215 research outputs found

    Leakage Minimization Technique for Nanoscale CMOS VLSI

    Get PDF
    Because of the continued scaling of technology and supply-threshold voltage, leakage power has become more significant in power dissipation of nanoscale CMOS circuits. Therefore, estimating the total leakage power is critical to designing low-power digital circuits. In nanometer CMOS circuits, the main leakage components are the subthreshold, gate-tunneling, and reverse-biased junction band-to-band-tunneling (BTBT) leakage currents

    Assessment of InAs/AlGaSb Tunnel-FET Virtual Technology Platform for Low-Power Digital Circuits

    Get PDF
    In this work, a complementary InAs/Al0.05Ga0.95Sb tunnel field-effect-Transistor (TFET) virtual technology platform is benchmarked against the projection to the CMOS FinFET 10-nm node, by means of device and basic circuit simulations. The comparison is performed in the ultralow voltage regime (below 500 mV), where the proposed III-V TFETs feature ON-current levels comparable to scaled FinFETs, for the same low-operating-power OFF-current. Due to the asymmetrical n-and p-Type I-V exts , trends of noise margins and performances are investigated for different Wp/Wn ratios. Implications of the device threshold voltage variability, which turned out to be dramatic for steep slope TFETs, are also addressed

    Assessment of InAs/AlGaSb Tunnel-FET Virtual Technology Platform for Low-Power Digital Circuits

    Get PDF
    In this work, a complementary InAs/Al0.05Ga0.95Sb tunnel field-effect-transistor (TFET) virtual technology platform is benchmarked against the projection to the CMOS FinFET 10-nm node, by means of device and basic circuit simulations. The comparison is performed in the ultralow voltage regime (below 500 mV), where the proposed III\u2013V TFETs feature ON-current levels comparable to scaled FinFETs, for the same low-operating-power OFF-current. Due to the asymmetrical n- and p-type I\u2013Vs, trends of noise margins and performances are investigated for different Wp/Wn ratios. Implications of the device threshold voltage variability, which turned out to be dramatic for steep slope TFETs, are also addressed

    Majority Voter Full Characterization for NanoMagnet Logic Circuits

    Get PDF
    The recently proposed NanoMagnet based Logic (NML) represents an innovative way to assemble electronic logic circuits. The low power consumption, combined with the possibility to maintain the information stored without power supply, allows to design low power digital circuits far beyond the limitations of CMOS technology. This work is focused on the key logic block of NanoMagnet based Logic, the Majority Voter (MV). It is thoroughly analyzed through detailed micromagnetic simulations, changing the geometrical parameters, and detecting logic behavior, timing performance and energy dissipation. Our analysis enables to derive important results, substantially enhancing the practical knowledge of NML. First, we demonstrate that NML circuits can be effectively fabricated not only using Electron Beam Lithography, but also using high-end optical lithography without loosing performance. This is a promising opportunity for the future of this technology. Second, we demonstrate the robustness of the MV considering process variations and extracting useful guidelines for its technological implementation. Third, we show how, and how much, the alteration of magnets sizes and distances affect timing and energy consumption. Finally, fourth, we outline the problematic fabrication of the gate with real clock wires, and propose a modification that enables the fabrication of working gates, remarkably enhancing the possibilities of this technolog

    Silicon Satellites: Picosats, Nanosats, and Microsats

    Get PDF
    Silicon, the most abundant solid element in the Earth's lithosphere, is a useful material for spacecraft construction. Silicon is stronger than stainless steel, has a thermal conductivity about half that of aluminum, is transparent to much of the infrared radiation spectrum, and can form a stable oxide. These unique properties enable silicon to become most of the mass of a satellite, it can simultaneously function as structure, heat transfer system, radiation shield, optics, and semiconductor substrate. Semiconductor batch-fabrication techniques can produce low-power digital circuits, low-power analog circuits, silicon-based radio frequency circuits, and micro-electromechanical systems (MEMS) such as thrusters and acceleration sensors on silicon substrates. By exploiting these fabrication techniques, it is possible to produce highly-integrated satellites for a number of applications. This paper analyzes the limitations of silicon satellites due to size. Picosatellites (approximately 1 gram mass), nanosatellites (about 1 kg mass), and highly capable microsatellites (about 10 kg mass) can perform various missions with lifetimes of a few days to greater than a decade
    • …
    corecore