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Abstract

We show how to construct sparse polynomial systems that have non-trivial lower bounds on
their numbers of real solutions. These are unmixed systems associated to certain polytopes. For
the order polytope of a poset P this lower bound is the sign-imbalance of P and it holds if
all maximal chains of P have length of the same parity. This theory also gives lower bounds
in the real Schubert calculus through the sagbi degeneration of the Grassmannian to a toric
variety, and thus recovers a result of Eremenko and Gabrielov.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

A fundamental problem in real algebraic geometry is to understand the real solu-
tions to a system of real polynomial equations. This is of unquestionable importance
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in applications of mathematics. Even the existence of real solutions is not guaranteed;
oftentimes there are few or no real solutions, and all complex solutions must be found
to determine if this is the case. We give a method to construct families of polyno-
mial systems that have non-trivial lower bounds on their numbers of real solutions,
guaranteeing the existence of real solutions.

Geometric problems with lower bounds on their numbers of real solutions are a recent
discovery. Kharlamov and Degtyarev showed that of the 12 (a priori complex) rational
cubics passing through 8 real points in the plane, at least 8 are real [3, Proposition
4.7.3]. This was generalized by Welschinger [25], Mikhalkin [14,15], and Itenberg et
al. [9], to rational curves passing through real points on toric surfaces. Welschinger
discovered an invariant which gives a lower bound, and work of Mikhalkin and of
Itenberg, Kharlamov, and Shustin shows that this lower bound is non-zero and in
fact quite large. If Nd is the Kontsevich number of such complex rational curves
[11] and Wd is Welschinger’s invariant, then log Nd and log Wd are each asymptotic
to 3d log d.

At the same time, Eremenko and Gabrielov [4,5] computed the degree of the Wronski
map on the real Grassmannian of k-planes in n-space. It is non-trivial when n is odd.
This degree is a lower bound on the number of real solutions to certain problems from
the Schubert calculus on this Grassmannian. In its formulation as a Wronski determi-
nant, their work implies the existence of many inequivalent k-tuples of polynomials of
even degree having a given real polynomial as their Wronskian.

These results highlight the importance of developing a theoretical framework to
explain this phenomenon. Our main purpose is to provide such a framework for sparse
polynomial equations. We are inspired by the work of Eremenko and Gabrielov. Our
lower bound is the topological degree of a linear projection on an oriented double cover
of a toric variety. In Section 1, we formulate a polynomial system as the fibers of a map
from a toric variety and define the characteristic of such a map to be the degree of the
map lifted to a canonical double cover. This has the same equations, but is taken in the
sphere covering real projective space. (One method used by Eremenko and Gabrielov
was to lift the Wronski map to a double cover of non-orientable Grassmannians.) This
characteristic is defined only if the smooth points of the double cover are orientable.
We give criteria for this to hold in Section 2. In Section 3, we show how to compute
the degree for some maps by degenerating the double cover of the toric variety into
a union of oriented coordinate spheres and then determine the degree of the same
projection on this union of spheres.

This method does not work for all linear projections of toric varieties. For toric
varieties associated to the order polytope of a poset P, there are natural Wronski
projections with a computable characteristic when the poset P is ranked mod 2. That
is, the lengths of all maximal chains in P have the same parity. In this case, the degree
is the sign-imbalance of P—the difference between the numbers of even and of odd
linear extensions [26,20]. This pleasing construction is the subject of Section 4.

Section 5 contains further examples of this theory. Grassmannians admit flat sagbi
degenerations to such toric varieties [23, Chapter 11]. For these, the Wronski map
coincides with a linear projection we study, and we are able to recover the results of
Eremenko and Gabrielov in this way. This is the topic of Section 6.
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In Section 7, we give alternative proofs of our lower bound for the order polytope
of a poset P, when P is the incomparable union of chains of lengths a1, . . . , ad .
We show that the Wronski polynomial system in this case is equivalent to finding
all factorizations f (z) = f1(z) · · · fd(z), where f (z) is a fixed polynomial of degree
a1 + · · · + ad , and the factors f1(z), . . . , fd(z) that we seek have respective degrees
a1, . . . , ad . This reformulation reveals the existence of a new phenomenon for real
polynomial systems. Not only do each of these systems possess a lower bound on
their number of real solutions, but certain numbers of real solutions cannot occur.
That is, there are gaps in the possible numbers of real solutions to these polynomial
systems.

1. Systems of sparse polynomials as linear projections

Let F(t1, t2, . . . , tn) be a real polynomial. The exponent vector m = (m1, m2, . . . , mn)

of a monomial tm := t
m1
1 t

m2
2 · · · tmn

n appearing in F is a point in the integer lat-
tice Zn ⊂ Rn. The Newton polytope � ⊂ Rn of a polynomial F is the convex
hull of its exponent vectors. We study real solutions to systems of real polynomial
equations

F1(t1, . . . , tn) = F2(t1, . . . , tn) = · · · = Fn(t1, . . . , tn) = 0, (1.1)

where the polynomials Fi have real coefficients with the same Newton polytope �. By
Kushnirenko’s Theorem [12], there are at most V (�) := n!vol(�) solutions to (1.1)
in the complex torus (C×)n and this number is attained for generic such systems.
We call this number V (�) the normalized volume of �. We shall always assume that
our polynomial systems are generic in that they have V (�) solutions in (C×)n, each
necessarily of multiplicity one.

Example 1.2. Suppose that we have a system of two polynomial equations of the form

ai + bix + ciy + dixy + eix
2y + fixy2 + gix

2y2 = 0 for i = 1, 2.

The monomials which appear correspond to the lattice points (0, 0), (1, 0), (0, 1), (1, 1),
(2, 1), (1, 2), and (2, 2), whose convex hull is a hexagon.

This hexagon has Euclidean volume 3, and so we expect there to be 3 ·2! = 6 complex
solutions to this set of equations.
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The projective toric variety X� associated to the polytope � is the variety parametriz-
ed by the monomials in �. More precisely, let P� be the complex projective space
with coordinates {xm|m ∈ � ∩ Zn} indexed by the points of � ∩ Zn. Then X� is the
closure of the image of the map

��: (C×)n −→ P�

(t1, t2, . . . , tn) �−→ [tm|m ∈ � ∩ Zn] .

This map is injective if and only if the affine span of � ∩ Zn is equal to Zn.
Linear forms on P� pull back along �� to polynomials with monomials from �∩Zn,

�∗
�

⎛
⎝ ∑

m∈�∩Zn

cmxm

⎞
⎠ =

∑
m∈�∩Zn

cmtm.

A system (1.1) of real polynomials with Newton polytope � corresponds to a system
of n = dim X� real linear equations on X�, that is, to the intersection of X� with a
real linear subspace � of codimension n in P�.

Let E ⊂ � be a real hyperplane in � disjoint from X�—a linear subspace of P�

complementary to X�. Let H(� Pn) ⊂ P� be any real linear subspace of maximal
dimension n disjoint from E. Let �E be the linear projection with center E

�E : P� − E −→ H,

x �−→ Span(x, E) ∩ H.

Then solutions to system (1.1) correspond to points in X� ∩ �−1
E (p), where p :=

�E(�) ∈ H .
Set Y� := X� ∩ RP�, the real points of the toric variety X�, and let f be the

restriction of �E to Y�. We could also consider the closure of the image of (R×)n

under ��. These objects coincide if and only if the restriction of �� to (R×)n is
injective, which occurs if and only if the lattice spanned by � ∩ Zn has odd index in
Zn. We shall always assume that this index is odd.

Then real solutions to system (1.1) are the elements in the fiber f −1(p) of the linear
projection f

f : Y� ⊂ RP� �E− − − → HR � RPn.

If both Y� and RPn are oriented, then the absolute value of the topological degree
of the map f is a lower bound for the number of points in f −1(p). Our assumption
on the genericity of the original system (1.1) implies that p is a regular value of the
map f.
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In general Y� and RPn are not necessarily orientable. Given a normal projective
variety Y ⊂ RPN of dimension n, let Y+ ⊂ SN be the subvariety of the sphere given
by the same homogeneous equations as Y. Then Y+ → Y is a double cover. Likewise,
if f : Y → RPn is the restriction of a linear projection �: RPN− → RPn to Y, then
we let f +: Y+ → Sn be the restriction of that projection lifted to the corresponding
spheres. We obtain the commutative diagram, where the vertical arrows are 2 to 1
covering maps.

f : Y ⊂ RPN
�E− − − → RPn

f + : Y+ ⊂ SN
�+

E− − − → Sn

� � �

Definition 1.3. Suppose that the manifold Y+
sm formed by smooth points of Y+ is

orientable. Fix an orientation of Y+
sm and define the characteristic of f, char(f ),

to be the absolute value of the topological degree of f +: Y+ → RPn. This does
not depend upon the choice of orientation of Y+

sm if it is connected. If Y+
sm is not

connected, then char(f ) could depend upon the choice of orientation of its
different components. Since Y is normal, the set of singularities Y+

sing has

codimension at least 2. Hence RPn \ �(Y+
sing) is connected and this notion is

well-defined.

Suppose that Y is orientable. Consider the orientation on Y+ that is pulled back from
Y along the covering map SN → RPN . If RPn is not orientable then char(f ) = 0.
If RPn is orientable then the characteristic char(f ) is equal to the topological degree
of f.

We record the obvious, fundamental, and important property of this notion.

Proposition 1.4. If p ∈ RPn is a regular value of f, then the number of points in a
fiber f −1(p) is bounded below by its characteristic char(f ).

According to Eremenko and Gabrielov [5], this notion is due to Kronecker [13], who
defined the characteristic of a regular map RP2 → RP2 in this manner. Note that if
Y+

sm is not connected, then different choices of orientation of the components of Y+
sm

may give different values for char(f ). Each value for char(f ) is a lower bound on
the number of points in a fiber f −1(p) above a regular value p of f. Optimizing these
choices is beyond the scope of this paper.

2. Orientability of real toric varieties

The elementary definition of Y� given in Section 1, as the real points of the variety
parametrized by monomials in �∩Zn, is inadequate to address the orientability of Y+

� .
More useful to us is Cox’s construction of X� as a quotient of a torus acting on affine
space, as detailed in [1, Theorem 2.1]. Let � ⊂ Rn be a polytope with vertices in the
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integer lattice Zn and suppose that it is given by its facet inequalities

� = {x ∈ Rn|A · x� − b}
= {x ∈ Rn|ai · x� − bi, i = 1, . . . , r},

where ai ∈ Zn is the primitive inward-pointing normal to the ith facet of �.

Example 2.1. If � is the hexagon of Example 1.2, then

A =
(

0 −1 −1 0 1 1
1 1 0 −1 −1 0

)T

and b = (
0 1 2 2 1 0

)T
.

Let z = (z1, . . . , zr ) ∈ Cr . For each m ∈ � ∩ Zn, set

z(m) :=
r∏

i=1

z
ai ·m+bi

i

and consider the map �� defined by

��(z) = [z(m)|m ∈ � ∩ Zn] ∈ P�.

This map is undefined on the zero locus B� of the monomial ideal

〈z(m)|m ∈ � ∩ Zn〉.

Note that zi appears in z(m) if and only if m does not lie on the ith facet. Define the
vertex monomial z(v) to be the product of all zi such that v misses the ith facet. Then
B� is the zero locus of the monomial ideal

〈z(v)|v a vertex of �〉.

The monomial zb = z
b1
1 · · · zbr

r divides each component z(m) of ��(z). Removing
these common factors from ��(z) ∈ P� shows that �� factors through ��, at least
for z in the torus (C×)r . For z ∈ (C×)r , we have ��(z) = �� ◦ ��(z), where

��: (z1, z2, . . . , zr ) �−→ (. . . , z
a1i

1 z
a2i

2 · · · zari
r , . . .).

Since � has full dimension, this map is surjective and so the image of �� is dense
in the projective toric variety X�. Since �� is injective, two points of (C×)r have the
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same image under �� if and only if they are equal modulo the kernel G� of ��

G� :=
{

� ∈ (C×)r |1 =
r∏

i=1

�
aij

i for each j = 1, . . . , n

}
.

The map �� almost identifies X� as the quotient of Cr − B� by G�. The difficulty
is that G�-orbits on Cr − B� are not necessarily closed and so the geometric quotient
(Cr − B�)/G� may not be Hausdorff. If � is a simple polytope (each vertex lies on
exactly n facets), then this does not occur and X� is the geometric quotient. In general,
X� is the closest variety to the non-Hausdorff quotient. More precisely, it is the quotient
in the category of schemes, the categorical quotient, written (Cr − B�)//G�.

Proposition 2.2 (Cox [1, Theorem 2.1]). Suppose that � ∩ Zn affinely spans Zn. Then
the abstract toric variety X� defined by the normal fan � of � is the categorical
quotient (Cr − B�)//G�, and the map �� induces an isomorphism of toric varieties
X� → X�. This categorical quotient is a geometric quotient if and only if � is simple.

If we restrict the map �� to Rr − B�, then its image lies in the real toric variety
Y�, but this image is not in general equal to Y�.

Proposition 2.3. The image of Rr − B� under the map �� is equal to Y� if and only
if the index of the lattice �A spanned by the columns of A in its saturation �A ⊗Z Q

is odd.

The lattice �A for the hexagon of Example 1.2 is saturated as A has a 2 × 2 minor
with absolute value 1.

Proof of Proposition 2.3. It suffices to show that the image of (R×)r under the map
�� is equal to the real points (R×)n of (C×)n if and only if the index of �A in its
saturation is odd.

Invertible integer row and column operations reduce A to its Smith normal form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 . . . 0

0 a2 . . . 0
...

. . .

0 0 . . . an

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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These operations do not change the index of the lattice �A in its saturation. It follows
that the index is equal to the product a1 · · · an. The image of (R×)r under the map �� is
equal to (R×)n if and only if the map from (R×)r to (R×)n defined by (z1, . . . , zr ) �→
(z

a1
1 , . . . , z

an
n ) is surjective, which happens if and only if the product a1 · · · an is

odd. �

We address the orientability of Y+
� . First, set � := #� ∩ Zn and consider the map

g: Cr → C� which lifts the map ��: Cr → P�−1 = P�

g: z �−→ (z(m)|m ∈ � ∩ Zn).

If we let � be the map from G� to C× defined by

�(�1, �2, . . . , �r ) = �b1
1 �b2

2 · · · �br
r =: �b,

then points w, z ∈ (C×)r have the same image in C� if and only if wz−1 ∈ ker(�).
More generally, the fibers of the map Cr − B� → C� are unions of orbits of ker(�).

Let R> be the positive real numbers. The real cone over Y� is Z� := (R� − {0}) ∩
g(Cr ). Then the double cover Y+

� of Y� is the quotient Z�/R>. If we assume that
the column space of A has odd index in its saturation, then there are two cases to
consider.

(i) Z� = g(Rr ), or
(ii) Z� is the disjoint union of g(Rr ) and −1 · g(Rr ).

These cases are distinguished by the image of the map �, when restricted to the real
points G�(R) of G�. This also serves to describe Y+

� . Set K := �−1(R>).

Proposition 2.4. With the above definitions, we have

(i) If K�G�(R) so that �(G�(R)) = R×, then Z� = g(Rr − B�), and so Y+
� is the

image of Rr − B� under the composition

Rr − B�
g→ Z� −→ Z�/R> = Y+

� . (2.5)

(ii) If K = G�(R), so that �(G�(R)) = R>, then Z� = g(Rr − B�) but we have

Z� = g(Rr − B�)
∐

−g(Rr − B�).

Furthermore, Y+
� has two components, each isomorphic to Y�, and these compo-

nents are interchanged by the antipodal map on the sphere S� = S�−1, and one
component is the image of Rr − B� under map (2.5).

We state our main result on the orientability of Y+
� .
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Theorem 2.6. Suppose that the lattice affinely spanned by �∩Zn has odd index in Zn

and that �A has odd index in its saturation. If there is a vector v in the integer column
span of [A : b], all of whose components are odd, then the standard orientation of Rr

induces an orientation on the smooth part of Y+
� via the map ��: Rr − B� → Y+

� .

Remark 2.7. If there is a vector v in the integer column span of A, all of whose
components are odd, then the orientation of Rr induces an orientation on the smooth
part of Y�. The proof of this statement is analogous to the proof of Theorem 2.6.

Remark 2.8. In general, we may not know if either Y� or Y+
� are orientable. The

positive part Y>
� of Y� is the intersection of Y� with the positive orthant of P� is

always orientable, as it is isomorphic to �, as a manifold with corners [6, §4].

When the hypotheses of Theorem 2.6 are satisfied, we assume that the smooth points
of Y+

� have the orientation induced by ��, and we say that Y+
� is Cox-oriented. If �

is the hexagon of Example 1.2, then Y+
� is Cox-oriented as it is smooth and the vector

with all components 1 is the sum of the three columns of the 6 × 3-matrix [A : b].

Proof of Theorem 2.6. Recall that the subgroup K ⊂ G�(R) is

K := �−1(R>) = {� ∈ G�(R)|�b > 0}.

We claim that if � ∈ K , then det(�) = �1�2 · · · �r > 0, so that K preserves the
standard orientation on Rr . Indeed, let c = (c1, . . . , cr ) be an integer vector with each
component ci odd such that c − kb ∈ �A for some k ∈ Z. Then �c = (�b)k > 0,
and so we have det � > 0, as each component of c is odd (for then �c/ det(�) is a
square).

Thus if U ⊂ Rr is an open subset with K · U = U such that every orbit of K is
closed in U, then the smooth part of the quotient U/K has an orientation induced by
the standard orientation of Rr .

For each face F of the polytope �, let �F ⊂ Rn be the cone generated by the
primitive inward-pointing normal vectors to the facets containing F—these generators
are the rows of A corresponding to the facets containing F. Set UF ⊂ Cr to be the
complement of the variety defined by the monomial ideal 〈z(m)|m ∈ F 〉. This is the
set of points (z1, . . . , zr ) ∈ Cr such that zi = 0 if the ith facet of � does not contain
F. We have G� · UF = UF .

If the cone �F is simplicial, then every G�-orbit of UF is closed. The arguments that
show this in the proof of Theorem 2.1 of [1] show that the same is true of the K-orbits
of UF (R). Furthermore, UF /G� and also UF (R)/K is smooth if the generators of �F

in addition generate a saturated sublattice of Zn.
If F is a facet, then �F is just a ray generated by a primitive vector, and is thus

simplicial. If we let F run over the facets of �, the quotients UF (R)/K are glued
together along the common subtorus, which is U�(R). As each piece and the torus is
oriented by the canonical orientation of Rr under the quotient by K, this union W is a
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smooth and oriented subset of Y+
� . Moreover, the difference W − W has codimension

2 (this is part of the proof that toric varieties are smooth in codimension 1).
Thus the image of Rr−B� in Y+

� is smooth and oriented in codimension 1. This either
is dense in Y+

� or in one of the two isomorphic components of Y+
� . This completes

our proof of the theorem. �

3. Computation of the characteristic

Let � ⊂ Rn be a lattice polytope with a regular triangulation �� defined by a lifting
function � : � ∩ Zn → Z�0, and Y� ⊂ P� the real toric variety parametrized by the
monomials in �. Assume that � is convex, which means that all integer points of �
are vertices of ��. Call simplices with odd normalized volume odd and simplices with
even normalized volume even.

Definition 3.1. A triangulation �� is balanced if its vertex-edge graph is (n + 1)-
colorable. This means that there exists a map 	 from the integer points of � ∩ Zn

to the vertices of the standard simplex which is a bijection on each simplex in the
triangulation ��. We call this map 	 a folding of ��.

A triangulation is balanced if and only if its dual graph is bipartite. For the direct
implication, note that an orientation of the standard simplex induces orientations of
the simplices in the triangulation �w via the map 	. This induced orientation changes
when passing to an adjacent simplex. The other implication is [10, Corollary 11].

Definition 3.2. For a balanced triangulation ��, assign + or − to each of the simplices
so that every two adjacent simplices have opposite signs. Disregard even simplices and
define the signature 
(��) of �� to be the absolute value of the difference of the
numbers of odd simplices with + and odd simplices with −.

For each m ∈ � ∩ Zn, fix a non-zero real number �m whose sign depends only
upon 	(m). Call this vector (�m|m ∈ � ∩ Zn) a weight function for �. As the vertices
of the standard simplex are the standard basis vectors in Pn and the vertices of the
triangulation are the basis vectors of P�, the folding 	 defines a linear projection,
called the Wronski projection ��: P� → Pn sending each basis vector em of P� to
�me′

	(m), where e′
i is a basis vector of Pn. If � is constant, then we omit it from our

system of notation as it has no effect.
A linear form � on Pn pulls back along �� to a polynomial F of the form

F =
∑
m

c	(m)�mxm,

where c0, c1, . . . , cn ∈ R. We call such a polynomial a Wronski polynomial for the
triangulation �w and the weight function �. A Wronski polynomial system for the
triangulation �w and weight function � is a system of n such polynomials, all with
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b a

c
a

c

a b

c

a b

Fig. 1.

weight function �. Solutions to such a Wronski system correspond to a fiber of the
Wronski map ��.

Example 3.3. The lattice hexagon of Example 1.2 admits a regular unimodular bal-
anced triangulation induced by the lifting function taking value 0 at its center (1, 1),
3 at the vertices (0, 0) and (2, 2), and 1 at the remaining 4 vertices. This triangula-
tion defines a 3-coloring of the vertices indicated by the labels a, b, c in Fig. 1. We
illustrate the bipartite dual graph by shading the positive simplices. For the constant
weight function, this defines a Wronski projection from P6 to P2 by

[x00, x10, x01, x11, x21, x12, x22] �−→ [x00 + x11 + x22, x10 + x12, x01 + x21].

The corresponding Wronski polynomials have the form

a(1 + xy + x2y2) + b(x + xy2) + c(y + x2y) = 0,

where a, b, and c are arbitrary real numbers.

The lifting function � = (�m: m ∈ � ∩ Zn) defines a partial term order on the
coordinate ring R[xm|m ∈ � ∩ Zn] of P� by xb > xc if b · � < c · �, where b · � and
c · � denote the standard scalar product. It also defines an action of R× on P� by

s.xm = s−�m · xm. (3.4)

The corresponding action on R[xm|m ∈ � ∩ Zn] is the dual action

s.g(x) = g(s−1.x)

Thus a monomial xb is transformed into sb·�xb. The monomials in the initial form
in� g of g are multiplied by the same power of s in g(x), which is less than the power
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of s for the other monomials. Dividing s.g by this lowest power sb·� of s we see that

lim
s→0

sb·�s.g(x) = in� g(x).

Consider this for Y�. The ideal I (s.Y�) of s.Y� is

I (s.Y�) = {s.g(x)|g ∈ I (Y�)} .

Let in(Y�) be the variety defined by the initial ideal in� I (Y�). These arguments show
that it is the scheme-theoretic limit of the family s.Y�,

lim
s→0

s.Y� = in(Y�).

If we define s.� by (s.�)m = sm·��m, then the Wronski map �� on s.Y� is equivalent
to the Wronski map �s.� on Y�.

The family {s.Y�|s ∈ (0, 1]} ∪ in(Y�) is a toric degeneration of Y�. This action
lifts to the sphere, giving the family {s.Y+

� |s ∈ (0, 1]} ∪ in(Y+
� ) in which s.Y+

� and

in(Y+
� ) are the subvarieties of the sphere S� given by the same homogeneous equations

as s.Y� and in(Y�).
By Kushnirenko’s Theorem [12] the number of complex solutions of the Wronski

system is equal to the normalized volume V (�), which is an upper bound for the
number of real solutions. When the triangulation �w is unimodular, Sturmfels [22]
used these toric degenerations to show that this upper bound is attained. We use a toric
degeneration to compute char(f ) which is by Proposition 1.4 a lower bound for the
number of real solutions of a Wronski polynomial system.

Theorem 3.5. Suppose that the toric degeneration of Y� does not meet the center
of the Wronski projection �� and Y+

� is Cox-oriented. Then char(f ) is equal to the
signature 
(��) of the triangulation ��. Moreover, if s0 ∈ R> is minimal such that
s0.Y� meets the center of projection, then char

(
��|s.Y�

) = 
(��), for any 0 < s < s0.

Example 3.6. We observed that if � is the hexagon Example 1.2, then Y+
� is Cox-

oriented. In Example 3.3, we saw that � has a regular unimodular balanced triangulation
(illustrated in Fig. 2), which has a signature of 2. The Wronski polynomials for the
family s.Y� have the form

a(s2 + xy + s2x2y2) + bs(x + xy2) + cs(y + x2y) = 0, (3.7)

where a, b, and c are arbitrary real numbers. The coefficients (in s, x, y) of a, b, and
c vanish where s.Y� meets the center of projection. There are no real values of x, y

where these coefficients vanish for s = 0. Thus no variety s.Y� in the family induced
by the weight function meets the center of projection.
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Fig. 2. Hexagonal system.

By Theorem 3.5, for any given s = 0, two general polynomial equations of form
(3.7) will have at least 2 common real solutions. Fig. 2 shows the two curves given by
equations of form (3.7) when s = 1 with coefficients (a, b, c) equal to (3, 5, 1) and to
(1, −2, −3), which meet in the two points indicated. We computed 1 million random
instances of this polynomial system with s = 1. Each one had exactly 2 real solutions.

These computations, like all computations reported here, were done purely symboli-
cally. The computation procedure involved generating random polynomial systems, and
then computing a univariate eliminant for each system. This eliminant has the property
that its number of real solutions equals the number of real solutions to the original
system. This part of the computation was done with the computer algebra system Sin-
gular [7]. For all computations, except those reported in the last paragraph, the number
of real roots for the eliminant were determined using the authors’ implementation of
Sturm sequences in Singular. That implementation is inefficient for polynomials of de-
gree 30, so the last computations in this paper used Maple’s realroot routine to
compute the number of real solutions.

We also computed 500,000 instances of system (3.7) for s ∈ (0, 1). Of these, 429,916
had 2 real solutions, 70,084 had 6 real solutions, and none had 4 solutions. More
precisely, 1000 · s was an integer chosen uniformly in [1, 999] and the coefficients
a, b, c were chosen uniformly in [−60, 60].

Given fixed weights �m for m ∈ � ∩ Z2, a Wronski polynomial with these weights
is

a(�1 + �xyxy + �x2y2x2y2) + b(�xx + �xy2xy2) + c(�yy + �x2yx
2y) = 0.

We computed instances of such Wronski systems with 2, 4, or 6 real solutions.

Proof of Theorem 3.5. We can assume that �� has at least one odd simplex, for
otherwise the lower bound is trivial. Write � for the Wronski projection ��. It lifts
to �+: S� → Sn given by the same equations as �. Let f +

s be the restriction of
�+ to s.Y�+ for s ∈ (0, s0) and f +

0 the restriction of �+ to in(Y+
� ). Since the toric

degeneration of Y� does not meet the center of projection �, the characteristic char(f )

is equal to the characteristic of f +
s : s.Y+

� → Sn for any s ∈ (0, s0).
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even simplex

odd simplex

fiber above p

Fig. 3. Preimages near coordinate spheres.

It is proved in Chapter 8 of [23] that

Rad(in� I (Y�)) =
⋂
�

〈xm | m /∈ �〉,

where the intersection is taken over all simplices � of ��. Thus in�(Y+
� ) is the union

of coordinate n-planes RP�, one for each simplex � in �� and in�(Y+
� ) is a similar

union of coordinate n-spheres S�. Thus a point p ∈ Sn with non-zero coordinates has
one preimage a� under f +

0 on each sphere S�. The preimages of p under f +
s on Y+

s

for small s are clustered around these {a�|� ∈ ��}. This is illustrated in Fig. 3. The
preimages are the dots, the linear subspace (f +)−1(p) is the line, and the toric variety
Y+

� is the curve.
When s is small, consider the contribution to the characteristic of fs to the solu-

tions near a�. In a neighborhood of the point a� the projection f +
s is homotopic to

the coordinate projection �� to S� and therefore we compute this local contribution
using ��.

This is easiest when � is an even simplex, as in that case the restriction ��|Y+
�

is

not surjective and therefore this contribution to the characteristic of f +
s is zero. To see

this, it is best to consider this projection in RP�. The composition

(R×)n
��−→ RP� ��−→ RP� � RPn

is the parametrization �� of RP� by the monomials corresponding to integer points of
�. Since the affine span of the lattice points in � has odd index in Zn, the map �� is
an isomorphism between (R×)n and the dense torus in Y�. Thus the restriction ��|Y�

is surjective if and only if �� maps (R×)n onto the dense torus in RPn. But this is
not the case, as the integer points in � span a sublattice of Zn with even index. For
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an odd simplex �, the map �� : (R×)n → (R×)n is an isomorphism and therefore the
degree of �� is 1.

Pick a point p = (p0, . . . , pn) in Sn such that sign pi = −sign 	(m) whenever
	(m) = i where 	 is the folding of ��. Then for each odd simplex there exists a
unique preimage of p under �� and all of its components are positive. For an even
simplex, there is an even number of preimages with one of them having all components
positive.

Orient each of the coordinate spheres S� pulling back the orientation of Sn along �.
Each of these orientations induces an orientation of the positive part of Y+

� . It remains
to compare these induced orientations.

Consider two adjacent simplices in ��. Let the vertices of the common facet be
indexed by the variables x1, . . . , xn, and the remaining two vertices by x0 and xn+1.
Then x

a0
0 x

an+1
n+1 = x

a1
1 · · · xan

n for some integers a0, . . . , an+1 with a0 and an+1 positive.
Projections to the coordinate spheres of each simplex give local coordinate charts for
Y+

� , namely x0, x1, . . . , xn and xn+1, x1, . . . , xn. The Jacobian matric for this change
of coordinates has the form⎡

⎢⎢⎢⎢⎢⎢⎣

�xn+1

�x0
0 · · · 0

∗ 1 · · · 0
...

...
. . .

...

∗ 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, where
�xn+1

�x0
= − a0

an+1

xn+1

x0
.

Since the Jacobian determinant is negative, these two charts belong to different ori-
enting atlases, and we need to count the corresponding preimages with opposite signs.
Therefore, char(f ) is equal to the signature 
(��). �

Remark 3.8. Notice that this computation does not depend on the choice of orienta-
tion of different connected components of the smooth part of Y+

� . This implies that
char(f ) = 0 whenever the smooth part of Y+

� is not connected. In particular, char(f ) =
0 if Y+

� is isomorphic to two copies of Y�. We have noted before that if Y� is ori-
entable but RPn is not then char(f ) = 0 if the orientation on Y+

� is pulled back from
Y�. We have proved that this last assumption is redundant: if Y� is orientable but RPn

is not then char(f ) = 0.

Lemma 3.9. If �� contains only odd simplices and the sign of �m depends only upon
	(m), then there exists a regular value in z ∈ Sn all of whose preimages in Y+

� under
f have all components positive.

Proof. Since f (s−1.x) = s−1.z whenever fs(x) = z, the statement follows from
above. �

While in general we may not know if either Y� or Y+
� are orientable, the topological

degree char(f>) of f> := f |Y>
�

: Y>
� → f (Y>

� ) is always well defined, as Y>
� is

orientible.
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Corollary 3.10. Suppose that the toric degeneration of Y� does not meet the center of
projection �. Then char(f>) is equal to 
(��).

4. Toric varieties from posets

Let P be a finite partially ordered set (poset) with n elements. We recall some
definitions from the paper of Stanley [18].

Definition 4.1. The order polytope O(P ) of a finite poset P is the set of points y in
the unit cube [0, 1]P such that ya �yb whenever a�b in P.

The vertices of the order polytope are the characteristic functions of (upper) order
ideals of P. Let J (P ) be the set of such order ideals of P. The canonical triangulation
of the order polytope O(P ) is defined by the linear extensions (order-preserving bijec-
tions) of the poset P. Suppose that P has n elements and let �: P → [n] be a linear
extension of P. For each k = 1, . . . , n, let ak be the element of P such that �(ak) = k.
Then � defines an n-dimensional simplex �� ⊂ O(P ) consisting of all y satisfying

0�ya1 � · · · �yan �1.

The �� are the simplices in a unimodular triangulation of O(P ). It is balanced as the
association of an order ideal to its number of elements is a proper coloring of its
vertex-edge graph. We will show in Lemma 4.6 that this triangulation is regular.

Fixing one linear extension of P identifies each linear extension of P with a permu-
tation of P, where the fixed extension is identified with the identity permutation. The
sign of a linear extension is the sign of the corresponding permutation.

Definition 4.2. The sign imbalance 
(P ) of a poset P is the absolute value of the
difference between the numbers of the positive and negative linear extensions of P. If

(P ) = 0 we say that P is sign-balanced. Stanley studied this notion of sign-balanced
posets [20].

For an order ideal J, let tJ := ∏
a∈J ta be the monomial in R[ta|a ∈ P ] whose

exponent vector is the vertex of O(P ) corresponding to the order ideal J. Let |J | be the
number of elements in the order ideal J. Fix a system of weights {�J ∈ R×|J ∈ J (P )}.
This gives the Wronski projection ��, Wronski polynomials, and Wronski polynomial
systems as in Section 3. Wronski polynomials for �� have the form

∑
J∈J (P )

c|J |�J tJ ,

where c0, . . . , c|P | ∈ R.

Theorem 4.3. Suppose that a finite poset P is ranked mod 2. For any choice � of
weights, a Wronski polynomial system for the canonical triangulation of the order
polytope of P with weight � has at least 
(P ) real solutions.
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The set J (P ) of order ideals, ordered by inclusion, forms a ranked distributive lattice
J (P ). Equations for the toric variety YO(P ) parametrized by the monomials in the order
polytope are nicely described by this lattice. The lattice operations are J ∨ K = J ∩ K

and J ∧ K = J ∪ K . Its ideal I is the Hibi ideal of this lattice [8]

I = 〈xJ xK − xJ∧KxJ∨K |J, K ∈ J (P ) are incomparable〉. (4.4)

The geometry of toric varieties associated to distributive lattices is discussed in [24].
Maximal chains of J (P ) are the linear extensions of P. If two maximal chains differ
by one element, they have opposite signs. Then 
(P ) is the absolute value of the
difference between the number of the positive maximal chains and the number of
negative maximal chains. We also call 
(P ) the sign-imbalance of the lattice J (P ).

Example 4.5. The toric variety P2 × P2 is defined by the order polytope of the poset
with the Hasse diagram

P =

t1 u2

t2 u1

Fig. 4 shows its lattice J (P ) of order ideals and the six maximal chains in J (P ). The
corresponding signs of these maximal chains are +, −, +, +, −, +, and so the sign
imbalance 
(P ) is 2. By Theorem 4.3 a generic system of 4 real equations of the form

c0 + c1(t2 + u2) + c2(t1t2 + t2u2 + u1u2) + c3(t1t2u2 + t2u1u2) + c4t1t2u1u2 = 0,

has at least 2 real solutions. (For simplicity, the weights are constant, �J = 1.)

The following four lemmas reduce Theorem 4.3 to Theorem 3.5.

Lemma 4.6. The canonical triangulation of the order polytope O(P ) is regular.

Proof. Define a lifting function w(J ) for each order ideal J ∈ J (P ) by

�(J ) := −|J |2.

For each simplex � in the canonical triangulation we give a linear function � on RP

such that �(m)+�(m)�0 for all vertices of O(P ), with equality if and only if m ∈ �.
For a linear extension �, the vertices of the simplex �� are

m0 := (0, . . . , 0), and mk :=
k∑

i=1

e�−1(n−i+1)
for k = 1, . . . , n,
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{t1,t2,u1,u2}

{t1,t2,u2} {t2,u1,u2}

{t1,t2} {t2,u2} {u1,u2}

{t2} {u2}

∅

Fig. 4. The distributive lattice J (P ) and its maximal chains.

where {ea|a ∈ P } is the standard basis for RP . The value of the lifting function at
the vertex mk is −k2. Define the linear function � on RP by �(e�−1(n−k+1)

) = 2k−1.
Then � is the unique linear function on Rn such that �(mk) + �(mk) = 0. Indeed,

�(mk) =
k∑

i=1

�(e�−1(n−i+1)
) =

k∑
i=1

2i − 1 = k2 = −�(mk).

This also shows that if a vertex m of O(P ) corresponds to an order ideal with k
elements, then �(m)�k2 with equality only when m = mk . Thus a vertex m of O(P )

does not lie in �� exactly when �(m) + �(m) > 0. �

Lemma 4.7. The canonical triangulation of the order polytope O(P ) is balanced. Its
signature is 
(P ), the sign imbalance of P.

Proof. The folding map m �→ |m| shows that the canonical triangulation is balanced.
Linear extensions corresponding to adjacent simplices differ by a transposition and thus
have opposite signs. The second statement is immediate. �

Lemma 4.8. For any choice of weights {�J |J ∈ J (P )}, the toric degeneration of YO(P )

does not meet the center of the Wronski projection ��.

Proof. We show that on YO(P ) the equations defining the center of the projection ��∑
|J |=k

�|J |xJ = 0, k = 0, . . . , n,

generate the irrelevant ideal 〈xJ |J ∈ J (P )〉.



134 E. Soprunova, F. Sottile / Advances in Mathematics 204 (2006) 116–151

Let I be the ideal of the equations for the center of projection and the equations
defining X�. If there is only one order ideal J with |J | = k, then xJ ∈ I , in particular,
xJ ∈ I when |J | = 0. Suppose that we have xJ ∈ I for all J with |J | < k. Given
two order ideals J and K of size k, we have xJ xK = xJ∧KxJ∨K ∈ I as |J ∨ K| < k.
Together with the equation defining the center of projection, this implies that if |J | = k,
then xJ ∈ I . By induction on k, I = 〈xJ |J ∈ J (P )〉.

This argument also shows that s.YO(P ) does not meet the center of projection. �

Lemma 4.9. If a finite poset P is ranked mod 2, then Y+
O(P ) is Cox-oriented.

Proof. Let the order polytope be defined by facet inequalities

O(P ) = {
y ∈ Rn|Ay� − b

}
,

where A is an integer r × n matrix. By Theorem 2.6 it is enough to check that the
vector consisting of all ones is in the mod 2 integer column span of the matrix [A : b]
and the lattice �A spanned by the columns of A is saturated. The integral points of
O(P ) affinely span ZP as O(P ) has a unimodular triangulation.

Each facet of the order polytope O(P ) is defined by one of the following conditions:

ya = 0 for a minimal a ∈ P,

yb = 1 for a maximal b ∈ P,

ya = yb for a covering b in P.

Fix a maximal chain a1 < · · · < ak in P. The corresponding facets of O(P ) are

ya1 = 0, ya2 − ya1 = 0, . . . , yak
− yak−1 = 0, yak

= 1,

and the corresponding rows of the matrix [A : b] are⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0 0 . . . 0 0
−1 1 0 . . . 0 0 0 . . . 0 0

0 −1 1 . . . 0 0 0 . . . 0 0
...

...
...

. . .
...

...
... . . .

...
...

0 0 0 . . . 1 0 0 . . . 0 0
0 0 0 . . . −1 1 0 . . . 0 0
0 0 0 . . . 0 1 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The columns of A are indexed by the elements of P. Consider the linear combination
of the columns of A where the coefficient of a column corresponding to an element
a of P is 1 − rk(a), where rk(a) is its mod 2 rank. This will be a vector with all
components odd if P has mod 2 rank 0. If P has mod 2 rank 1, then adding the vector
b to this combination gives a vector with all components odd. (Here, a minimal element
has rank 0.)
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Consider the submatrix of A consisting of its rows corresponding to minimal elements
of P, together with one row for each non-minimal element a of P corresponding to
some cover a′� a. This submatrix has determinant ±1, which implies that column
space of the matrix A is saturated. �

We noted earlier that char(f ) = 0 whenever Y� is orientable but RPn is not. By
Remark 2.7 Y� is orientable if there exists a vector all of whose components are odd
in the integer column span of A. For posets, this translates to: YO(P ) is orientable if
all the maximal chains of P are odd. We obtain:

Corollary 4.10. If all the maximal chains of a finite poset P are odd but the number
of elements in P is even then the poset P is sign-balanced.

This is Corollary 2.2 of [20], where it is given a purely combinatorial proof.

5. Further examples

This theory applies to other toric varieties besides those associated to the order
polytopes of finite posets. The hexagon of Example 3.6 is one instance. We present three
additional instances based on particular triangulations of polytopes, and one infinite
family that is based on the chain polytopes of [18].

5.1. Three examples of polytopes

Example 5.1. Let � be the convex hull of the points (0, 0), (0, 3), and (3, 0), a
triangle. Then T� is a Veronese embedding of RP2 and Y+

� is the 2-sphere, and so it
is orientable. The triangle has a regular unimodular balanced triangulation with signature
3 illustrated in Fig. 5 below. This is induced by a weight function whose values are
0 at the center, 3 at each of the three vertices, and 1 at the remaining six points. A
Wronski polynomial with constant weight 1 on members of the family s.Y� has the
form

a(s3 + xy + s3x3 + s3y3) + bs(x + x2y + y2) + cs(y + xy2 + x2) = 0. (5.2)

The center of projection does not meet s.Y�, for any s = 0. Thus any two polynomial
equations of form (5.2) will have at least 3 common real solutions. Fig. 5 also shows
two curves given by equations of form (5.2) with s = 1 and coefficients (4, −11, 4)

and (−13, −1, 24). These meet in 9 points, giving 9 solutions to the system. We com-
puted 10 million instances of the Wronski system on Y�, where the coefficients a, b, c

were integers chosen uniformly from the interval [−1000, 1000]. Of these, 9, 976, 701
(99.8%) had 3 real solutions and 23, 299 had 9 real solutions. Computing 500, 000
instances of the Wronski system (5.2) with s ∈ (0, 1), we found 414, 592 with 3 real
solutions, 85, 408 with 9 real solutions, and did not find any with either 5 or 7 real
solutions.
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Fig. 5. Cubic system.

Example 5.3. Let � be the unit cube. Then Y� = (S1)3 and so it is oriented. Consider
the regular unimodular balanced triangulation of the unit cube [0, 1]3 illustrated on the
left in Fig. 6. It has signature 4 − 2 = 2 and is given by a weight function taking
values 3 at (0, 0, 0) and (1, 1, 1), 0 at (1, 0, 0) and (0, 1, 1), and 1 at the remaining
vertices. The corresponding Wronski polynomials on s.Y� have the form

a(s3 + yz) + b(x + s3xyz) + cs(y + xz) + ds(z + xy).

The family s.Y� meets the center of projection only when s3 = ±1. These points for
s = 1 are

(x, y, z) ∈ {(1, 1, −1), (1, −1, 1), (1, i, i), (1, −i, −i)}.

Thus Y� meets the center of projection in 2 real and 2 complex points. Theorem 3.5
implies that for s ∈ (0, 1), there will be at least 2 real solutions, and we have computed
such systems with 2, 4, and 6 real solutions.

Example 5.4. On the right of Fig. 6 is the regular triangulation of the cube given by
the lifting function that takes values 0 at (0, 0, 0), (1, 1, 0), (1, 0, 1), and (0, 1, 1), and
1 at the remaining four vertices. It is balanced with 4 unimodular simplices of the same
color and one with normalized volume 2 of the opposite color, and thus has signature
4. The corresponding Wronski polynomials on s.Y� have the form

a(1 + sxyz) + b(sx + yz) + c(sy + xz) + d(sz + xy).

The variety s.Y� meets the center of projection only when s4 = 1. When s = 1, there
are four points of intersection

{(x, y, z)|x, y, z ∈ {±1}, xyz = −1}.

Since the sign imbalance is 4, Theorem 3.5 implies that for s ∈ (0, 1), three poly-
nomials of this form will have at least 4 real solutions. Computing 500,000 instances,
we found 453,811 with 4 solutions and 46,189 with 6 solutions.
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Fig. 6. Triangulations of cubes.

5.2. Systems from chain polytopes

Let P be a poset with n elements. Stanley [18] defined the chain polytope C(P ) to
be the set of points y in the unit cube [0, 1]P such that

ya + yb + · · · + yc �1 whenever a < b < · · · < c is a chain in P.

This polytope is intimately related to the order polytope O(P ) of Section 4. It has
no interior lattice points but its vertices are the characteristic functions of the antichains
of P, and the bijection between (upper) order ideals J and antichains A given by

J �−→ minimal elements in J

A �−→ 〈A〉 := {b ∈ P |a�b for some a ∈ A}

extends to a bijection � between the polytopes. Let y ∈ O(P ) be a point in [0, 1]P
with ya �yb whenever a�b in P. For a ∈ P , define

�(y)a = min{ya − yb|a covers b in P }. (5.5)

This is piecewise linear on the simplices of the canonical triangulation of O(P ) and it
extends the bijection given above. This induces the canonical triangulation of the chain
polytope, which is unimodular, balanced, and has the same signature as the canonical
triangulation of the order polytope. It is regular, by Lemma 5.9.
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Let A(P ) denote the set of antichains of P. Let rk(A) be the number of elements
in the (upper) order ideal generated by the antichain A. For an antichain A, let tA :=∏

a∈A ta be the monomial in R[tp|p ∈ P ] whose exponent vector is the vertex of
C(P ) corresponding to the antichain A. Fix a system of weights {�A ∈ R×|A ∈ A(P )}.
Given a coefficient vector c = (c0, c1, . . . , cn) ∈ (R×)n+1, set

Fc(t) :=
∑

A∈A(P )

crk(A)�AtA. (5.6)

A system of n such polynomials for a fixed choice � of weights is a Wronski polynomial
system for the canonical triangulation of the chain polytope of P with weight �.

Theorem 5.7. Suppose that a finite poset P is ranked mod 2. For any choice of weights,
a Wronski polynomial system for the canonical triangulation of the chain polytope of
P with weight � will have at least 
(P ) real solutions.

In Section 7, we consider such systems when P is a incomparable union of chains.

Example 5.8. Despite the similarities between our results for the chain and order poly-
topes, the polytopes O(P ) and C(P ) are not isomorphic, in general. For example, if
Bn is the boolean poset {0, 1}n, then Bn has 2n elements and n! maximal chains. It
also has unique maximal and minimal elements and exactly 4 · 3n−2 covers. Thus, for
n�2,

O(Bn) has 2+4·3n−2 facets, while C(Bn) has 2n+n! facets.

In particular, O(B4) has 38 facets while C(B4) has 40. When n = 10, these numbers
of facets are 26, 246 and 3, 629, 824, respectively.

The following four lemmas reduce Theorem 5.7 to Theorem 3.5.

Lemma 5.9. The canonical triangulation of the chain polytope is regular.

We defer the proof until the end of this section. There, we will show that the lifting
function �(A) := 3rk(A) induces the canonical triangulation of the chain polytope.

Lemma 5.10. The canonical triangulation of the chain polytope C(P ) is balanced. Its
signature is 
(P ), the sign imbalance of P.

Proof. The map � between simplices in the canonical triangulations of the chain and
order polytopes shows that the two triangulations are combinatorially equivalent. The
statement then follows from Lemma 4.7. �

The lifting function � which induces the canonical triangulation of C(P ) give a
R×-action on the projective space RPC(P ) in which YC(P ) lives. Let s.YC(P ) be the
associated toric deformation of YC(P ).
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Lemma 5.11. For any choice of weights {�A|A ∈ A(P )}, the toric degeneration of
YC(P ) induced by the lifting function �(A) := 3rk(A) does not meet the center of the
projection �� defining the Wronski polynomial system.

Proof. The center of the projection �� is defined by

∑
rk(A)=k

�AtA = 0 for k = 0, 1, . . . , n = |P |.

As in the proof of Lemma 4.8, it suffices to show that if A and B are two antichains
with the same rank k > 0, then there is a relation in the ideal of YC(P ) of the form

xAxB − xCxD, (5.12)

where C, D are antichains with rk(C) < k.
Let A and B be two antichains, each of rank k. Let D be the antichain of minimal

elements in 〈A〉 ∪ 〈B〉. Then D ⊂ A ∪ B. Set C := [(A ∪ B) − D] ∪ (A ∩ B). This is a
subset (possibly proper) of the minimal elements of 〈A〉 ∩ 〈B〉. Since A = B, we have
|〈A〉 ∩ 〈B〉| < k, and so C is an antichain with rank less than k. Finally, the multiset
equality A ∪ B = C ∪ D implies relation (5.12), which completes the proof. �

Remark 5.13. The sets C and D may be constructed from any two incomparable
antichains A and B of P. From the construction, we have rk(A)+rk(B)�rk(C)+rk(D),
with equality only when C is the set of minimal elements of 〈A〉 ∩ 〈B〉.

Despite the similarity of the equations for the order polytope (4.4) to those in the
proof above (5.12) for the chain polytope, the equations for the chain polytope do not
come from a distributive lattice.

Lemma 5.14. If a finite poset P is ranked mod 2, then Y+
C(P ) is Cox-oriented.

Proof. The chain polytope contains the standard basis of RP as some of its vertices and
it contains the origin. Thus its integral points affinely span ZP . The facet inequalities
Ax�b for C(P ) come in two forms

f (a) � 0 for a ∈ P, and

f (a) + f (b) + · · · + f (c) � 1 for a < b < · · · < c a maximal chain in P.

The first collection of inequalities ensures that the columns of the matrix A span an
n-dimensional saturated sublattice of Zn+c, where c is the number of maximal chains.
If P has mod 2 rank 0, then the sum of the columns of A is a vector in Zn+c with
every component odd. If P has mod 2 rank 1, then we add b to the sum of columns
of A gives a vector in Zn+c with every component odd.

The lemma follows by Theorem 2.6. �
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Proof of Lemma 5.9. For an antichain A of P generating an order ideal with k elements,
set �(A) := 3k − 1. We show that � induces the canonical triangulation.

Suppose that P has n elements and fix a linear extension �: P → [n]. Let �� be
the simplex in the canonical triangulation corresponding to this linear extension. For
each k = 0, . . . , n, let Ik be the order ideal �−1{n+1−k, . . . , n−1, n} and let Ak be
the antichain of minimal elements of Ik . Then the vertices of �� are mk = ∑

x∈Ak
ex ,

for k = 0, . . . , n, where {ex |x ∈ P } is the standard basis for RP .
Let � be the unique linear function satisfying �(mk) + �(mk) = 0. We will show

that if m is a vertex of the chain polytope but not of ��, then �(m) + �(m) < 0,
which will prove the proposition. This requires a more precise description of �. Write
p�q if q covers p in P. For x, y ∈ P , define the function x,y ∈ {0, 1} recursively as
follows:

(1) x,y = 0 if x�y,
(2) y,y = 1 and
(3) x,y = ∑{z,y |x�z and z ∈ A�(x)+1}.

These functions x,y have the following elementary and obvious properties:

Lemma 5.15. Let �: P → [n] be a linear extension and define � as above. Then

(1) For any y ∈ P and antichain A,
∑

x∈A x,y �1.
(2) If �(y)�j , then 1 = ∑

x∈Aj
x,y .

Set f (k) := 3k−1 − 3k and note that if

�(ex) :=
∑
y

x,yf (n − �(y) + 1),

then �(mk) = 1 − 3k . Indeed,

�(mk) =
∑
x∈Ak

�(ex) =
∑
x∈Ak

∑
y

x,yf (n − �(y) + 1)

=
∑
y∈Ik

f (n − �(y) + 1)
∑
x∈Ak

x,y

=
∑
y∈Ik

f (n − �(y) + 1) =
k∑

i=0

f (k) = 1 − 3k.

Suppose now that m is a vertex of C(P ), but m /∈ ��. Let A be the antichain
corresponding to m and let z be the least element of A under the linear extension
�. Set k := n + 1 − �(z). Then A ⊂ Ik but A does not generate Ik (for otherwise
m = mk ∈ ��), and so �(m)�3k−1 − 1, as the order ideal generated by A has at most
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k−1 elements. However, ez occurs in m, so �(m)�f (n+1−�(z)) = f (k) = 3k−1−3k .
But then �(m) + �(m) < 0, as claimed. �

6. Lower bounds from sagbi degenerations

The Grassmannian has a flat deformation to the toric variety of an order polytope
induced by a canonical subalgebra or sagbi basis of its coordinate ring. We use this
sagbi deformation to compute the characteristic of the real Wronski map and recover the
result of Eremenko and Gabrielov [5] which motivated our work. More generally, we
compute the characteristic of Wronski projections for many projective varieties whose
coordinate rings are algebras with a straightening law on a distributive lattice.

We review some definitions from [5]. Let f1(z), . . . , fp(z) be real polynomials in
one variable z, each of degree at most m+p−1. Their Wronski determinant is

W(f1(z), . . . , fp(z)) :=
f1(z) · · · fp(z)

f ′
1(z) · · · f ′

p(z)

...
...

f
(p−1)
1 (z) · · · f

(p−1)
p (z)

.

This Wronskian has degree at most mp, and, up to a scalar factor, it depends only upon
the linear span of the polynomials f1(z), f2(z), . . . , fp(z). If we identify a polynomial
of degree m+p−1 as a linear form on Rm+p, then p linearly independent polynomials
cut out a m-plane. Thus the Wronski determinant induces the Wronski map

W : G(m, p) −→ Pmp,

where G(m, p) is the Grassmannian of m-planes in Rm+p, and Pmp is the space of
polynomials of degree mp, modulo scalars.

Consider this in more detail. Represent a polynomial f (z) by the column vector f
of its coefficients. Set

� := [1, z, z2, . . . , zm+p−1]

and define K(z) to be the matrix with rows �(z), �′(z), . . . , �(m−1)(z). Then⎡
⎢⎢⎣

f1(z) · · · fp(z)

...
. . .

...

f
(m−1)
1 (z) · · · f

(m−1)
p (z)

⎤
⎥⎥⎦ = K(z) · [f1, . . . , fp].

Expanding the determinant using the Cauchy–Binet formula gives

W(f1(z), . . . , fp(z)) =
∑
J

kJ (z)xJ (f1, . . . , fp),
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Fig. 7. The distributive lattice C2,3.

where the summation is over all sequences J : 1�j1 < · · · < jp �m+p, xJ (f1, . . . , fp)

is the determinant of the p×p submatrix of [f1, . . . , fp] formed by the rows in J, and
(−1)mp−|J |kJ (z) is the determinant of the complementary rows of K(z). These func-
tions xJ (f1, . . . , fp) are the Plücker coordinates of the m-plane cut out by f1, . . . , fp.
They define a projective embedding of G(m, p) into Plücker space, PN , where N =(
m+p

m

)− 1.
If |J | := ∑

ji − i, then kJ (z) = zmp−|J |kJ (1). Moreover, (−1)mp−|J |kJ (1) > 0 for
all J [16, (Eq. (5.5))]. 3 If we write �J := kJ (1), then, in the Plücker coordinates for
G(m, p) and the basis of coefficients for polynomials in Pmp, the Wronski map is

W(xJ |J ∈ Cm,p) =
mp∑
j=0

zmp−j
∑

|J |=j

�J xJ ,

where Cm,p is the set of indices of Plücker coordinates. We recognize this as the
restriction of a linear projection �� on Pmp to the Grassmannian G(m, p).

This is a Wronski projection, in the sense of Section 3. Indeed, indices Cm,p of
Plücker coordinates are partially ordered by componentwise comparison

J = [j1, . . . , jp]�K = [k1, . . . , kp] ⇐⇒ ji �ki for i = 1, . . . , p.

This poset Cm,p is the lattice of order ideals of the poset [m] × [p] of two chains of
lengths m and p and the rank of J is |J |. Fig. 7 shows C3,2.

Following [5] we define the characteristic of the Wronski map W. This map sends the
subset X of G(m, p) where x1,2,...,p = 0 to the subset Y of Pmp of monic polynomials
of degree mp, and the complement of X to the complement of Y. Both X and Y are
orientable as they are identified with Rmp. Let char(W) be the absolute value of the
topological degree of W |X.

An equivalent definition of char(W) similar to Definition 1.3 also appears in [5]. Lift
the Grassmannian and the projection to the double covers SN and Smp of RPN and

3 There is a misprint in the cited paper at this point, Fj (0) should be Fi(1).
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RPmp. The pullback of G(m, m) is the upper Grassmannian G+(m, m) of all oriented
m-planes in Rm+p. Let W+: G+(m, m) → Smn be the pullback of W. Since G+(m, m)

is orientable [5], char(W) is well defined as in Definition 1.3.

Theorem 6.1 (Eremenko and Gabrielov [5, Theorem 2]). The characteristic of the real
Wronski map W is equal to the sign-imbalance of Cm,p.

Remark 6.2. White [26] computed this sign-imbalance, showing that 
(Cm,p) = 0
unless m + p is odd, and then it equals

1!2! · · · (p−1)!(m−1)!(m−2)! · · · (m−p+1)! (mp
2

)!
(m−p+2)!(m−p+4)! · · · (m+p−2)!

(
m−p+1

2

)
!
(

m−p+3
2

)
! · · ·

(
m+p−1

2

)
!
.

Proof of Theorem 6.1. The Plücker ideal I of the Grassmannian G(m, p) has a
quadratic Gröbner basis whose elements are indexed by incomparable pairs J, K in
Cm,p and have the form

xJ xK − xJ∧KxJ∨K + other terms, (6.3)

where the other terms have the form axLxM with L�J, K �M [21, Chapter 3]. The
term order here is degree reverse lexicographic on C[xJ |J ∈ Cm,p] where the variables
are first linearly ordered by the ordinary lexicographic order on their indices.

Any lifting function �: C(m, p) → Z defines a R×-action on Plücker space by
s.xJ = s−�(J )xJ . Restricting this action to the Grassmannian gives a family s.G(m, p)

whose scheme theoretic limit as s → 0 is cut out by the initial ideal in� I . There is a
lifting function � so that in� I is the toric ideal

xJ xK − xJ∧KxJ∨K for J, K incomparable

of the distributive lattice Cm,p [23, Theorem 11.4]. We call the corresponding family
s.G(m, p) the sagbi deformation of the Grassmannian, which deforms it into the toric
variety Y (m, p) of the distributive lattice Cm,p. As in the proof of Lemma 4.8, the
form of Eqs. (6.3) for the Grassmannian imply that the sagbi degeneration does not
meet the center of the projection ��.

For s ∈ (0, 1], let Ws be the restriction of the Wronski �� to s.G(m, p). Then the
characteristic char(W) coincides with char(Ws) for s ∈ (0, 1]. By Lemma 3.9, there
exists a regular value z of W all of whose preimages in Y (m, p) have all components
positive. By the implicit function theorem, every preimage of z in s.G(m, p) for s
sufficiently small has the same property. Thus char(W) equals to the degree of the
restriction of W to s.G>(m, p), the intersection of the Grassmannian with the positive
orthant.

Let Y>(m, p) be the positive part of the toric variety Y (m, p). Then Y>(m, p) has
coordinates and orientation defined by the projection to the coordinate plane corre-
sponding to some (fixed) maximal chain in Cm,m+p. By the implicit function theorem,
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the same is true for s.G>(m, p) when s is sufficiently small. For each preimage of
z in Y>(m, p) there is a nearby preimage of z in s.G>(m, p). Hence the projections
of these preimages to the coordinate plane are nearby, and the signs of det Ws and
det W0 coincide. This proves that char(W) = char

(
W0|Y>(m,p)

)
. Finally, by Corollary

3.10, char(W0|Y>(m,p)) is equal to the sign-imbalance of Cm,p, which completes the
proof. �

We only used that the characteristic of the Wronski map was defined and that G(m, p)

has equations of form (6.3), for some distributive lattice D. The projective coordinate
ring of a variety Y with such equations is an algebra with straightening law on the
distributive lattice D [2], and this has the geometric consequence that Y admits a flat
degeneration to the toric variety YD of the distributive lattice. There are many examples
of such varieties, besides the Grassmannian. These include Schubert varieties of the
Grassmannian, the classical flag variety, and the Drinfel’d compactification of the space
of curves on the Grassmannian [17], as well as products of such spaces.

Such a variety Y has projective coordinates {xJ |J ∈ D}. Given a set � of weights, a
Wronski map for the lattice D is a linear projection �� of the form

��: (xJ |J ∈ D) �−→
⎛
⎝∑

|J |=j

�J xJ | = 0, . . . , rank(D)

⎞
⎠ .

We say that �� has constant sign if the sign of �J depends only upon |J |. Let 0̂ be
the unique minimal element in D. For Cm,p, this is (1, 2, . . . , p).

Theorem 6.4. Let Y be a projective variety whose coordinate ring is an algebra with
straightening law on a distributive lattice D and let �� be a Wronski projection for
this lattice with constant sign. If either Y+ or Y ∩ {x|x0̂ = 0} are oriented, then the
characteristic of the Wronski projection on Y is equal to the sign-imbalance of D.

This result for Schubert varieties, the Drinfel’d compactification, and products of
such varieties was communicated to us by Eremenko and Gabrielov, to whom it should
be accredited.

7. Incomparable chains and factoring polynomials

We give a different proof of Theorems 4.3 and 5.7, when the poset P is a disjoint
union of chains of lengths a1, a2, . . . , ak , and the weights � are constant. Our method
will be to show that solutions to a general Wronski polynomial system for the chain
polytope of P are certain factorizations of a particular univariate polynomial. This
reformulation shows that there are certain numbers of real solutions to these systems
that are forbidden to occur, which is a new phenomenon, which we seem to have
also observed in Example 5.1. It also proves the sharpness of the lower bound of
Theorems 4.3 and 5.7 for these posets, and shows that the conclusion holds even when



E. Soprunova, F. Sottile / Advances in Mathematics 204 (2006) 116–151 145

the hypotheses of those theorems do not, as Y+
C(P ) is not orientable if the ai do not

all have the same parity. This analysis extends to posets which are the incomparable
unions of other posets.

Let P be the incomparable union of chains of lengths a1, a2, . . . , ak . For each i =
1, . . . , k, set xi,0 := 1 and let

xi,1 > xi,2 > · · · > xi,ak

be indeterminates which we identify with the elements in the ith chain, ordered as
indicated. Observe that the upper order ideal generated by xi,j has j elements. Antichains
of P correspond to monomials

x1,i1x2,i2 . . . xk,ak

and the order ideal generated by this antichain has i1 + i2 + · · · + ik elements.
A Wronski polynomial with constant weight 1 for the canonical triangulation of the

chain polytope C(P ) has the form

F =
∑

i1,...,ik

ci1+···+ik x1,i1x2,i2 . . . xk,ak

=
a1+···+ak∑

j=0

ct

⎛
⎜⎜⎝ ∑

i1,...,ik
i1+···+ik=j

x1,i1x2,i2 . . . xk,ak

⎞
⎟⎟⎠ . (7.1)

A general system of such Wronski polynomials is equivalent to one of the form∑
i1,...,ik

i1+···+ik=j

x1,i1x2,i2 . . . xk,ik = bj for j = 1, 2, . . . , a1 + · · · + ak. (7.2)

Suppose that we have a solution to (7.2). For each i = 1, . . . , k, define the univariate
polynomial

fi(z) := 1 +
ai∑

j=1

xi,j z
j .

Then we clearly have

f1(z)f2(z) · · · fk(z) = 1 +
a1+···+ak∑

j=1

bj z
j = f (z). (7.3)

Similarly, any such factorization of f (z) where deg(fi) = ai gives a solution to (7.2),
and hence to our original system. We have proven the following theorem:
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Theorem 7.4. The solutions to a general Wronski system with constant weights for
the chain polytope of the incomparable union of chains of lengths a1, . . . , ak are the
factorizations of a univariate polynomial f of degree a1 + · · · + ak into polynomials
f1, . . . , fk , where fi has degree ai .

Remark 7.5. For each variable xi,j above, set

�(xi,j ) :=
∏

j � l �ai

xi,l .

If we apply � to a Wronski polynomial F (7.1) of the chain polytope of P, we obtain a
Wronski polynomial for the canonical triangulation of the order polytope of P. In this
way, Wronski systems for the order polytope and chain polytope of P are equivalent,
and thus the results of this section also hold for the order polytope of P.

We investigate the consequences of Theorem 7.4. A factorization

f1(z)f2(z) · · · fk(z) = f (z), (7.6)

where fi is a complex polynomial of degree ai for i = 1, . . . , k and f (z) has degree
a1+· · ·+ak and distinct roots, is a distribution of the roots of f between the polynomials
f1, . . . , fk , with fi receiving ai roots. Thus the number of such factorizations is the
multinomial coefficient

(
a1 + · · · + ak

a1, a2, . . . , ak

)
= (a1 + · · · + ak)!

a1!a2! · · · ak! , (7.7)

which is also the number of linear extensions of P. Indeed, the positions taken by the
elements from each chain in a linear extension of P give a distribution of a1 +· · ·+ak

positions among k chains with the ith chain receiving ai positions. We already knew
that the number of such linear extensions is the number of complex solutions to a
Wronski polynomial system for the chain polytope of P.

Suppose now that f (z) is a real polynomial with r real roots and c pairs of complex
conjugate roots, all distinct. In every factorization of f (z) into real polynomials, each
conjugate pair of roots must be distributed to the same polynomial. This imposes
stringent restrictions on the numbers of such real factorizations.

If every root of f (z) is real, so that c = 0, then the number of real factorizations
(7.6) is the multinomial coefficient (7.7). Also, there are no such factorizations if f (z)

has fewer than |{j |aj is odd}| real roots. In particular, the minimum number of real
factorizations is 0 if more than one aj is odd. Recall that if B = b1 + b2 + · · · + bk ,
then we have

(
B

b1, b2, . . . , bk

)
= 0.
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Theorem 7.8. Suppose that f (z) is a real polynomial of degree a1 + · · · + ak with
distinct roots. Let n be the number of real factorizations (7.6) of f where fi has degree
ai . Then n depends only on the number of real roots of f (z) and satisfies

( ⌊
a1+···+ak

2

⌋
⌊

a1
2

⌋
, . . . ,

⌊
ak

2

⌋)�n�
(

a1 + a2 + · · · + ak

a1, a2, . . . , ak

)
.

The minimum is attained when f (z) has at most one real root, and the maximum
occurs when f (z) has all roots real. Moreover, at most

1 +
⌊a1

2

⌋
+
⌊a2

2

⌋
+ · · · +

⌊ak

2

⌋

distinct values of n can occur.

For example, if k = 3 and (a1, a2, a3) = (4, 4, 5), then f (z) has degree 13. The
number n of real factorizations of f (z) into polynomials of degrees 4, 4, and 5 as a
function of the number of real roots r of f (z) is given in the table below

r 1 3 5 7 9 11 13
n 90 210 666 2226 7434 25,410 90,090

Proof of Theorem 7.8. A factorization of a polynomial f (z) with r distinct real roots
and c distinct pairs of conjugate roots into real polynomials of degrees a1, . . . , ak is a
distribution of the roots of f among the factors where the ith factor receives ai roots,
and the conjugate pairs are distributed to the same factor.

The upper bound was described previously, so we consider the lower bound. The
binomial coefficient lower bound vanishes when more than one ai is odd, and we
already observed that there are no real factorizations of f in this case. If every ai

is even and f (z) has no real roots, then the root distribution is enumerated by this
binomial coefficient. Lastly, if ai is the only odd number among a1, a2, . . . , ak , and f
has exactly one real root, that root must be given to the factor fi . If we replace ai by
ai − 1 and this problem of distributing roots reduces to the previous case.

The last statement follows as n depends only on the number of real roots of f (z)

and n = 0 unless f (z) has at least |{j |aj is odd}| real roots. �

The number of real factorizations (7.6) is given by a generating function. We thank
Ira Gessel who explained this to us.

Proposition 7.9. The coefficient of x
a1
1 · · · xak

k in (x1 + · · ·+ xk)
r (x2

1 + · · ·+ x2
k )c is the

number of factorizations

f1(z) · f2(z) · · · fk(z) = f (z),
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where f (z) is real and has degree r + 2c = a1 + · · · + ak with r distinct real roots
and c distinct pairs of complex conjugate roots, and fi(z) is real and has degree ai

for i = 1, . . . , k.

Proof. This is a standard use of generating functions, as described in Chapter 1 of
[19]. We have r red balls and c cyan balls to distribute among k boxes such that if ri
is the number of red balls in box i and ci is the number of cyan balls in box i, then
ri + 2ci = ai . �

We relate the lower bound of Theorem 7.8 to Theorem 5.7.

Proposition 7.10. Let P be the incomparable union of chains of lengths a1, a2, . . . , ak .
The sign-imbalance of P is


(a1, a2, . . . , ak) :=
( ⌊

ai+···+ak

2

⌋
⌊

a1
2

⌋
, . . . ,

⌊
ak

2

⌋).

This equals zero unless at most one ai is odd.

Proof. If we precompose a linear extension with the inverse of the extension where ev-
ery element of the ith chain precedes every element of the (i+1)st chain, then we have
identified the set of all linear extensions of P with the set of minimal coset representa-
tives Sa of the subgroup Sa1 ×Sa2 ×· · ·×Sak

of the symmetric group Sa1+···+am , which
we call (a1, . . . , ak)-shuffles. The generating function for the distribution of lengths
of these shuffles is the q-multinomial coefficient (the case k = 2 is [19, Proposition
1.3.7])

∑
w∈Sa

q�(w) =
(

a1 + a2 + · · · + ak

a1, a2, . . . , ak

)
q

,

where if k > 2, then

(
a1 + a2 + · · · + ak

a1, a2, . . . , ak

)
q

=
(

a1 + a2 + · · · + ak−1

a1, . . . , ak−1

)
q

(7.11)

·
(

a1 + a2 + · · · + ak

a1 + · · · + ak−1, ak

)
q

and
(
a+b
a,b

)
q

is the q-binomial coefficient

(
a + b

a, b

)
q

= (1 − qa+b)(1 − qa+b−1) · · · (1 − q2)(1 − q)

(1 − qa) · · · (1 − q2)(1 − q) · (1 − qb) · · · (1 − q2)(1 − q)
. (7.12)
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We evaluate the q-multinomial coefficient at q = −1 to compute the sign-imbalance
of P. If k is odd, then 1 − qk = 2 when q = −1. For even exponents, we have

1 − q2a = (1 − q2)(1 + q2 + q4 + · · · + q2a−2).

Now consider (7.12) when q = −1. If both a and b are odd, then (7.12) has one more
factor with an even exponent in its numerator then in its denominator, and so it vanishes
when q = −1. Otherwise (7.12) has the same number of factors with even exponents
in its numerator as in its denominator, and so we cancel all factors of (1 − q2). If we
substitute q = −1, then each factor (1−qc) with odd exponent c becomes 2, and these
cancel as there is the same number of such factors in the numerator and denominator.
Since (1 + q2 + q4 + · · · + q2l−2) = l when q = −1, we see that

(
a + b

a, b

)
q=−1

=
(⌊ a

2

⌋+ ⌊
b
2

⌋
⌊

a
2

⌋
,
⌊

b
2

⌋ ).

Applying (7.11) to this formula completes the proof. �

Remark 7.13. By Theorem 7.8 and Proposition 7.10, the sign-imbalance of P is the
sharp lower bound for the Wronski polynomial systems of the chain polytopes chain
polytope of P. Thus Theorem 5.7 is sharp. Moreover, if the ai do not all have the same
parity, then the hypotheses of Theorem 5.7 do not hold, and in fact the toric variety
Y+

P is not orientable. Despite this, the conclusion of Theorem 5.7 does hold.

The ideas in Proposition 7.10 can be used to compute the sign-imbalance of a product
of posets. If P is the incomparable union of posets P1, P2, . . . , Pk with |Pi | = ai ,
then the linear extensions of P are (a1, . . . , ak)-shuffles of linear extensions of each
component Pi . If we let �(P ) be the number of linear extensions of a poset P, then
we have the following corollary:

Corollary 7.14. Let P be as described. Then we have

�(P ) =
(

a1 + a2 + · · · + ak

a1, a2, . . . , ak

)
·

k∏
i=1

�(Pi)


(P ) =
( ⌊

a1+···+ax

2

⌋
⌊

a1
2

⌋
, . . . ,

⌊
ak

2

⌋) ·
k∏

i=1


(Pi).

Example 7.15. The Grassmannian G = G(2, 2) has a sagbi degeneration to the toric
variety Y associated to the distributive lattice of order ideals on a product C2 × C2 of
two chains of length 2. Let Z be the toric variety associated to the chain polytope of
this poset. Since C2 × C2 is sign-balanced, the lower bound here is 0.
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If we take the product of G with the projective plane, we obtain a variety to which
Theorem 6.4 applies. It has a sagbi degeneration into Y × RP2, which is the toric
variety of the distributive lattice of order ideals on the disjoint union of a chain C2 of
length 2 with C2 × C2. Similarly, the toric variety associated to the chain polytope of
this poset is Z × RP2. By Corollary 7.14, the Wronski polynomial systems on these
varieties will have 30 = 2 · (2+4

2,4

)
complex solutions with at least 2 real.

The table below records the percentage that a given number of real roots was observed
in Wronski polynomial systems on these varieties. The entries of 0 indicate values that
were not observed.

# Real 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
G × RP2 0 11 55 24 5.3 1.6 1.2 1.4 0 0 0 0 0 0 0 0.31
Y × RP2 0 2.2 25 14 23 1.2 0.09 22 0 0 0 0.001 0.001 0.07 0.01 12
Z × RP2 0 0.07 6 33 4.6 1.3 2.9 39 0 0 0.003 0.01 1.5 0.4 0.37 10

We do not yet understand the apparent gaps in these data.
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