
Polynomial calculus space and resolution width

Nicola Galesi∗1, Leszek A. Ko lodziejczyk†2, and Neil Thapen‡3

1Dipartimento di Informatica, Sapienza Università di Roma
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Abstract

We show that if a k-CNF requires width w to refute in resolution, then it requires space
√
w

to refute in polynomial calculus, where the space of a polynomial calculus refutation is the
number of monomials that must be kept in memory when working through the proof. This
is the first analogue, in polynomial calculus, of Atserias and Dalmau’s result lower-bounding
clause space in resolution by resolution width.

As a by-product of our new approach to space lower bounds we give a simple proof of
Bonacina’s recent result that total space in resolution (the total number of variable occurrences
that must be kept in memory) is lower-bounded by the width squared. As corollaries of the main
result we obtain some new lower bounds on the PCR space needed to refute specific formulas, as
well as partial answers to some open problems about relations between space, size, and degree
for polynomial calculus.

∗nicola.galesi@uniroma1.it
†Partially supported by grant 2017/27/B/ST1/01951 of the National Science Centre, Poland. lak@mimuw.edu.pl
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1 Introduction

Propositional proof complexity studies the complexity of finding efficiently verifiable proofs, that
is, polynomial-time checkable certificates that propositional formulas are unsatisfiable. Research
in this area started with the work of Cook and Reckhow [12] and was originally viewed as a
gradual advance towards showing that NP6=co-NP. The main focus was on proving upper and
lower bounds on proof size. The most well-studied proof system in proof complexity is resolution,
for which numerous exponential size lower bounds have been shown. By a result of Ben-Sasson
and Wigderson [5], to show that a CNF requires large size in resolution it is usually enough to
show that it requires large width, where the width of a proof is the size of its largest clause.

Naturally other complexity measures for proofs have also been investigated, often revealing
interesting connections. A recent line of research has looked at the space measure, motivated
by an analogy between proofs and boolean circuits or Turing machines, and more recently by
applied SAT solving, where efficient memory access and management is a major concern. The
study of space in resolution was initiated by Esteban and Torán [13], who defined the space
of a resolution proof as the maximal number of clauses to be kept simultaneously in memory
during verification of the proof. This definition was later generalized to other proof systems
by Alekhnovich et al. [1]. As proved in [13], a CNF formula over n variables can be refuted in
space n + 1, even in resolution. Tight lower bounds for resolution proof space were proved in
a series of works [13, 4, 1], and Atserias and Dalmau [3] established the general result that for
resolution, width is a lower bound on space.

Together with resolution, the main focus of this paper is polynomial calculus resolution
(PCR), an algebraic proof system extending resolution by the capacity to reason about poly-
nomial equations. Polynomial calculus (PC) was introduced by Clegg et al. [11] and was later
extended by Alekhnovich et al. [1] to the more general system PCR. On the surface, PC and
PCR are systems for proving membership in ideals of multivariate polynomials. However, they
can also be viewed as refutational proof systems for CNF formulas: clauses can be efficiently
translated to multilinear monomials over some (fixed) field F, and a CNF formula F is shown to
be unsatisfiable by proving that the constant 1 is in the ideal generated by polynomials repre-
senting clauses of F together with polynomials enforcing that variables take only boolean values.
In PC and PCR the main proof complexity measure studied is degree, the maximal degree of
a polynomial used in the proof. A connection between degree and the size of a proof (that
is, the number of monomials used), was proved for PC in [11, 19], which inspired the similar
connection between width and size for resolution of [5]. This result made it possible to lift most
of the known degree lower bounds for PCR to size bounds [23, 19, 2, 18, 17, 21].

The space of a PCR proof is the maximal number of distinct monomials that must be
simultaneously in memory during a verification of the proof. The study of PCR space started
in [1], and grew in importance due to the fact that PCR underlies SAT-solvers based on Gröbner
algorithms. Already in [1] it was shown that PCR is strictly more powerful than resolution in
terms of space, though the separation proved there is relatively modest and witnessed by rather
artificial formulas. Eventually, research on limitations of proof space in PCR led to several lower
bounds [1, 8, 16, 6, 14] and to a framework to prove them [8].

An important open problem raised several times (see [22, 8, 16, 6, 14, 15]) is to determine
whether the elegant relation between width and space for resolution given in [3] has an analogy
in a relation between PCR degree and space, or even between resolution width and PCR space.
This is relevant to the more fundamental issue: how far-reaching is the analogy between proof
complexity for resolution and for PCR, two systems that have several common features but are
of different computational nature?
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1.1 Contributions

We give the less-expected answer to this open problem, by showing a connection between PCR
space and resolution width for CNF formulas, although one that is quadratic, rather than linear.
Our main result is the following theorem.

Theorem 20. Let F be a k-CNF. If F has a PCR refutation in space s over some field F, then
F has a resolution refutation of width s2 − s+ k.

Since width w resolution can easily be simulated by degree w+ 1 PCR, this also shows that
PCR refutations in space s can be transformed into PCR refutations of degree O(s2).

Theorem 20 can be understood as a general lower bound on PCR space: as long as k is
small, if a k-CNF requires width w to refute in resolution, then it requires space

√
w to refute

in PCR. The proof is quite different from previous PCR space lower bounds, which adapt a
combinatorial argument from [1], and we outline our new approach in Section 1.2. Using this
we also get a very simple proof of Bonacina’s recent result [7] that, in resolution, total space
is lower bounded by width squared. Our proof of that result (Theorem 4) does not use any
technical notion such as that of asymmetric width required in [7].

As is typical for PCR space lower bounds, our main theorem depends very little on the
particular rules of PCR. It only uses that the rules are sound, and that at each step we either
add terms to the memory or delete them (but not both at once). To study term space in a general
setting we describe a class of configurational proof systems, in which we are only guaranteed
soundness, and show that there we get the weaker bound of 2s(s + 1) + k on resolution width
(Theorem 19). This class is similar in spirit to, and includes, the semantic functional calculus
system of [1].

As a consequence of Theorem 20, we partially answer some other open questions about the
relation between space, size, and degree in PCR. A brief discussion of these follows.

New space lower bounds for PCR. The framework developed in [8] can be used to derive
all space lower bounds for PCR known until now. However, as observed in [14], there are CNF
formulas for which PCR space lower bounds appear likely to hold, but this framework seems
not to work. These include the linear ordering principle and functional pigeonhole principle
formulas, as well of versions of them with constant initial width. Using well-known width lower
bounds for these formulas [9, 18, 25, 27, 21] and Theorem 20 we are now able to prove PCR
space lower bounds.

Simplification and generalization of a previous lower bound. When G is a bounded-
degree connected graph with n nodes and expansion Ω(n), the well-known Tseitin formula
Ts(G) requires width Ω(n) to refute in resolution [28, 5] and hence, by [3], also Ω(n) space in
resolution. In PCR, Ω(

√
n) space lower bounds for Ts(G) for random graphs were obtained

in [14] using the framework of [8]. As a consequence of Theorem 20 and the width lower bound
we also obtain a Ω(

√
n) lower bound for space in PCR, but using no assumptions on G other

than the expansion.

Separations independent of characteristic. It is left open in [14] whether there are formulas
separating PCR size and degree from space for all fields at once, independently of the charac-
teristic. Our space lower bounds for linear ordering principles give such an example separating
PCR size from space.

A further example is provided by a variant of the bijective (both functional and onto) pi-
geonhole principle. A result of Riis ([26, 24]) shows that bijective pigeonhole principle formulas
for n + 1 pigeons and n holes have small PCR refutations in constant degree independently of
the characteristic. Riis’ result holds for a version of the principle where translations of wide
clauses are replaced by certain sums. We introduce a constant degree version of the bijective
pigeonhole principle that requires Ω(n) width to refute in resolution, but can be used to derive
Riis’ principle by means of small PCR proofs of constant degree. Theorem 20 hence gives us a
separation of PCR size and degree from space independently of characteristic.
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1.2 Outline of technique

Proof space lower bounds typically have the form: work down through the refutation and induc-
tively show that at each step, if the amount of the proof that is currently loaded into memory
is small, then there is some small object (such as a partial assignment) which semantically im-
plies every formula in memory. This gives a contradiction when we get to the bottom of the
refutation, where there is an unsatisfiable formula.

Our new idea is to pass up and down through the refutation possibly several times, satisfying
part of the memory as we go down, and dually falsifying part as we go up. Our model is an
argument of Buss in bounded arithmetic, showing that mathematical induction for NP properties
is enough to prove induction for boolean combinations of NP properties [10, Corollary 4]; a
propositional version of this might say that small-width resolution can simulate arguments in
which each step is a boolean combination of constantly many small-width CNFs. Buss’ proof
uses the Hausdorff difference hierarchy, which we do not use explicitly but which, in our setting,
tells us that at each step the contents of the memory can potentially be written in an alternating
fashion, with positive and negative subformulas appearing in a controllable way.

We first apply this idea to give a simplified proof of Bonacina’s lower bound on total space
in resolution in terms of resolution width [7]. A key tool is an Atserias-Dalmau family H of
partial assignments for a formula F , which is guaranteed to exist if F requires large resolution
width [3]. Given a refutation of F in small total space, we find the first step j at which some
assignment α ∈ H falsifies some narrow clause in memory; then we find the last step i < j at
which some β ⊇ α in H satisfies all wide clauses in memory; then we reach a contradiction by
considering the proof in the interval [i, j] under β.

For the PCR bound we will repeat this step of moving to a subinterval of the proof several
times. We first define what it means for a partial assignment α to force a memory configu-
ration M to be true or false over a family H. Then suppose that F requires large resolution
width w, but has a PCR refutation in small term space s. We list the memory configurations
in the refutation as M0, . . . ,Mt. We then inductively find a decreasing sequence of intervals
[0, t] = [i0, j0] ⊇ [i1, j1] ⊇ . . . in the proof and an increasing sequence of partial assignments
∅ = α0 ⊆ α1 ⊆ . . . in H, such that αm forces Mim to be true and Mjm to be false, and at each
step the proof restricted to the interval [im, jm] under the assignment αm becomes simpler in a
certain technical sense. At each step αm grows by at most O(s) literals, and the restricted proof
becomes trivial after s steps, so we reach a contradiction as long as w is bigger than O(s2),
giving our bound.

1.3 Organization

Section 2 contains some preliminary definitions. In Section 3 we discuss width and space in
resolution, introduce the Atserias-Dalmau characterization of width and prove our simple lower
bound on total space in resolution. In Section 4 we define our forcing relation and prove some
properties of it. In Section 5 we prove a simple version of our main theorem, with a 2s(s+1)+k
bound on width (Theorem 18). In Section 6 we extend this argument to give our main results,
a 2s(s + 1) + k bound for any configurational system (Theorem 19) and a s2 − s + k bound
for PCR (Theorem 20). Section 7 describes some consequences of our results for the relations
between space, size and degree. In Section 8 we mention some open problems.

2 Preliminary definitions

A literal is either a boolean variable x or its negation x̄. Boolean variables will take 0/1 values,
identified with ⊥/>. A clause is a set of literals, treated as a disjunction. The width of a clause
is the number of literals in it. A clause of width at most k is called a k-clause. A CNF formula
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is a conjunction of clauses. A k-CNF formula is a CNF formula consisting of k-clauses. A term
is a set of literals, treated as a conjunction.

A partial assignment is a partial function from the set of boolean variables to {0, 1}. For us
assignment will always mean partial assignment unless we specify otherwise. When convenient,
we will identify an assignment with the set of literals which it makes true. We write dom(α) for
the domain of an assignment α and write |α| for |dom(α)|.

Resolution is a refutational propositional system for CNF formulas based on the resolution
rule, which allows us to derive the clause C ∨D from the clauses C ∨ x and D ∨ x̄. A resolution
refutation of a CNF F is a sequence of clauses C0 . . . , Cm ending with the empty clause and
such that each Ci is either a clause in F or is obtained from earlier clauses by resolution. The
size of a resolution refutation is the number of clauses in it. The width of a resolution refutation
is the maximum width of a clause in it.

Polynomial calculus (PC) is an algebraic proof system defined in [11], which can be used
to witness that a set of polynomials has no solution. A PC proof works over a fixed field F
and proof lines in it are polynomials in F[x1, . . . , xn]. We will not work with PC but instead
with a refinement of it, polynomial calculus with resolution (PCR), introduced in [1]. In PCR,
proof lines are polynomials in F[x1, . . . , xn, x̄1, . . . , x̄n], with a formal algebraic variable for every
boolean literal, not just for every boolean variable. This has the advantage that a term, even
with negative literals, can be written as a single monomial rather than as a sum of possibly
exponentially many monomials, as would happen if we had to write 1− x to express x̄. We will
always have the axiom x̄ = 1 − x available and will treat x̄ semantically as the negation of x.
That is, in any assignment α, if either α(x) or α(x̄) is defined then both are and α(x̄) = 1−α(x).

A monomial m over F is a product of literals together with a coefficient from F. The term
represented by m is the conjunction of the literals appearing in m. The degree of a literal in m
will never matter in this paper, so it is safe to think of a monomial as a term with a coefficient
in front of it. A polynomial is a formal sum of monomials.

A PCR refutation of a set of polynomials P is a sequence p0, . . . , pt of polynomials, ending
with the constant polynomial 1, where we interpret a proof-line pi as asserting that pi = 0.
Each pi either comes from P or is obtained by one of the rules of PCR applied to earlier lines.
The rules are

boolean axioms: x2 − x complementarity axioms: x+ x̄− 1

linear combination:
p q

ap+ bq
multiplication:

p

xp

where p, q are any polynomials, x is any literal, and a, b ∈ F. The size of a PCR refutation is
the total number of monomials appearing in it, and the degree of a refutation is the maximum
degree of any monomial in it.

We can translate a clause
∨

i yi in literals yi into the semantically equivalent polynomial
equation

∏
i ȳi = 0. Thus an unsatisfiable CNF translates into a set of polynomials with no

solutions over {0, 1}, and it makes sense to view PCR as a refutational system for CNFs. There
is then a simple, direct simulation of resolution by PCR, and we see that degree in PCR is an
analogous measure to width in resolution.

2.1 Space measures

As is usual when studying space in a refutational system, we require a refutation of a CNF F
to be written in a special form, as a sequence of configurations M0, . . . ,Mt.

In resolution, a configuration is a set of clauses and a refutation M0, . . . ,Mt is such that the
first configuration is empty, the last one contains the empty clause, and for each i < t, Mi+1 is
obtained from Mi by one of the rules (1) axiom download : a clause of F is downloaded into Mi+1,
(2) deletion: Mi+1 is obtained from Mi deleting one or more clauses, or (3) inference: Mi+1 is
obtained from Mi by adding the conclusion of the resolution rule applied to two clauses in Mi.
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The clause space, or simply space, of such a refutation is the maximum number of clauses
appearing in any Mi. The total space of a configuration Mi is the total number of variable
instances appearing in M , or equivalently the sum of the width of the clauses in Mi. The total
space of a refutation is the maximum total space of any Mi.

In PCR a configuration is a set of polynomials, and a configurational PCR refutation of
a CNF F is a sequence M0, . . . ,Mt where M0 is empty, Mt contains the polynomial 1, and
for each i < t, Mi+1 is obtained from Mi by the rules (1)-(3) above, adapted to PCR. So in
(1) the axioms we can download are polynomials translating the clauses of F and instances of
the boolean and complementarity axioms, and in (3) we can infer new polynomials by linear
combination or multiplication. The standard space measure for a PCR configuration Mi is
monomial space, which counts the number of distinct monomials appearing in it [1]. However
we will work with the term space, which is the number of distinct terms represented by the
monomials in Mi and which lower bounds the monomial space. We define the term space, or
simply space, of a PCR refutation is the maximum term space of any Mi.

It is natural to think of a configuration as a formula, namely a CNF in the case of resolution
or a conjunction of polynomial equations in the case of PCR, and to think of rules (1)-(3) as
rules for deriving a new formula. To state our most general results, let us use this idea and
define a configurational proof system to be specified by a class of formulas and a set of sound
unary or binary rules. A refutation of a CNF F in the system is a sequence M0, . . . ,Mt of
formulas from the class, called configurations. M0 is the constant >, Mt is the constant ⊥, and
each Mi+1 is obtained from Mi, possibly together with some initial clause C of F , by a rule.
The limitation that we cannot use any configuration appearing earlier than Mi to derive Mi+1

is a strengthening of the standard “treelike” restriction on proof structure. Configurational
resolution and PCR, as described above, are examples of such systems, if we understand > as
the empty conjunction and ⊥ as the empty clause or the equation 1 = 0.

We can study the complexity of such a system by studying the complexity of its configu-
rations. Suppose that each configuration is labelled with a set of terms and is semantically
equivalent to a boolean function of those terms. Then we can define the term space of a con-
figuration to be the number of terms labelling it, and the term space of a refutation to be the
maximum term space of its configurations. This measure (which could just as well be called
“clause space”) lower-bounds both clause space for resolution and monomial space for PCR,
if we understand them as configurational systems and label configurations with the clauses or
terms that appear in them. Our argument gives a lower bound for term space in any config-
urational system, even the “semantic” one in which configurations can be any formula and all
sound rules are allowed – this is essentially the same as the functional calculus system defined
in [1]. We prove a better bound, by a factor of two, in the specific case of PCR.

3 Width, space, and total space in resolution

We will make heavy use of a characterization of resolution width given by Atserias and Dal-
mau [3]. There, the familyH defined below is referred to as a winning strategy for the Duplicator
in a certain kind of pebble game.

Definition 1 ([3]). Let F be a k-CNF. A width-w Atserias-Dalmau family for F is a nonempty
family H of partial assignments to the variables of F such that for each α ∈ H,

(i) |α| ≤ w
(ii) if β ⊆ α then β ∈ H

(iii) if |α| < w and x is a variable of F , then there is β ⊇ α in H with x ∈ dom(β)

(iv) α does not falsify any clause of F .
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Lemma 2 ([3]). If F is a k-CNF with no resolution refutation of width w, then there exists a
width-(w + 1) Atserias-Dalmau family for F .

One way to prove Lemma 2 is by considering the Prover-Adversary game on F . This is
played between an Adversary, who claims she knows a total assignment satisfying F , and a
Prover, who maintains a partial assignment α (his memory) and can in each round ask the
Adversary the value of a variable, with the goal of extending α to falsify some clause of F , or
can forget variables from α to save memory. By replacing each clause with the partial assignment
negating it, and flipping the direction of the edges in the graph of the refutation, we can identify
small-width resolution refutations of F with winning strategies for the Prover which use limited
memory. If there is no such strategy, we can construct H from the positions α which are winning
for the Adversary.

Theorem 3 ([3]). Let F be a k-CNF. If F has a resolution refutation in space s, then it has a
resolution refutation in width s+ k.

Proof. LetM0, . . . ,Mt be the sequence of configurations forming the space-s refutation. Suppose
there is no refutation of F in width s+ k. Let H be a width-(s+ k+ 1) Atserias-Dalmau family
for F . We will inductively show that for each i there is α ∈ H which satisfies every clause in Mi.
This is trivial for M0 and a contradiction for Mt.

Suppose it is true for Mi. Since it takes only one literal to satisfy a clause, we may assume
|α| ≤ s. The only interesting case is axiom download, where Mi+1 is Mi ∧ C for some initial
clause C from F . By part (iii) of Definition 1 we can extend α in k steps to some β ∈ H which
sets all variables in C. By part (iv), β must satisfy C, so we are done.

Notice that in the Prover strategy corresponding to a small-width refutation in Lemma 2
starts at the bottom of the proof and works up, trying to falsify clauses. An alternative proof of
Theorem 3 would be to construct a small-width refutation directly as a Prover strategy, where
this time the Prover starts at the top of the configurational proof and works down, trying to
satisfy clauses. In the next theorem we combine both kinds of strategy, first going up and then
down. We can think of the theorem as a lower bound on a space measure in which narrow
clauses do not count towards the space of a configuration.

Theorem 4. Let F be a k-CNF. Let m, s ∈ N with m ≥ k. Suppose that F has a configurational
resolution refutation in which each configuration contains at most s clauses of width greater
than m. Then F has a resolution refutation of width 2m+ s.

Proof. Let M0, . . . ,Mt be the configurational resolution refutation. Each Mi contains some
number q of narrow clauses C1, . . . , Cq of width at most m, and r ≤ s many wide clauses
D1, . . . , Dr of width greater than m. Suppose for a contradiction that F has no resolution
refutation of width 2m+ s. Let H be a Atserias-Dalmau family for F of width 2m+ s+ 1.

The configuration Mt contains the empty clause, which is narrow and falsified by any as-
signment. Let j be least such that some narrow clause C in Mj is falsified by some assignment
α ∈ H. Fix such a C and α. Without loss of generality, |α| ≤ m. Since C is falsified by α,
it cannot have been introduced by axiom download. So we must have C = E ∨ F for clauses
E ∨ x and F ∨ x̄ in Mj−1. Extend α to α′ ∈ H which gives a value to x, with |α′| ≤ m + 1.
Without loss of generality α′(x) = 1. Hence α′ falsifies F ∨ x̄, and by minimality of j, we know
that F ∨ x̄ is a wide clause.

Now let i < j be greatest such that there is some β ⊇ α′ in H which satisfies every wide
clause in Mi. Fix such a β. Without loss of generality, |β| ≤ |α′| + s ≤ m + s + 1. Since α′

falsifies F ∨x̄, we cannot have i = j−1. Therefore maximality of i implies that Mi+1 extends Mi

by adding a wide clause D which is not satisfied by any γ ⊇ β in H. Axioms are narrow, so D
cannot be an axiom. Thus have D = A ∨ B for two clauses A ∨ y and B ∨ ȳ in Mi. Extend β
to β′ ∈ H which gives a value to y, with |β′| ≤ m+ s+ 2. Without loss of generality β′(y) = 1,
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and we look at the clause B ∨ ȳ. If this clause is wide, then β satisfies it, which means that β
satisfies B and hence D, which is impossible. If it is narrow, then we can extend β′ to γ ∈ H
such that |γ| ≤ |β′|+m− 1 ≤ 2m+ s+ 1 and γ sets all variables in B ∨ ȳ. The minimality of j
implies that γ satisfies B ∨ ȳ. We know that γ(y) = 1, so γ satisfies B and thus D, which is
impossible.

Theorem 4 has the following consequence, which is essentially the main result of [7] with an
improved constant.

Corollary 5. Let F be a k-CNF and w ≥ k. Suppose F has no resolution refutation in width w.
Then it has no resolution refutation in total space w2/8.

Proof. Suppose that there is a refutation Π in total space w2/8. Then, if we set m = w/4 and
s = w/2, no configuration in Π can contain more than s many clauses of width more than m.
Hence we can apply the lemma to find a resolution refutation of width 2m+ s = w.

4 Forcing with an Atserias-Dalmau family

In this section, we explain how to use the structure of an Atserias-Dalmau family H to define
the relation “α forces the term t to a certain value”. This is in fact a very simple version of
a forcing relation as used in set theory and other areas of logic. For a recent application of a
similar definition in proof complexity, see e.g. [20]. The idea is that no extension of α will ever
give t a different value, as long as we only consider extensions within H. We will use this in
the next section to prove our main result. We present the constructions and proofs for PCR,
but will explain in Section 6 how they can be generalized to an arbitrary configurational proof
system.

Fix a k-CNF F and a width-w Atserias-Dalmau family H for F , for some k,w ∈ N.

Definition 6. For an assignment α ∈ H and a term t, we define

(i) α forces t = 0 if α sets some literal in t to 0

(ii) α forces t = 1 if no β ∈ H with β ⊇ α sets any literal in t to 0.

If either holds, we say that α fixes t.

We write these as α  t = 0 and α  t = 1. We now extend the definition to polynomials
and configurations. We will treat polynomials as linear combinations of terms over our field F.

Definition 7. For an assignment α ∈ H and a polynomial p =
∑

i aiti, we say that α decides p
if it fixes every term ti in p. We say that α decides a configuration M if it fixes every term in M
or, equivalently, decides every polynomial in M .

If α decides p then, for each term ti in p, there is a 0/1 value bi such that α  ti = bi;
implicitly, α assigns value bi to ti. We say that α forces p = 0 if p, considered as a linear
combination of terms, evaluates to 0 under this assignment. More formally, α forces p = 0 if α
decides p and

∑
i aibi = 0. We say that α forces p 6= 0 if α decides p and

∑
i aibi 6= 0.

For a configuration M , we say that α forces M if α decides M and forces p = 0 for every
polynomial p in M . We say that α forces ¬M if α decides M and forces p 6= 0 for some p in M .

We write these relations as α  p = 0, α  p 6= 0 etc. Note that they are all preserved under
extending α within the family H.

The intuitive meaning of α  p = 0 is that, if we consider only assignments in H, then
the equation p = 0 “holds” in every extension of α, and this is extended to negations and
configurations in the natural way. Notice that whether a term is forced to some value depends
on the structure of H in a potentially nontrivial way, but for polynomials and configurations,
nothing new happens. This is because our application is to prove lower bounds on term space.
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In this context terms can be very big, and the concept of forcing allows us to set their value
without setting many variables. On the other hand, polynomials and configurations contain few
terms, so they can be decided simply by fixing those few terms.

In the following lemmas we show that the  relation usually behaves in an intuitive way,
after first giving an example of how this can break down when α is very large.

Example. Assume that α ∈ H, |α| = w, and that x /∈ dom(α). Then, since α has no proper
extensions in H, we have both α  x = 1 and α  x̄ = 1.

Lemma 8. Let α ∈ H and M be a configuration. We cannot have both α M and α  ¬M .

Proof. This is immediate from the definitions.

Lemma 9. Let α ∈ H and let t1, . . . , ts be terms. Then there is β ⊇ α in H such that β fixes
t1, . . . , ts and |β| ≤ |α|+ s.

Proof. It is enough to show this for s = 1. If there is some γ ⊇ α in H which sets a literal x
in t1 to 0, we put β = α ∪ {x := 0} so that β  t1 = 0. We have β ∈ H, since β ⊆ γ. If there is
no such γ then by definition α  t1 = 1 and we put β = α.

Lemma 10. Let α ∈ H with |α| < w. Let t1, . . . , tr be terms and b1, . . . , br be boolean values
such that α  ti = bi for each i. Then α can be extended to a total assignment A such that
A(ti) = bi for each i.

Proof. To construct A, start with α and then, for each ti forced to 1 by α, set all literals in ti
to 1. Set all remaining variables arbitrarily. The only way this construction can fail is if some
variable x appears positively in a term ti and negatively in a term tj , where α forces both ti
and tj to 1. But this cannot happen, since |α| < w implies that α has an extension in H setting
either x or x̄ to 0.

Corollary 11. Assume k ≥ 2 and let α ∈ H with α ≤ w − k. Let M and M ′ be successive
configurations in a PCR refutation of F . Then it cannot be the case that α M and α  ¬M ′.

Proof. The configuration M ′ is semantically implied by M or by M ∧C for some clause C of F .
We may assume that we are in the latter case. Let α M and α  ¬M ′.

We first extend α in k steps to β ∈ H which sets all variables in C. By part (iv) of
Definition 1, β satisfies a literal in C. We let α′ ∈ H be α plus this literal. Notice that |α′| < w.
List all terms in M and M ′ as t1, . . . , tr. Since α′ fixes all these terms, there exist boolean values
b1, . . . , br such that α′  tj = bj for each j. We use Lemma 10 to obtain a total assignment A
extending α′ which sets each tj to bj . Then A satisfies M since α′  M and falsifies M ′ since
α′  ¬M ′. Also A satisfies C by construction of α′. This contradicts that M ∧ C semantically
implies M ′.

Corollary 12. Assume k ≥ 2 and let M and M ′ be successive configurations in a PCR refuta-
tion of F with term space s. Let α ∈ H with |α| ≤ w − k − s. If α  M , then there is β ⊇ α
in H with |β| ≤ |α|+ s such that β M ′.

Proof. This is immediate from Lemma 9 and Corollary 11.

This suggests a possible approach to proving PCR space lower bounds. Given a refutation
M0, . . . ,Mt with space s, use Corollary 12 to inductively find α0, . . . , αt in H such that αi Mi,
reaching a contradiction at Mt. However this does not work, since αi may grow in size by s at
each step, quickly reaching our limit w − k.

What is missing is a lemma saying that if αi  Mi, then we can find β ⊆ αi such that
β  Mi and |β| is bounded by a function of the space of Mi. This is called a locality lemma in
the literature on space [1, 4, 8]. We do not expect a general lemma of this form to hold here,
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because, for example, it is easy to envisage a large assignment α and a term t such that α  t = 1
but this is not preserved in any smaller β ⊆ α. Lemma 16 below is a kind of locality lemma,
but has the limitation that it only controls the size of extensions of some fixed assignment α
(α itself does not get smaller). We only apply it O(s) times, and use it to control how fast our
assignment grows.

5 Proof of main result

This section is devoted to a proof of an initial, somewhat simpler, version of our main result.
We will adapt this proof to improve the bound on width from 2s(s + 1) + k to s(s − 1) + k in
the next section. We assume that F is a k-CNF (without loss of generality, k ≥ 2) with a PCR
refutation in space s over some fixed field F. Let M0, . . . ,Mr be the sequence of configurations
forming the refutation of F . For 0 ≤ i ≤ j ≤ r, the proof interval [i, j] is the sequence of
configurations Mi, . . . ,Mj .

We let H be a width-w Atserias-Dalmau family for F , with the value of w to be fixed later,
and use the notion of forcing over H from the previous section. We will be interested in how
many terms in a given configuration M are forced to 0 by an assignment from H, or more
precisely, in how many terms are not forced to 0. Given M and α, we write Z(M,α) for the set
of terms in M which are forced to 0 by α, and we write NZ(M,α) for the remaining terms.

Definition 13. Let m ≥ 0. An assignment α ∈ H guarantees m non-zeroes in M if for all
β ⊇ α in H, we have |NZ(M,β)| ≥ m. We say that α guarantees m non-zeroes in the proof
interval [i, j] if for each ` ∈ [i, j], α guarantees m non-zeroes in M`.

Clearly the property of guaranteeing m non-zeroes is preserved under extending assignments
within the family H. The next lemma is a useful interaction of this property with forcing.

Lemma 14. Suppose that |NZ(M,α)| = m and that α guarantees m non-zeroes in M . Then α
decides M .

Proof. List NZ(M,α) as t1, . . . , tm. The remaining terms in M are forced to 0 by α, meaning
that they each contain a literal set to 0 by α. Therefore, since α guarantees m non-zeroes in
M , no β ⊇ α in H can force any ti to 0, and so by definition α forces each ti to 1. It follows
that α fixes each term in M and thus decides M .

We now prove two simple lemmas, allowing us to grow and shrink assignments, and then use
these in the main lemma from which the space lower bound will follow.

Lemma 15. Let M contain at most s terms and let α ∈ H guarantee m non-zeroes in M . Then
there is β ⊇ α in H such that β decides M and |β| ≤ |α|+ s−m.

Proof. This is a simple extension of the proof of Lemma 9.

Lemma 16. Let M contain at most s terms and let α ∈ H. Suppose there is γ ⊇ α in H with
|NZ(M,γ)| = m. Then there is β with α ⊆ β ⊆ γ such that |NZ(M,β)| = m and |β| ≤ |α|+s−m.

Suppose furthermore that α guarantees m non-zeroes in M . Then γ  M implies β  M
and γ  ¬M implies β  ¬M .

Proof. List the terms in M as t1, . . . , tr with r ≤ s. Suppose NZ(M,γ) is t1, . . . , tm and Z(M,γ)
is tm+1, . . . , tr. We define β by starting with α and adding, for each term ti among tm+1, . . . , tr,
one literal from γ which sets ti to 0. Then |NZ(M,β)| = |NZ(M,γ)| = m and |β| ≤ |α|+ s−m.
In the “furthermore” part, β decides M by Lemma 14. The implications follow since β ⊆ γ.
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Lemma 17 (Main Lemma). Suppose w ≥ 2s(s+ 1) + k. Then for each m ≤ s there is α ∈ H
and a proof interval [i, j] such that

(i) α Mi and α  ¬Mj

(ii) α guarantees m non-zeroes in [i, j]

(iii) |α| ≤ 4

m−1∑
r=0

(s− r).

Proof. We use induction on m. The base case for m = 0 is immediate, taking α = ∅ and [i, j] to
be the whole refutation [0, t]. As M0 has no terms and the last configuration Mt only contains
the polynomial 1, the empty assignment ∅ forces M0 and ¬Mt and the other two conditions are
trivial.

Now suppose that α and [i, j] are such that conditions (i)–(iii) hold for m, where m < s. We
will find a proof interval [i′, j′] ⊆ [i, j] and an assignment α′′ satisfying (i)–(iii) for m+ 1. Note
that (iii) implies |α|+ 4(s−m) ≤ 4[s+ (s− 1) + · · ·+ 1] = 2s(s+ 1) ≤ w − k.

We work separately on the two ends of the proof interval. We first deal with the left end,
distinguishing two cases:

(a) there is ` ∈ [i, j] such that for some β ⊇ α in H it holds that |NZ(M`, β)| = m and β M`

(b) no such ` exists.

In case (a) we consider the largest such ` and a corresponding β; necessarily ` < j. By condi-
tion (ii) and Lemma 16, we may assume without loss of generality that |β| ≤ |α| + s −m. By
condition (ii) and Lemma 15, we may extend β to α′ ∈ H with |α′| ≤ |α|+2(s−m) such that α′

decides M`+1. Since β  M`, by Corollary 11, the soundness of PCR and the bound on |α′|, it
follows that α′ M`+1. We set i′ := `+ 1. In case (b) we set α′ := α and i′ := i. In both cases,
we have |α′| ≤ |α|+ 2(s−m) and α′ Mi′ .

We now move to the right end of the interval and again distinguish two cases:

(c) there is ` ∈ [i′, j] such that for some β ⊇ α′ in H it holds that |NZ(M`, β)| = m

(d) no such ` exists.

In case (c) we consider the smallest such ` and a corresponding β. By Lemma 16 we may assume
|β| ≤ |α′|+ s−m. By condition (ii) and Lemma 14, β decides M`. Therefore β  ¬M`, since if
β M` then ` and β satisfy the conditions of case (a), which is impossible by the choice of i′. It
follows that ` > i′. Using Lemma 15, we extend β to α′′ ∈ H with |α′′| ≤ |α′|+2(s−m) ≤ w−k
such that α′′ decidesM`−1. We cannot have α′′ M`−1, by Corollary 11. Therefore α′′  ¬M`−1

and we set j′ := `−1. In case (d) we set α′′ := α′ and j′ := j. In both cases, |α′′| ≤ |α|+4(s−m)
and α′′  ¬Mj′ .

This completes the construction. We have shown condition (i), and condition (iii) holds
inductively. Finally, by condition (ii) for m we know that α′′ guarantees m non-zeroes in [i′, j′],
since α′′ ⊇ α. Furthermore, by the choice of j′ we know that if γ ⊇ α′′ and i′ ≤ ` ≤ j′, then
|NZ(M`, γ)| 6= m. Thus α′′ in fact guarantees m+ 1 non-zeroes in [i′, j′].

Theorem 18. Let F be a k-CNF. If F has a PCR refutation in monomial space s over some
field F, then F has a resolution refutation of width 2s(s+ 1) + k.

Proof. Suppose there is no such resolution refutation. Then we can choose our family H to
have width w = 2s(s+ 1) + k, and it is enough to show that Lemma 17 leads to a contradiction
for m = s. The lemma gives us a proof interval [i, j] and α ∈ H with |α| ≤ w − k such
that α  Mi, α  ¬Mj and α guarantees s non-zeroes in [i, j]. For each ` ∈ [i, j] a (trivial)
application of Lemma 15 shows that α decides M`. Using the fact that α  Mi and applying
Corollary 11 to Mi+1, . . . ,Mj in turn, we conclude that α Mj . But this is impossible.
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6 Improved bounds

In this section, we present two refined versions of our main result. First, we show that the
bound from Theorem 18 works with respect to term space in any configurational proof system,
not just PCR. Then, we improve the bound for PCR by roughly a factor of two.

6.1 A bound for general configurational systems

Recall from Section 2.1 that in general a configuration M with term space s is a formula ϕ
labelled with a sequence of terms t1, . . . , ts, such that ϕ is semantically equivalent to g(t1, . . . , ts)
where g is a boolean function. Given α ∈ H, we say that α decides M if it fixes all terms, say
to values b1, . . . , bs We say that α forces M or forces ¬M if g(b1, . . . , bs) is respectively 1 or 0.

Using these definitions, all the arguments about PCR in Sections 4 and 5 go through for any
configurational system, as we did not use any properties of PCR except for soundness of the
rules. Therefore we have:

Theorem 19. Let F be a k-CNF. If F has a refutation in term space s in any configurational
proof system, then F has a resolution refutation of width 2s(s+ 1) + k.

We remark that, by counting terms more carefully, this can be improved to width 2s2 + k.

6.2 A stronger bound for PCR

We now show how to improve this bound in the case of PCR. The only specific property of PCR
we use is that if M` and M`+1 are successive configurations in a PCR refutation, then the terms
in M`+1 are either a subset or a superset of the terms in M`.

Theorem 20. Let F be a k-CNF. If F has a PCR refutation in monomial space s over some
field F, then F has a resolution refutation of width s2 − s+ k.

We use the following strengthening of Lemma 17.

Lemma 21. Suppose w ≥ s(s − 1) + k. Then for each m ≤ s − 1 there is α ∈ H and a proof
interval [i, j] in the PCR refutation such that

(i) α Mi and α  ¬Mj

(ii) α guarantees m non-zeroes in [i, j]

(iii) |α| ≤ 2

m−1∑
r=0

(s− 1− r).

Proof. We use the same structure as the proof of Lemma 17, but with induction only up to
m = s− 1. In the induction, suppose we are in case (a) with m < s− 1. We have ` ∈ [i, j] such
that for some β ⊇ α in H it holds that |NZ(M`, β)| = m and β  M`, and we have chosen `
maximal, so that there is no such β for M`+1. Furthermore α guarantees m non-zeroes at M`

and M`+1 and we have the bound |α|+ 2(s−m− 1) ≤ 2
∑m

r=0(s− 1− r) ≤ s(s− 1) ≤ w − k.
In Lemma 17, we used β to find α′ ⊇ α in H with α′  M`+1 and |α′| ≤ |α| + 2(s −m). We
now want to improve this bound to |α′| ≤ |α|+ s−m− 1.

By the properties of PCR, we may list the terms in M` as t1, . . . , tp and the terms in M`+1 as
t1, . . . , tq with p, q ≤ s. By Lemma 16 we may assume |β| ≤ |α|+p−m. If q ≤ p, then already β
decides M`+1, so β  M`+1 by Corollary 11; and also |NZ(M`+1, β)| ≤ |NZ(M`, β)| = m. This
contradicts the maximality of `. So we must have q > p.

We apply the proof of Lemma 9 carefully to extend β to α′ ∈ H which fixes the remaining
terms tp+1, . . . , tq in M`+1. That is, for each of these terms ti we add, if we can, a literal which
sets ti to 0, and otherwise do nothing. The resulting α′ has size at most |α|+ p−m+ (q− p) ≤
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w − k, and thus α′ M`+1 by Corollary 11. Hence α′ cannot set all of these terms to 0, or we
would have |NZ(M`+1, α

′)| = |NZ(M`, β)| = m, contradicting the maximality of `. Therefore
for at least one ti we did not add a literal, giving |α′| ≤ |α|+p−m+(q−p−1) ≤ |α|+s−m−1.

Now suppose we are in case (c) at the right end of the interval. We have ` ∈ [i′, j] such that
for some β ⊇ α′ in H it holds that |NZ(M`, β)| = m and we have chosen ` minimal, so that
there is no such β for M`−1. Again α′ guarantees m non-zeroes at M` and M`−1 and now we
have the bound |α′| + s −m − 1 ≤ w − k. As in the proof of Lemma 17, we must have that
β  ¬M` and ` > i′. We list the terms in M`−1 as t1, . . . , tp and the terms in M` as t1, . . . , tq,
and by Lemma 16 without loss of generality may assume |β| ≤ |α′|+ q −m.

Similarly to before, we must have p > q as p ≤ q implies |NZ(M`−1, β)| ≤ |NZ(M`, β)|,
contradicting the minimality of `. By adding at most one literal for each term tq+1, . . . , tp we
extend β to α′′ which fixes all these terms; again this cannot set all of them to 0 or it would
contradict the minimality of `, so we have |α′′| ≤ |β| + p − q − 1 ≤ |α′| + p −m − 1 ≤ w − k.
Hence α′′  ¬M`−1 by Corollary 11, since β  ¬M`, and also |α′′| ≤ |α|+ 2(s−m− 1).

Proof of Theorem 20. If there is no such resolution refutation, then F has an Asterias-Dalmau
family H of width w = s2 − s+ k + 1, by Lemma 2. We apply Lemma 21 for m = s− 1. This
gives us a proof interval [i, j] and α ∈ H with |α| ≤ s(s − 1) ≤ w − k − 1 such that α  Mi,
α  ¬Mj and α guarantees s− 1 non-zeroes in [i, j]. We will show inductively that for each ` in
this interval there is β ⊇ α in H with |β| ≤ |α|+ 1 such that β M`. This gives a contradiction
for ` = j.

Suppose this holds for `. Necessarily every configuration in [i, j] has either s− 1 or s terms.
If M` has s terms, then the terms in M`+1 are a subset of the terms in M` and thus β M`+1

by Corollary 11. If M` has s− 1 terms, then by Lemma 14, already α M`. We can extend α
to α′ which decides M`+1 by adding at most one literal, and then again apply Corollary 11.

7 Consequences of the main result

In this section, we describe the consequences of our result outlined in Section 1.1.

7.1 New space lower bounds for PCR

As mentioned in the introduction, there are some CNF formulas for which it has seemed rea-
sonable to expect PCR space lower bounds but, by [14], the general framework for proving such
bounds developed in [8] either provably does not work or seems not to. Examples include the
linear ordering principle and the functional pigeonhole principle.

7.1.1 Linear ordering principle

The linear ordering principle encodes the property that a finite linearly ordered set of n elements
must have a minimal element. An unsatisfiable CNF formula expressing this principle, LOPn,
uses variables xij , for i 6= j ∈ [n], and consists of the clauses:

x̄ij ∨ x̄ji i, j ∈ [n] i 6= j
x̄ij ∨ x̄jk ∨ xik i, j, k ∈ [n] i 6= j 6= k 6= i∨

j∈[n],i6=j xij i ∈ [n].

First we consider the graph version of this principle, GOP(G), introduced in [27], in the
encoding used to prove a degree lower bound for PCR in [18]. Let G = (V,E) be a simple
undirected graph over n nodes, that is, V = [n]. Let Γ(i) be the set of neighbours of i in G.
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The variables of GOP(G) are xij for i < j ∈ [n]. GOP(G) is defined as the conjunction of the
following clauses:

xij ∨ xjk ∨ x̄ik i, j, k ∈ [n] i < j < k
x̄ij ∨ x̄jk ∨ xik i, j, k ∈ [n] i < j < k∨

j∈Γ(i),i<j xij ∨
∨

j∈Γ(i),i>j x̄ij i ∈ [n].

Definition 22. ([18]) The graph G is an (r, c)-vertex expander if for any set U ⊆ V with |U | ≤ r
it holds that |Γ(U)| ≥ c|U |. The value c is the vertex expansion of G.

Theorem 23. Let G be a simple undirected constant-degree graph which is an (r, c)-vertex
expander. Then, over any field, refuting GOP(G) in PCR requires space Ω(

√
cr/2).

Proof. It was proved in [18] that the polynomial translation of GOP(G) requires degree Ω(cr/4)
to refute in PCR. Hence, GOP(G) requires width Ω(cr/4) in resolution. The result follows using
our main Theorem 20.

Since there are constant-degree graphs G with c = Ω(n) (see [18] for the precise G to use),
we have the following.

Corollary 24. There are simple undirected graphs G over n nodes such that refuting GOP(G)
requires PCR space Ω(

√
n).

We can also lift the lower bound to LOPn.

Corollary 25. Over any field, refuting LOPn requires PCR space Ω(
√
n).

Proof. (sketch) Let G = ([n], E) be as in Corollary 24. Consider the substitution ρG to the
variables of LOPn defined by ρ(xij) = x̄ji and ρ(x̄ij) = xji for i > j ∈ [n]. It is not difficult
to see that after applying ρG, the antisymmetry axioms of LOPn become tautologies of the
form xij x̄ij = 0, the transitivity axioms of LOPn become transitivity axioms of GOP(G), and
the monomials translating the wide clauses of LOPn become derivable from the corresponding
axioms of GOP(G) by a series of multiplications (effectively, by weakening).

Assume that LOPn has a PCR refutation in space s. We obtain a PCR refutation of GOP(G)
in space s + O(1) as follows. First apply ρG to the whole refutation. To turn this into a valid
refutation of GOP(G), whenever the original refutation downloaded an antisymmetry axiom of
LOPn, we now derive the monomial xij x̄ij at the cost of a constant increase in space. Whenever
the original refutation downloaded an LOPn axiom of the form

∨
j∈[n],i6=j xij , we download the

corresponding axiom of GOP(G) and obtain the axiom of LOPn by a series of steps in which
we multiply a monomial by a single variable and immediately delete the old monomial, keeping
only the result of multiplication; this increases space by 1. With transitivity axioms, there
is nothing to do. It is not difficult to see that what remains is a valid proof of GOP(G) of
space s+O(1).

7.1.2 Functional pigeonhole principle

The functional pigeonhole principle FPHPm
n , for m > n, asserts that there cannot exist a total

injective function mapping m pigeons into n holes. Its encoding as an unsatisfiable CNF, built
using variables xij variables for i ∈ [m] and j ∈ [n], is the following:

∨
j∈[n] xij i ∈ [m]

x̄ij ∨ x̄i′j i 6= i′ ∈ [m], j ∈ [n]
x̄ij ∨ x̄ij′ i ∈ [m], j 6= j′ ∈ [n].

PCR space lower bounds for FPHPm
n were so far unknown, and, as proved in [14], the framework

developed in [8] could not be used in this case.
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We consider two constant-width versions of the functional pigeonhole principle. The extended
version of FPHPm

n , eFPHPm
n , is obtained by replacing each large initial clause

∨
j∈[n] xij for

i ∈ [m] with the CNF

(yi1 ∨ xi1) ∧
∧

1≤j≤n−1

(ȳij ∨ xij ∨ yi(j+1)) ∧ (ȳin ∨ xin)

which uses mn new variables yij for i ∈ [m], j ∈ [n]. Width lower bounds of Ω(n) for eFPHPm
n

in resolution can be easily obtained by modifying a Prover-Adversary argument proving a width
lower bound for FPHPm

n . Hence Theorem 20 implies lower bounds of Ω(
√
n) on the space needed

to refute eFPHPm
n in PCR. The functional pigeonhole principle is an example of formula which

is weight-constrained in the terminology of [16] (see Definition 7.1 in [16]). As such it was shown
in [16, Theorem 1.5] that the PCR space needed to refute FPHPm

n and eFPHPm
n can differ by

at most a constant factor. Hence Theorem 20 implies PCR space lower bounds for FPHPm
n as

well.

Corollary 26. Over any field, refuting FPHPm
n in PCR requires space Ω(

√
n).

A different constant-width version of the functional pigeonhole principle is the functional
pigeonhole principle over bipartite graphs G, as defined in [21]. Using known width and degree
lower bounds, we get a similar PCR space lower bound for this family of formulas when G is a
suitable graph. Let G = (U, V,E) be a bipartite graph. FPHP(G) is defined using variables xuv,
for u ∈ U , v ∈ V , as 

∨
v∈Γ(u) xuv u ∈ U

x̄uv ∨ x̄u′v v ∈ V, u 6= u′ ∈ Γ(v)
x̄uv ∨ x̄uv′ u ∈ U, v 6= v′ ∈ Γ(u).

Definition 27. ([21, Definition 5.1]) A bipartite graph G = (U, V,E) is an (s, δ)-boundary
expander if for each U ′ ⊆ U with |U ′| ≤ s, it holds that |∂(U ′)| ≥ δ|U ′|, where the boundary
∂(U) of U is {v ∈ V : |Γ(v) ∩ U ′| = 1}.
Theorem 28. ([21, Theorem 5.9]) Let G = (U, V,E) be a bipartite graph which is an (s, δ)-
boundary expander with left-degree bounded by d. Refuting FPHP(G) in PCR requires degree
strictly greater than δs/2d.

Hence FPHP(G) also requires width δs/2d in resolution. From Theorem 20 we conclude:

Theorem 29. Let G = (U, V,E) be a bipartite graph which is an (s, δ)-boundary expander with
left-degree bounded by d. Refuting FPHP(G) in PCR requires space Ω(

√
δs/2d).

Since, as mentioned in [21], there exist bipartite graphs with |U | = n+ 1, |V | = n and with
left-degree 3 which are (γn, δ)-boundary expanders for γ, δ > 0, we can conclude:

Corollary 30. There exist bipartite graphs G with |U | = n+ 1 and |V | = n such that refuting
FPHP(G) in PCR requires space Ω(

√
n).

7.2 Separations independent of characteristic

7.2.1 Separation of size from space

In [14], a separation of size and degree from space was proved for PCR: for each characteristic
p > 0, there is a family of constant-width CNFs that have small low-degree refutations in PCR
over characteristic p but require large PCR space over any field. However, it was left as an
open problem whether there are formulas witnessing this sort of separation regardless of the
characteristic of the field.

Theorem 20, together with the degree lower bound of [18] (which holds for any field) and
the polynomial size resolution proofs for GOP(G) (see [18]) allow us to obtain a separation of
PCR size and space independent of characteristic, using GOP(G).
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Theorem 31. Over any field, there are PCR refutations of size O(n3) of GOP(G) for any G.
If G is the constant-degree vertex-expander graph with expansion Ω(n) of [18], then, over any
field, refuting GOP(G) requires PCR space Ω(

√
n).

7.2.2 Separation of size and degree from space

To separate both size and degree from space in a way that works over any characteristic, we
turn to a version of the bijective (functional onto) pigeonhole principle. Consider the following
CNF, which we denote ex-bij-PHPn+1

n . The variables are xij , yij , zij for i ∈ [n+1], j ∈ [n]. The
idea is that the variables xij represent a bijection between n+ 1 pigeons and n holes, yij means
that pigeon i goes to a hole with number at most j, and zij means that hole j is occupied by a
pigeon with number at most i. The axioms are:

x̄ij ∨ x̄i′j i 6= i′ ∈ [n+ 1], j ∈ [n]
x̄ij ∨ x̄ij′ i ∈ [n+ 1], j 6= j′ ∈ [n]
yi1 ↔ xi1 i ∈ [n+ 1]
yi(j+1) ↔ (xi(j+1) ∨ yij) i ∈ [n+ 1], j ∈ [n− 1]
yin i ∈ [n+ 1]
z1j ↔ x1j j ∈ [n]
z(i+1)j ↔ (x(i+1)j ∨ zij) i ∈ [n], j ∈ [n]
z(n+1)j j ∈ [n]

The equivalences ↔ are written out as sets of clauses of width three or less, so ex-bij-PHPn+1
n

is a 3-CNF of size O(n3). We have the following:

Theorem 32. Over any field, the formula ex-bij-PHPn+1
n has a poly(n)-size, O(1)-degree PCR

refutation, but requires space Ω(
√
n) to refute in PCR.

Proof. It is easy to verify, using for instance a routine Prover-Adversary argument, that refuting
ex-bij-PHPn+1

n in resolution requires width Ω(n). Thus, our Theorem 18 gives the lower bound
on PCR space.

To prove the existence of the polynomial size, constant-degree refutations of ex-bij-PHPn+1
n ,

we show that, over any field, we can use ex-bij-PHPn+1
n to give a polynomial size, constant-

degree derivation of the version of the bijective pigeonhole principle in which the statements
that each pigeon goes to some hole and that each hole is occupied are expressed by means of
sums rather than wide clauses: {

1−
∑

j xij i ∈ [n+ 1]

1−
∑

i xij j ∈ [n].

It is well-known that over any field the sum version of the bijective pigeonhole principle between
n+ 1 and n has a polynomial size, constant-degree PC refutation [26]. The idea is that adding
up the axioms pigeon-by-pigeon gives

∑
ij xij = n + 1, and adding them hole-by-hole gives∑

ij xij = n; this implies 1 = 0 over any field.

Now fix i. We sketch a derivation of 1−
∑

j xij from the axioms of ex-bij-PHPn+1
n , leaving

the details to the reader (the derivation of 1−
∑

i xij for fixed j is analogous). First, we replace
xi1 by yi1 and then use the polynomials xijxij′ translating the axioms x̄ij ∨ x̄ij′ , together with
the polynomials

xi(j+1)(1− yi(j+1)) yij(1− yi(j+1)) yi(j+1)(1− yij)(1− xi(j+1))

translating the axioms introducing yi(j+1), to derive, for each j = 1, . . . , n in turn, polynomials
yijxik for all k > j. This together with the axioms introducing yij makes it possible to derive
yi(j+1) − (xi(j+1) + yij) for each j. Use that and the polynomial 1 − yin translating the axiom
clause yin to derive, for each j = n, . . . , 1 in turn, 1 − (yij +

∑
k>j xik). For j = 1 this easily

gives 1−
∑

j xij .
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7.3 Simplification of previous lower bounds

Let G = (V,E) be an undirected graph. Let χ : V → {0, 1} be a function, which we call an
odd-charging of G if

∑
v∈V χ(v) is an odd number. Consider variables xe for e ∈ E and define

Par(v, χ) to be the CNF expansion of the formula encoding that the parity of edges incident
with v is exactly χ(v), i.e.

⊕
v∈e xe = χ(v). The Tseitin formula Ts(G,χ) over G and an

odd-charging χ of G is defined as

Ts(G,χ) :=
∧
v∈V

Par(v, χ)

Notice that if the maximal degree of a vertex in G is d then the size of Ts(G,χ) is ≤ |V |2d−1.

Definition 33. (Connectivity expansion [14]) The connectivity expansion of G = (V,E), c(G),
is the largest c such that for every E′ ⊆ E, with |E′| ≤ c, the graph G′ = (V,E \ E′) has a
connected component of size strictly greater than |V |/2.

A lower bound on the space to refute Ts(G,χ) in PCR is given by the following Theorem.

Theorem 34. ([14]) Let G = (V,E) be a connected graph of bounded degree d such that E can
be partitioned into cycles of length at most b. Then, over any field, refuting Ts(G,χ) in PCR
requires space at least c(G)/4b− d/8.

In [14], obtaining a PCR space lower bound for Ts(G) over a random graph involves showing
that, for a suitable model of random constant-degree graphs, with high probability a random
graph has both strong enough connectivity expansion and the property that the set of edges can
be partitioned into small cycles. The authors of [14] raise the issue whether PCR space lower
bounds for Tseitin formulas can be proved using expansion alone.

We can obtain asymptotically the same space lower bound using only expansion. We consider
the expansion e(G) of a graph G as defined in [5] and we use their resolution width lower bound
of Ω(e(G)) for resolution proofs of Ts(G,χ). Hence using our Theorem 20 we can improve the
result of [14] to:

Theorem 35. Let G = (V,E) be a connected graph of constant-degree d. Then it holds over
any field that refuting Ts(G,χ) in PCR requires space Ω(

√
e(G)).

Since there are graphs G over n nodes with e(G) = Ω(n) (see [5]), our result is asymptotically
as good as that of [14].

8 Open problems

A natural question is whether older PCR space lower bounds, such as those in [8], can be
reproved (or extended) in our framework. For example: use the methods of this paper to show
that if F has a m-winning strategy in the sense of [8] then F requires PCR space linear in m.
These bounds are typically linear in resolution width, so this could potentially be a route to
strengthening our result to a general linear lower bound on PCR space in resolution width,
matching the bound on resolution space in [3]. This would be consistent with what is known.

In the other direction, it is possible that the results here are tight up to a constant factor.
Showing this means finding a formula F which requires width w in resolution but which has
a PCR refutation in space O(

√
w). Plausible candidates for F are the Tseitin tautologies on

random bounded degree graphs considered in [14].
The intriguing possibility that our bounds are essentially tight for general configurational

systems but not for PC or PCR has also not been ruled out.

Acknowledgements. We are grateful to Ilario Bonacina for discussions about the relation
between these results and older PCR space lower bound techniques.
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