If g is a variable from {x1, . . . , xn, x̄1, . . . , x̄n}, then we are done.
Otherwise, by construction of π?, the polynomial qi = g · p is either an instance of Line
5 or of Line 8 in the PCR? proof-sequence described in Proposition 5.11. By Claim 5.12
and Lemma 5.14 we thus obtain that one of the following holds:

1. qi = (xj · x̄j) · f1 for p = (xj · x̄j), such that xj , x̄j do not appear in f1;

2. qi = (xj + x̄j − 1) · f2 for p = (xj + x̄j − 1), such that xj , x̄j do not appear in f2,

and where both f1 and f2 can be computed by a ΣΠΣ formula Qi of polynomial-size in
|π|, and the bottom level linear polynomials in Qi consists of only a single variable.

The proof of the claim now is straightforward. First, we derive from g in PCR the
polynomial g · Fi, for any i such that Fi is the polynomial computed by the ith product
gate in Qi. Each such proof of g ·Fi can be carried out by induction on the degree of qi.
Then, we add together g · Fi, for all i, which yields the desired ΣΠΣ formula computing
the polynomial qi. Also, note that every proof-line in this derivation can be written as
a ΣΠΣ formula of polynomial-size in |Qi| such that each bottom level linear polynomial
consists of only a single variable, and where the number of proof-lines is polynomial in
|Qi|. Claim

By Claim 5.17 there exists a PCR refutation π′′ of K of size polynomial in |π| in
which every line is a ΣΠΣ formula in which each bottom level consists of only a single
variable.

Since the formulas in π′′ possibly contain the variables x̄1, . . . , x̄n, we need to take
these variables out in order to construct our final PC refutation with only the x1, . . . , xn

variables. We do this by first substituting every variable x̄i, i ∈ [n], by (1− xi) in every
line of π′′, and then adding required PC lines to transform the resulting sequence into a
legal PC refutation.

Let τ denote the linear transformation that maps the variables x̄i, for any i ∈ [n], to
(1− xi), and denote p�τ the polynomial p under the transformation τ .

Claim 5.18. Let Π be the sequence of polynomials π′′� τ obtained from π′′ by applying
τ to every proof-line. Then, there exists a PC refutation Π′ refuting the same CNF as
π′′ does, with only a polynomial increase in numbers of lines, and whose each line can be

30

computed by a ΣΠΣ formula of polynomial-size in |π|, such that each bottom level in the
formula consists of only a single variable.

Proof of claim: By induction on the number of lines in π′′.
Base case: Axioms turn into axioms (the axiom xi + x̄i − 1 turns into the polynomial 0,
which can be ignored in the refutation).
Induction step:
Case 1: Addition rule in π′′ stays legal in Π.
Case 2: Product rule: if we derive xi · p from p in π′′, for some i ∈ [n], then in Π we
derive xi · (p�τ) from p�τ , which is legal.

Assume we derived x̄i · p from p. Then, we need to derive (1− xi) · (p� τ) from p� τ .
For this, first derive xi · p�τ , and then use the addition rule to add p�τ with −xi · p�τ .

Note also that all lines in the new PC refutation Π′ can be written as ΣΠΣ formulas
of polynomial-size in |π|, and where each bottom level in the formula consists of only a
single variable. Claim

Now, since every proof-line in the refutation Π′ obtained from Claim 5.18 can be
written as a ΣΠΣ ordered formula of size polynomial in |π| in which all bottom levels
are linear forms axi + b, for some a, b ∈ F and some i ∈ [n], every proof-line in Π′ can
be written as an ordered formula of size O(|π|). This is because we can simply order
the linear forms hanging from any product gate in a way that respects the order �.
Also, Since the number of proof-lines in Π′ is polynomial in |π|, we conclude that OFPC
polynomially simulates R0(lin).

This concludes the proof of Theorem 5.5.

5.4. Short proofs and separations
For natural numbers m > n, denote by ¬FPHPm

n the following unsatisfiable collection
of polynomials:

Pigeons : ∀i ∈ [m], (1− xi,1) · · · (1− xi,n)
Functional : ∀i ∈ [m]∀k < ` ∈ [n], xi,k · xi,`

Holes : ∀i < j ∈ [m]∀k ∈ [n], xi,k · xj,k

(14)

As a consequence of the polynomial simulation of R0(lin) by OFPC, and the upper
bounds on R0(lin) refutations demonstrated in [RT08a], we get the following result:

Corollary 5.19. For any linear order on the variables, and for any m > n there are
polynomial-size (in n) OFPC refutations of the m to n pigeonhole principle ¬FPHPm

n

(over fields of characteristic zero).

The contradiction ¬FPHPm
n is a direct translation of the CNF formula for the m

to n functional pigeonhole principle. Thus, by known lower bounds, OFPC is strictly
stronger than resolution and is separated from bounded depth Frege. On the other hand,
Razborov [Razb98] and subsequently Impagliazzo et al. [IPS99] gave exponential lower
bounds on the size of PC-refutations of a different low degree version of the Functional
Pigeonhole Principle. In this low degree version the Pigeons polynomials in (14) are
replaced by 1− (xi,1 + . . .+ xi,n), for all i ∈ [m]. It is not hard to show (via reasoning

31

inside R0(lin)) that OFPC admits polynomial-size refutations also for this low-degree
version of the functional pigeonhole principle. This shows that OFPC is strictly stronger
than PC (under the size measures defined for OFPC and PC).

The Tseitin graph tautologies were proved to be hard tautologies for several propo-
sitional proof system. We refer the reader to [RT08a], Definition 6.5, for the precise
definition of the (generalized, mod p) Tseitin tautologies. We have the following:

Corollary 5.20. Let G be an r-regular graph with n vertices, where r is a constant, and
fix some modulus p. Then, for any linear order on the variables there are polynomial-size
(in n) OFPC refutations (over fields of characteristic 0) of the corresponding Tseitin
mod p formulas over G.

This stems from the R0(lin) polynomial-size refutations of the Tseitin mod p formulas
demonstrated in [RT08a]. From the known exponential lower bounds on PCR (and PC
and resolution) refutation size of Tseitin mod p tautologies (when the underlying graphs
are appropriately expanding; cf. [BGIP01, BSI99, ABSRW04]), and for the polynomial
simulation of PCR by OFPC, we conclude that OFPC is strictly stronger than PCR.

6. Useful lower bounds on products of ordered polynomials

In this section we show that the ordered formula size of certain polynomials can in-
crease exponentially when multiplying the polynomials together. We use this to suggest
an approach for lower bounding the size of OFPC proofs in Section 6.1. We use a method
of partial derivatives matrix introduced by Nisan to obtain exponential-size lower bounds
on noncommutative formulas in [Nis91]. We shall state the results of Nisan using the
model of algebraic branching programs (ABP) (this will help us in the example of con-
ditional lower bound discussed in the next sub-section). Algebraic branching programs
can polynomially simulate noncommutative formulas, and hence also ordered formulas.

Definition 6.1 (ABP). An algebraic branching program is a directed acyclic graph with
one node of in-degree zero, called the source, and one node of out-degree zero called the
sink. The graph is partitioned into levels 0, . . . , d, and nodes in level i = 0, . . . , d − 1
have edges only to level i+ 1. The source is the only node in level 0 and the sink is the
only node in level d. The edges of the graph are labeled with homogenous linear forms
in the variables x1, . . . , xn and coefficients from a field F (i.e., linear polynomials with
no free terms). An ABP computes a noncommutative polynomial in F〈x1, . . . , xn〉 as
follows: every directed path from the source to a node v computes the product of linear
forms on the path in the order of their appearance. The node v computes the sum of all
the polynomials computed by all the directed pathes from source to v. An ABP computes
the noncommutative polynomial computed at its sink.

Note that an ABP computes only homogenous polynomials. We have the following
simple structural property, showing that the noncommutative formula size of a noncom-
mutative polynomial is polynomially proportional to its ABP size:

32

Lemma 6.2 (Lemma 2.2 in [RS05]). Let f be a noncommutative polynomial which
is computed by a noncommutative formula of size s. Assume that the free term of f is
zero (in other words, f(0, . . . , 0) = 0). Then there exist deg(f) noncommutative ABP’s
such that the ith ABP computes the homogeneous component of f of degree i, for i =
1, . . . ,deg(f). Moreover, the size of each of these ABP’s is O(s2).

Let f ∈ F[x1, . . . , xn] be a commutative polynomial. Recall that JfK is the noncom-
mutative polynomial obtained from f by ordering the products in every monomial in
accordance to the linear order �, and that an ordered formula computing f is a noncom-
mutative formula computing JfK. Thus, if we denote by OF (f) the minimal size of an
ordered formula computing f and by A(f) the minimal total ABP-sizes of a sequence of
ABP’s computing the homogenous components f (1), . . . , f (deg(f)) of f , then by Lemma
6.2, we have:

OF (f) ≥ (A(f))O(1)

(note that deg(f) ≤ OF (f), because f is a formula). To conclude, a super-polynomial
lower bound on the ordered formula size of f ∈ F[x1, . . . , xn] follows from a super-
polynomial lower bound on the minimal total ABP-sizes of a sequence of ABP’s com-
puting the homogenous components of the noncommutative polynomial JfK.

Proposition 6.3. Let F be a field, X := {x1, . . . , xn} be a set of variables and � some
linear order on X. Then, for any natural numbers m ≤ n and d ≤ bn/mc, there ex-
ist polynomials f1, . . . , fd from F[x1, . . . , xn], such that every fi can be computed by an
ordered formula of size O(m) and every ABP computing J

∏d
i=1 fiK has size 2d.

Proof: First, note that it is sufficient to prove the proposition for m = 2 and any
d ≤ bn/2c. (Because, assume that the proposition holds for m = 2 and any d ≤ bn/2c.
And let m′, d′ be such that m′ ≤ n and d′ ≤ bn/m′c. By assumption, for m = 2 and
d′ ≤ bn/m′c ≤ bn/2c, there are f1, . . . , fd′ from F[x1, . . . , xn] that can be computed by
ordered formulas of size constant [that is, O(2), and hence of size O(m′)], and such that
every ABP computing J

∏d′

i=1 fiK has size 2Ω(d′).)
Thus, let m = 2 and d ≤ bn/2c. Assume without loss of generality that the linear or-

der � is such that x1 � x2 � . . . � xn. Abbreviate the variables x1, . . . , xd as y1, . . . , yd,
respectively, and abbreviate the variables xd+1, . . . , x2d as z1, . . . , zd, respectively (that
is, the yi’s and zi’s are just abbreviations for their corresponding xi variables, introduced
to simplify the writing). We thus have y1 � . . . � yd � z1 � . . . � zd.

For every i = 1, . . . , d, define the following polynomial (that obviously has a constant
size ordered formula):

fi := (yi + zi) .

Define

HARDd :=
d∏

i=1

fi =
d∏

i=1

(yi + zi) .

We show that every ABP computing JHARDdK (under �) is of size at least 2d. Note
that HARDd is a homogenous noncommutative and multilinear polynomial of degree d.
To lower bound the ABP size of a homogenous noncommutative polynomial we use the
rank argument introduced in [Nis91]. Nisan defined the matrix Mk(f) associated with a
homogenous noncommutative polynomial f as follows:

33

Definition 6.4 ([Nis91]). Let f ∈ F〈x1, . . . , xn〉 be a noncommutative homogenous
polynomial of degree d. For every 0 ≤ k ≤ d, we define Mk(f) to be a matrix of
dimension nk × nd−k as follows: (i) there is a row corresponding to every degree k non-
commutative monomial over the variables {x1, . . . , xn}, and a column corresponding to
every degree d − k noncommutative monomial over the variables {x1, . . . , xn}; (ii) for
every degree k monomial M and every degree d − k monomial N , the entry in Mk(f)
on the row corresponding to M and column corresponding to N is the coefficient of the
degree d monomial M ·N in f .

Theorem 6.5 ([Nis91] Theorem 1). Let f be a degree r homogenous noncommutative
polynomial. Then, every ABP computing f has size at least

∑r
k=0 rank (Mk(f)).

In view of Theorem 6.5, it suffices to prove the following claim:

Claim 6.6. For any 0 ≤ k ≤ d: rank(Mk(JHARDdK)) ≥
(

d
k

)
.

Proof of claim: Consider the matrix Mk(JHARDdK). Let Ak be the matrix obtained
from Mk(JHARDdK) by removing all rows and columns excluding the following rows and
columns:

1. the rows corresponding to degree k multilinear monomials containing only yi vari-
ables, such that the order of products in the monomial respects � ;

2. the columns corresponding to degree d− k multilinear monomials containing only
zi variables, such that the order of products in the monomial respects �.

Consider a degree k monomial M = yi1 · · · yik
, where i1 < . . . < ik. Let J = [d] \

{i1, . . . , ik}. We can denote the elements of J as {j1, . . . , jd−k}, where j1 < . . . < jd−k.
Observe that the monomial M has on its corresponding row in Ak only zeros, except for
a single 1 in the position (that is, column) corresponding to the degree d− k monomial
N = zj1 · · · zjd−k

. (Indeed, note that the coefficient of the degree d monomial M ·N in
JHARDdK is 1.)

Note that Ak contains
(

d
k

)
rows corresponding to all possible degree k multilinear

monomials M in the y variables whose product order respect �. Similarly, Ak contains(
d
k

)
columns corresponding to all possible degree d− k multilinear monomials N in the

z variables whose product order respect �. By the previous paragraph: (i) each of the
rows in Ak has only one nonzero entry; and (ii) for every row, the nonzero entry is in a
different column from those of other rows. We then conclude that Ak is a permutation
matrix. Therefore:

rank(Ak) =
(
d

k

)
.

The claim follows since clearly rank(Ak) ≤ rank(Mk (JHARDdK)) . Claim

By the claim and by Theorem 6.5, we conclude that the ABP size of JHARDdK is at
least

d∑
k=0

rank (Ak) =
d∑

k=0

(
d

k

)
= 2d .

34

6.1. Suggested lower bound approach
Here we discuss a simple possible approach intended to establish lower bounds on

OFPC proofs, roughly, by reducing OFPC lower bounds to PC degree lower bounds and
using the bound in Section 6 (Proposition 6.3).

Setting 1 : Let Q1(x), . . . , Qm(x) be a collection of constant degree (independent of n)
polynomials from F[x1, . . . , xn] with no common solutions in F, such that m is polyno-
mial in n. Let f1(y), . . . , fn(y) be m homogenous polynomials of the same degree from
F[y1, . . . , y`], such that the ordered formula size of each fi(y) (for some fixed linear or-
der on the variables) is polynomial in n and such that the fi(y)’s do not have common
variables (that is, each fi(y) is over disjoint sets of variables from y). Suppose that for
any distinct i1, . . . , id ∈ [n] the ABP size of J

∏d
j=1 fij

(y)K is 2Ω(d).

Note: By the proof of Proposition 6.3, the conditions above are easy to achieve. Indeed,
the fi(yi, zi)’s defined in the proof of Proposition 6.3 have these properties: homogeneity,
same degrees for all fi’s and disjointness of variables, and an exponential increase in ABP
sizes computing products of the fi’s.

Consider the polynomials Q1(x), . . . , Qm(x) after applying the substitution:

xi 7→ fi(y) . (15)

In other words, consider

Q1(f1(y), . . . , fn(y)), . . . , Qm(f1(y), . . . , fn(y)) . (16)

Note that (16) is also unsatisfiable over F.
We suggest to lower bound the OFPC refutation size of (16), based on the following

simple idea: it is known that some families of unsatisfiable collections of polynomials
require linear Ω(n) degree PC refutations (where n is the number of variables). In other
words, every refutation of these polynomials must contain some polynomial of linear
degree. By definition, also every OFPC refutation of these polynomials must contain
some polynomial of linear in n degree.

For the purpose of super-polynomial lower bounds even a weaker ω(log n) degree lower
bound on PC refutations would suffice. Hence, assume that the initial polynomials Q =
{Q1(x), . . . , Qm(x)} in the x1, . . . , xn variables require ω(log n) degree PC refutations.
This means that every PC refutation of Q contains some polynomial h of degree ω(log n).
Then, we might expect that every PC refutation of its substitution instance (16) contains
a polynomial g ∈ F[y] which is a substitution instance (under the substitution (15)) of an
ω(log n) degree polynomial in the x variables. This, in turn, leads (under some conditions;
see below) to a lower bound on OFPC refutations.

An example of sufficient conditions for super-polynomial OFPC lower bounds, are the
following: assume that every PC refutation of (16) contains a polynomial g so that one
of g’s homogenous components is a substitution instance of a degree ω(log n) multilinear
polynomial from F[x1, . . . , xn]. We formalize this argument:

Example: Conditional OFPC size lower bounds. (Assume the above Setting 1 and
notations.)

35

If: every PC refutation of (16) that has polynomial in n number of proof-lines contains
a polynomial g ∈ F[y1, . . . , y`] such that for some t = poly(n), the t-th homogenous
component g(t) of g is a substitution instance of a degree ω(log n) multilinear polynomial
from F[x1, . . . , xn] (under the substitution (15));
Then: every OFPC refutation of (16) is of super-polynomial size (in n).

Proof of example: It suffices to show that any ordered formula of g is of super-polynomial
size in n. By Lemma 6.2, it suffices to show that Jg(t)K, the t-th homogenous component
of JgK (note that JgK(t) = Jg(t)K), requires an ABP of super-polynomial size in n.

By assumption, g(t) is a substitution instance of some degree ω(log n) multilinear
polynomial h ∈ F[x1, . . . , xn]. Since g(t) is homogenous and all the fi(y)’s have the same
degree and are homogenous, h must be homogenous too. Since h is multilinear we can
write h =

∑
j∈J bjMj , where the Mj ’s are multilinear monomials in the x variables and

bj are coefficients from F. Now, consider some single monomial M from
∑

j∈J bjMj . By
multilinearity and homogeneity of h every other monomial M ′ 6= M in h must contain
an xi variable that does not appear in M . We can assign 0 to such xi. Doing this
for every monomial M ′ 6= M , we get that h (under this partial assignment to the x
variables) is equal to bM , for some coefficient b ∈ F. In a similar manner, by disjointness
of the variables in the fi(y)’s, there exists a partial assignment ρ : y → {0}, such that
g(t)�ρ is just a substitution instance (under the substitution (15)) of a single multilinear
monomial of degree ω(log n) in the x variables. This means that g(t)� ρ is the product
of ω(log n) distinct fi(y)’s (multiplied by b). Therefore, by assumption on the fi(y)’s,
every ABP computing Jg(t)K is of size 2ω(log n), which is super-polynomial in n.

Remark: The conditional lower bound example above inherits its hardness from the
hard polynomials in Proposition 6.3. Since the hard polynomial HARDd in the proof of
Proposition 6.3 is hard for ordered formulas (and ABP’s) only with respect to a specific
order on variables, the family of polynomials in (16) are (conditionally) hard for OFPC
only with respect to this specific order.

According to the lower bound suggested above, a natural starting point to search
for hard candidates for OFPC might be the following: assume that the substitution (15)
consists of f1(y1,1, . . . , y1,n), . . . , fn(yn,1, . . . , yn,n), where fi(y1, . . . , yn) has exponentially
many monomials, while still having small ordered formulas, for any i = 1, . . . , n; e.g.,

fi(yi,1, . . . , yi,n) = (yi,1 + yi,2) · · · (yi,(n/2)−1 + yi,n/2).

(Then ` = n2 in the notation of (15).) Then, one might expect that the premise of
the example for conditional OFPC size lower bounds above possibly hold. Intuitively,
the (speculative) reason is that any PC refutation with a polynomial in n number of
proof-lines would need to operate with the fi’s as “almost atomic formulas”, since they
include exponential many monomials.

Acknowledgments

I wish to thank Emil Jeřabek, Sebastian Müller, Pavel Pudlák, Neil Thapen and
Youming Qiao for helpful discussions on issues related to this paper and the anonymous
referees for many comments improving the exposition of this paper. I also wish to thank

36

Ran Raz for suggesting this research direction, and Jan Kraj́ıček for inviting me to give
a talk at TAMC 2010 on this subject.

References

[ABSRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space
complexity in propositional calculus. SIAM J. Comput., 31(4):1184–1211 (electronic), 2002.
5

[ABSRW04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseu-
dorandom generators in propositional proof complexity. SIAM J. Comput., 34(1):67–88,
2004. (A preliminary version appeared in Proceedings of the 41st Annual Symposium on
Foundations of Computer Science (Redondo Beach, CA, 2000)). 5.4

[AGP02] Albert Atserias, Nicola Galesi, and Pavel Pudlák. Monotone simulations of non-monotone
proofs. J. Comput. System Sci., 65(4):626–638, 2002. Special issue on complexity, 2001
(Chicago, IL). 1

[Ajt88] Miklós Ajtai. The complexity of the pigeonhole principle. In Proceedings of the IEEE 29th
Annual Symposium on Foundations of Computer Science, pages 346–355, 1988. 1

[AKV04] Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint propagation as a
proof system. In CP, pages 77–91, 2004. 1, 1.1

[BGIP01] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps be-
tween degrees for the polynomial calculus modulo distinct primes. J. Comput. System Sci.,
62(2):267–289, 2001. Special issue on the 14th Annual IEEE Conference on Computational
Complexity (Atlanta, GA, 1999). 5.4

[BIK+97] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák, Alexander A. Razborov,
and Jǐŕı Sgall. Proof complexity in algebraic systems and bounded depth Frege systems
with modular counting. Comput. Complexity, 6(3):256–298, 1997. 1.1

[Ben80] Michael Ben-Or. Unpublished notes, 1980. 5.3
[BSI99] Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for the polynomial

calculus. In Proceedings of the IEEE 40th Annual Symposium on Foundations of Computer
Science (New York, 1999), pages 415–421. IEEE Computer Soc., Los Alamitos, CA, 1999.
5.4

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algo-
rithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium
on the Theory of Computing (Philadelphia, PA, 1996), pages 174–183, New York, 1996.
ACM. 1.1, 2.3

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979. 2.2

[GH03] Dima Grigoriev and Edward A. Hirsch. Algebraic proof systems over formulas. Theoret.
Comput. Sci., 303(1):83–102, 2003. Logic and complexity in computer science (Créteil,
2001). 1.1, 3.1, 3.5, 5, 3.1

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jǐŕı Sgall. Lower bounds for the polynomial calculus
and the Gröbner basis algorithm. Comput. Complexity, 8(2):127–144, 1999. 5.4

[JQS10] Maurice Jansen, Youming Qiao, and Jayalal Sarma. Deterministic black-box identity test-
ing π-ordered algebraic branching programs. Electronic Colloquium on Computational
Complexity (ECCC), TR10-015, February 2010. 1.1

[KPW95] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the size of
bounded depth Frege proofs of the pigeonhole principle. Random Structures Algorithms,
7(1):15–39, 1995. 1

[Kra08] Jan Kraj́ıček. An exponential lower bound for a constraint propagation proof system based
on ordered binary decision diagrams. J. Symbolic Logic, 73(1):227–237, 2008. 1, 1.1

[Nis91] N. Nisan. Lower bounds for non-commutative computation. Proceedings of the 23th Annual
ACM Symposium on the Theory of Computing, pages 410–418, 1991. 1, 1.1, 6, 6, 6.4, 6.5

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the
pigeonhole principle. Comput. Complexity, 3(2):97–140, 1993. 1

[Pit97] Toniann Pitassi. Algebraic propositional proof systems. In Descriptive complexity and
finite models (Princeton, NJ, 1996), volume 31 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 215–244. Amer. Math. Soc., Providence, RI, 1997. 1

37

[Pud99] Pavel Pudlák. On the complexity of the propositional calculus. In Sets and proofs (Leeds,
1997), volume 258 of London Math. Soc. Lecture Note Ser., pages 197–218. Cambridge
Univ. Press, Cambridge, 1999. 1

[Razb98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput. Complexity,
7(4):291–324, 1998. 5.4

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing, Vol. 2,
article 6, 2006. 1

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial
size. J. ACM, 56(2), 2009. 1, 1.1

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non commutative
models. Comput. Complexity, 14(1):1–19, 2005. 1.1, 2.1, 2.3, 6.2

[RT08a] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs. Ann.
Pure Appl. Logic, 155(3):194–224, 2008. arXiv:0708.1529. 1, 1.1, 5, 5.2, 5.2, 5.2, 5.3, 5.3,
5.4, 5.4, 5.4

[RT08b] Ran Raz and Iddo Tzameret. The strength of multilinear proofs. Comput. Complexity,
17(3):407–457, 2008. 1, 1.1, 5.3, 5.13

[Seg07] Nathan Segerlind. Nearly-exponential size lower bounds for symbolic quantifier elimination
algorithms and OBDD-based proofs of unsatisfiability. Electronic Colloquium on Compu-
tational Complexity (ECCC), TR07-009, January 2007. 1, 1.1

[Tza08] Iddo Tzameret. Studies in Algebraic and Propsitional Proof Complexity. PhD thesis, Tel
Aviv University, 2008. 1, 5.3

[Waa97] Stephan Waack. On the descriptive and algorithmic power of parity ordered binary decision
diagrams. In STACS, pages 201–212, 1997. 1.1

38

	Introduction
	Results and related work

	Preliminaries
	Noncommutative polynomials and formulas
	Proof systems and simulations
	Polynomial Calculus

	Polynomial calculus over noncommutative formulas
	The proof system NFPC

	Polynomial calculus over ordered formulas
	Simulations, short proofs and separations for OFPC
	OFPC polynomially simulates PCR
	Resolution over linear equations R(lin) and its subsystem R0(lin)
	OFPC polynomially simulates R0(lin)
	Short proofs and separations

	Useful lower bounds on products of ordered polynomials
	Suggested lower bound approach

