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Majority Voter Full Characterization for

NanoMagnet Logic Circuits
Marco Vacca, Mariagrazia Graziano, Member, IEEE, and Maurizio Zamboni

Abstract—The recently proposed NanoMagnet based Logic
(NML) represents an innovative way to assemble electronic
logic circuits. The low power consumption, combined with the
possibility to maintain the information stored without power
supply, allows to design low power digital circuits far beyond
the limitations of CMOS technology.

This work is focused on the key logic block of NanoMag-
net based Logic, the Majority Voter (MV). It is thoroughly
analyzed through detailed micromagnetic simulations, changing
the geometrical parameters, and detecting logic behavior, timing
performance and energy dissipation. Our analysis enables to
derive important results, substantially enhancing the practical
knowledge of NML. First, we demonstrate that NML circuits
can be effectively fabricated not only using Electron Beam
Lithography, but also using high-end optical lithography without
loosing performance. This is a promising opportunity for the
future of this technology. Second, we demonstrate the robustness
of the MV considering process variations and extracting useful
guidelines for its technological implementation. Third, we show
how, and how much, the alteration of magnets sizes and distances
affect timing and energy consumption. Finally, fourth, we outline
the problematic fabrication of the gate with real clock wires, and
propose a modification that enables the fabrication of working
gates, remarkably enhancing the possibilities of this technology.

Index Terms—Quantum Dot Cellular Automata, Nano Mag-
netic circuits, Micro Magnetic simulation, process variations

I. INTRODUCTION

In the NanoMagnet based Logic (NML) digital values are

represented using single domain nanomagnets (Fig. 1.A). If

magnets are sufficiently small and are rectangularly shaped,

they can assume only two stable magnetization states used to

represent the logic values ’0’ and ’1’ [1]. Circuits are built

placing magnets one near each other. Information propagates

using the magnetic interaction among neighbor magnets. The

basic logic gate is the Majority Voter (MV, Fig. 1.B), com-

prised of three input magnets surrounding a central element

which performs the logic operation (see sec. II for background

on NML). The value of the output magnet is equal to the value

of the majority of the three inputs [1].

Although the maximum allowed frequency of this technol-

ogy is low [2] (about 100 MHz if all constraints are taken

into account, compared to THz for the molecular nearest

counterpart [3]), NML is interesting because the expected

power consumption is much lower than in CMOS circuits

(about 100 times less) [4]. Moreover, due to their magnetic
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nature, they maintain the information stored also without

power supply. Therefore this technology offers the possibility

to combine logic and memory in the same device. As a

consequence new way of developing logic circuits and their

applications can be explored, with the possibility to further

reduce power consumption.

Many works in the literature analyze the behavior of the

basic blocks of this technology and, in some cases, how

these blocks are influenced by magnets shapes and positions.

[1], [5], [6], [7]. However, no previous study considers with

a thorough analysis the impact of the variation of some

important parameters, as i) the distances among neighbor

magnets, ii) the sizes of the magnets themselves, iii) the

impact of these parameters on their switching time and energy

consumption, and iv) the relations between the previously

mentioned parameters and the clock physical organization. In

this work, starting from our preliminary contribution in [8],

we study the MV using low level micromagnetic simulators,

OOMMF [9], and in particular NMAG [10], which allows

not only a behavioral analysis, but also enables to extract

quantitative data on timing and energy performance.

We simulate (section III) the gate in various conditions where

we change distances among neighbor magnets, as well as their

aspect ratio. The purpose of this analysis is to verify whether

these circuits can be built using lithographic techniques that

have a low resolution, are fast and allow for high volume

production (i.e. Ultra Deep Ultraviolet Lithography). We then

analyze how the MV behaves considering process variations

(in section IV), because a good rejection process related errors

highly increases the chances of using this technology. We also

study (section V and VI) how the most important features

of the gate, timing and energy dissipation, change due to

variations in magnets sizes and distances. Finally, we discuss

(in section VII) issues related to the fabrication of realistic

gates considering the real structure of clock wires. We propose

a modification of the clock wires and we achieve a solution

that assures to obtain gates that correctly work without the

need of complex magnets organization as previously proposed.

II. BACKGROUND

The correct signal propagation in the NML circuit requires

an adiabatic switching [11]. For this purpose, a slowly rising

external magnetic field, called clock, is applied to the magnets.

This field is directed along the short side of the magnets, and

forces them in an intermediate unstable state. When the field

is released, nanomagnets start to realign following the mag-

netization values of the inputs, propagating the information
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along the circuit. This field is normally generated by a current

which flows through a wire buried under the magnets plane.

This might have a not negligible impact on the whole circuit

power consumption, but the solution proposed in [4] has the

potential to notably reduce it. Recently, a novel approach has

been proposed [15] which would change the clock structure

organization. Though this method is worth analyzing, it re-

quires further studies before assessing its superiority to the

structures proposed up to now.
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Fig. 1. A) Nanomagnets with their hysteresis cycle, logic bits are represented
by the two stable magnetizations. B) Majority voter and its truth table. Three
input blocks surround a central element which performs the logic operation.
C) Clock signals waveforms, overlapped to assure a correct information
propagation. D) Magnetic signal propagation. At every time step, for each
group of three clock zones, magnets of one zone are in the SWITCH phase.
Magnets of the zone on the left are in the HOLD phase and behave like input
for the switching magnets. Magnets of the clock zone on the right are in the
RESET phase and have no influence on the switching magnets.

According to the previously mentioned clock organization,

to propagate the information in a circuit of realistic complexity,

a multiphase clock system is necessary [12]. Circuits are

divided in small areas, called clock zones, where only a

limited number of magnets is allowed [13]. A different clock

signal is applied to every clock zone (Fig. 1.C). At least three

overlapped clock signals are required for a correct information

propagation, as we demonstrated in [14] (see Fig. 1.C). During

each time step magnets of one clock zone can be in one among

three different states (Fig. 1.D). In the SWITCH state the

magnetic field is removed and magnets tend to realign in an

antiferromagnetical order. Magnets of the LEFT clock zone

are in the HOLD state, i.e that no field is applied and they act

like input for magnets in the SWITCH state. At the same time

magnets of the clock zone on the right are in the RESET state,

i.e. the external field is applied, and they have no influence on

switching magnets because they are in an unstable state. In the

next time step the situation is the same but spatially shifted

and the switching magnets are the ones in the next clock zone.

This situation is periodically repeated for each group of three

clock zone allowing the information propagation.

III. MAJORITY VOTER CHARACTERIZATION

The simulations here performed have as a target the verifica-

tion of the correct alignment of the MV magnets magnetization

when they move from the RESET to the HOLD phase through

the SWITCH phase (see Fig. 1.D). Achieving the correct

magnetization is not straightforward for a gate like MV, and

depends on magnets shape, distances and material properties.

Clearly, an incorrect alignment corresponds to a logic error.

The sequence of steps are reported in figure 2. After the

application of a strong enough horizontal magnetic field (for

example 100000 A/m), magnets are forced to assume the

RESET state. The field is then removed, and magnets reach

the equilibrium magnetization. It is worth underlining that the

signal used in the simulation is an ideal step, while the real

clock signal should be a ramp as shown in Fig. 2 (dashed

line). The necessity of using a ramp instead of a step in

the real case comes from some considerations that are not

directly connected to the gate behavior. First, to reduce the

H
100000 A/m

FINAL STATE
t

INITIAL STATE

RESET APPLIED
CLOCK USED

REAL CLOCK

Fig. 2. Real clock signal and clock signal waveform used in the simulation.

energy necessary for the magnet to switch, it is important to

favor the so called adiabatic switching [11]. This means that

the clock signal should have a rise time of at least 8-10 ns

[4]. Further details on this point will be given in section VI.

Second, due to thermal noise [13], the maximum number of

magnets in a clock zone must be limited. As shown in [13]

if the number of magnets is higher than 5, a long fall time

is necessary to assure that magnets switching occurs with a

reduced probability of error. However, with a limited number

of magnets in sequence (less then five [13]) it is allowed to

use an abrupt switching, i.e. a very short fall time. So in this

case there is no difference between the real clock and the

ideal clock, because we are interested only in the behavior

of the gate in which the number of magnets is limited. As a

consequence, an ideal clock signal was used in the simulations,

in order to keep simulations simpler and faster.

The majority voter structure used in the simulation is shown

in Fig. 3.A. The majority voter (included in the rectangular

box in Figure 3.A) is composed by three inputs magnets

(TOP, LEFT and BOTTOM, according to figure 1.B) and one

CENTRAL block, which performs the logic operation. Three

fixed magnetization blocks (outside the rectangular box) are

here used to simulate the multiphase clock system (i.e. the final

magnets of the previous clock zone here outside the inner box)

and to force the real inputs of the majority voter. It is important

to notice that when magnets are horizontally coupled there is

an inversion in the signal, while vertically there is no signal

inversion. Therefore the fixed magnet used to force the central

input (fixed input on the left) must be inverted respect to the

input that we want to force. If the input combination is “110”,

the values of the fixed (external) magnetization elements must

be “100”. For the same reason the value of the CENTRAL

block is equal to complemented value of the majority of the

among the three inputs. The value of the OUTPUT block (on

the right) is instead equal to the value of the majority of the

inputs. In Fig. 3.A the relaxed state of the structure is displayed

when the inputs (internal) configuration is “110” (i.e. top input
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Fig. 3. A) NMAG simulation that shows the Majority Voter (MV) configuration used for this characterization. Fixed magnets are used as inputs for the MV.
Horizontal and vertical distances and aspect ratio are changed to verify the MV operating area. B) C) MV working area with the variation of the horizontal
and vertical distance. B) Working area for every inputs configuration. C) Complete working area with magnets with an aspect ratio of 2, 2.5 and 3

has up magnetization, central input has up magnetization, and

bottom input has down magnetization). Magnets used in the

simulation are 20 nm thick permalloy parallelepipeds, their

width is 50 nm and their height is 100 nm.

According to literature, to obtain a properly working gate,

distances among magnets must be kept as small as possible

[1]. This requires the use of Electron Beam Lithography which

is too slow to be used for mass production of chips. If we want

to cope with a rapid production technique, Deep Ultraviolet

Lithography should be used instead, that, on its turn, does not

guarantee reproducible distances within a certain range. As

we want to explore how NML can tolerate the effect of using

high end lithography, the gate was simulated parametrically

increasing horizontal and vertical distances among neighbor

magnets. The aim of these simulations was to verify if the

MV still works correctly when the distances are different with

respect to the expected one. Therefore, for each of the eight

inputs configurations the gate was simulated with different

values of horizontal (dh in figure) and vertical (dv in figure)

distances. Results are shown in Fig. 3.B (top two rows of

pictures). For each input configuration a map is reported

in a different graph. The input configuration is detailed on

the top of each picture. Each point of the map represents

a combination of distances that allows the gate to behave

correctly. We observe that every input configuration has a

different working area. In particular, some configurations have

a smaller working area than others (for example input case

001 compared to case 111). This is due to the influence

of magnets in the reset state on misaligned elements. This

is explained in the following with the support of Fig. 4. If

two magnets are forced in the unstable RESET state, but

they are perfectly aligned (Fig. 4.A), the magnetic flux lines

(schematically represented by the lines in Fig. 4) are perfectly

symmetric. As a consequence they are kept in the unstable

state by the presence of the neighbor dots that hold the same

situation. They remain in this state until one of the neighbor

magnets changes to the stable state due to the presence of an

input magnet. However, if a magnet is misaligned (Fig. 4.B)

the situation is more complex. As clear from the simplified

representation of the magnetic flux lines in Fig. 4.B, the

magnetic flux is not symmetric and the length of the flux lines

is not as short as possible. For this reason the misaligned dots

turn down, as the length of the flux lines is shorter (Fig. 4.C).

Shorter flux lines mean that the global energy of the system

is lower, and the situation more stable. Then, when magnets

are misaligned, there is a switching that is not due to the logic

signal propagation, but to the influence of magnets in the reset

state. This problem is normally solved [16] adding shielding

blocks (Fig. 4.D in grey), that are always magnetized along the

x-axis, keep the misaligned dots in the RESET state until one

of the neighbor dots assumes a valid logic value. Shielding

blocks tend to slow down circuit operations, therefore they

were not used in this work as we were interested to verify the

maximum circuit speed (see section V). This problem leads

to the consequence that one of the two logic values (logic

’0’, magnetization pointing down) is easier to reach, and this

explains why every input configuration has a different working

area.

By merging all the maps of figure 3.B together, we obtain

the final MV working area, which is reported in Fig. 3.C

on the left. The gate behaves correctly even in presence of

horizontal and vertical distances of 50-60 nm. Magnetic dots

with distances of 50 nm where already obtained using Ultra

Deep Ultraviolet Lithography [17]. This demonstrates that a

resolution of 50 nm can be already obtained with optical

lithography. This is very promising for the future developments

of this technology as opens it to less niche applications with

respect to what envisioned up to now.

One important magnet characteristic is the aspect ratio (a.r.),

i.e. the ratio between the vertical height (h) and the horizontal

width (w) of the magnets (Fig. 3.A). We demonstrated by

micromagnetic simulations that, at least in the MV case, it
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Fig. 4. Reset problem. A) Perfectly aligned magnets. Magnets maintain the
(unstable) RESET state due to the perfect alignment of the neighbors magnets.
The red lines (magnetic flux) are perfectly symmetric. B) Misaligned magnets.
Magnets are not in the minimum energy state. C) The misaligned element
turn down due to the influence of the neighbor magnets in the RESET state.
Magnetic flux lines are shorter therefore in this situation the total energy of
the system is lower. D) Shielding block used to keep the misaligned elements
in the RESET state, until the neighbor magnets go in a stable state.

seems more convenient, in order to tolerate variations, not to

reduce the a.r. below 2. However it can be increased, with the

byproduct of increasing the noise immunity of the magnets

(although it is good even with a 2 a.r., see section VI), and

making the fabrication of dots easier since they are bigger. The

same simulations performed for the 2 a.r. were repeated for

an a.r. of 2.5 and 3. In figure 3.B, central and right pictures

report the merged working area of all inputs configurations

for the 2.5 and 3 a.r., respectively. For an aspect ratio of 2.5

the working area of the majority voter is similar or slightly

bigger with respect to the 2 a.r., while for bigger increments

the working area is greatly reduced. This happens because the

magnets energy barrier depends on their a.r (see section VI for

further details). Therefore if the a.r is changed the magnetic

interaction among neighbor magnets is drastically altered.

IV. IMPACT OF PROCESS VARIATIONS

Since the magnetic interaction among magnets strongly

depends on magnets distances and sizes, process variations

may have a notable influence on the gate behavior. The process

variations considered here are related to changes in magnet

sizes. In particular, magnets width and height can be different

with respect to the one defined at the design stage. Two types

of process variations were analyzed: local mask, i.e. substrate

defects that lead to differences in sizes of only one magnet

of the MV, and global errors, like under/over etching that

leads to same sizes variation for all the magnets together. All

possible combinations of width and height of magnets were

considered in this analysis, from few tenths of nanometers

to the maximum possible sizes in which magnets are merged

with their neighbors. Simulations are performed considering

a 2 a.r. and using the 001 input configuration, which is the

most critical as noticed in Fig. 3.A. Results are shown in Fig.

5. Each map represents a combination of widths and lengths

that correspond to a proper gate operation. Fig. 5.A shows the

impact of sizes variation only of the MV LEFT input magnet

(see Fig. 1.B to better understand the position of each magnet).

The gate still correctly operates in the 30-100 nm range for

the width and in a 60-180 nm range for the height. However,

results in Fig. 5.A clearly show that the a.r. should better

remain near 2 (the straight line on the map) or higher for a

good rejection to process variations. With smaller a.rs the gate

does works correctly only in a limited set of combinations. Fig.

Fig. 5. Majority voter working area considering process variations. Red line
represent the a.r. 2. A) Sizes variation of the left magnet. B) Sizes variation of
the down magnet. C) Sizes variation of the central magnet. D) Sizes variation
of all the magnets together.

5.B, instead, shows the influence of the sizes variation of the

DOWN input magnet on the whole gate behavior. Differently

from the previous case, here the gate is not influenced by

the a.r. It works with all the width values, provided that the

height is at least 100 nm. This means that in case of the DOWN

magnet the key factor is the height and not the shape of the

magnet, because with sizes of 120 nm width and 120 nm

height the magnet is a square instead of a rectangle. The

influence of the UP input magnet is not reported because it has

the same behavior for symmetry. Fig. 5.C shows the effects of

sizes variation of the central magnet, which is responsible for

the logic computation. The MV is more sensitive to process

variations. Indeed, it does not work with too high width values.

Moreover, sizes of the magnet can change, but the aspect ratio

should remain around 2, or be slightly smaller, to assure the

correct gate operations. Fig. 5.D shows the influence of the

same process variation applied to all the magnets together. This

is a quite common case in the technological processes, as it

happens for example in case of under/over etching. Variations

of this kind apply in the same way to all the elements. In this

case the gate is much more sensitive to process variation than

in other cases. The working area is smaller and it is related

to the a.r. Sizes can change but again with an a.r. around 2 or

slightly lower. Moreover, if the width of the magnets becomes

too small, e.g. under 40 nm, the gate risks not to work properly.

These simulations show that this logic is quite robust in case

of process variations. If the variation is not too big, logic gates

still correctly work. The key factor is the a.r. that must be kept

near 2 or slightly smaller, in order to reduce the probability

of errors. Process variations that affect all the magnets are the

most troublesome, but fortunately they can be compensated

quite well by correctly setting up the technological process.

V. TIMING ANALYSIS

To evaluate how the changes in the horizontal and vertical

distances values affect performance, the 50% delay of the gate

was measured. In case of NML technology it is the delay

between the 50% of the variation of the clock signal (during

the fall ramp when the switching can start) and the 50% of

the variation of the magnetization of the CENTRAL block. This
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CENTRAL block starts with a ’0’ magnetization value, and

moves to a negative (down arrows) or positive (up arrows)

values according to the inputs combination. This definition is

similar to the CMOS propagation delay, and allows to evaluate

NML performance according to standard metrics. A sample

of the waveforms obtained by NMAG is shown in Fig. 6.A,

showing the CENTRAL block magnetization with time.

Simulations are performed considering the 2 a.r. case,

varying horizontal and vertical distances. In Fig. 6.A different

waveforms are presented. All of them are obtained with an

horizontal distance of 20 nm (the first number after the ’M’

near each curve), and for different values of vertical distance

(the second number near each curve), considering the input

configuration 010. It is interesting to notice that the delay is

in the order of few hundreds of picoseconds, and it increases

with the vertical distance. If the vertical distance becomes

too high (i.e. 80 nm) the final state of the central magnet is

wrong (magnetization becomes positive instead of negative),

according to the map of Fig. 3.A.

Fig. 6. Timing simulations. A) Timing variation of the central magnet
magnetization in a few cases (different waves) of vertical and horizontal
distance for the input configuration of 010. The waves label first number
represents the horizontal distance while the second number identifies the
vertical distance. Different waveforms are presented: In the first three the
gate works properly, and in the last one the behavior of the gate is wrong
as magnetization is expected to go to a negative value (logic 0) but goes to
a positive value (logic 1). B) Timing variation with three values of vertical
distance for the each input configuration, considering an horizontal distance of
20 nm. C) Timing variation of the gate. For each value of horizontal distance
the minimum and maximum values of delay, measured among all the input
configurations and all the vertical distance, are reported.

Table 6.B shows the delay values measured considering an

horizontal distance of 20 nm and three different values of

vertical distances: 30 nm, 50 nm and 70 nm, reported for each

of the eight input configurations. The variation of the delay

with the increment of vertical distance depends on the input

configuration. With some input configurations the delay shows

small variations (considering the relatively high tolerance on

the measured values), while with other input configurations

the delay considerably increases. This behavior is due to the

“reset problem” explained in section III, which leads to the

consequence that the logic value ’0’ is easier to reach.

To better figure out the relations between MV timing and

distance variations, values can be properly grouped together.

Fig. 6.C shows, for each value of horizontal distance (x axis),

the minimum and maximum delays measured among the simu-

lations obtained changing all the possible input configurations

and all the values of vertical distances. Results show that the

average value is between 100 ps and 300 ps, and it increases

with the increment of horizontal distance. As a consequence

of this analysis we can conclude that distances must be kept as

small as possible, in order to improve the overall circuit speed.

However, it is worth noticing that the clock frequency does not

depend on the gate delay, because it is determined by others

factors: The long rise time necessary for adiabatic switching to

reduce power consumption, the high fall time in case of more

then 5 magnets for clock zones and also the necessity to use

a three phase overlapped clock system. The delay determined

here represents the lower bound of this technology, and it will

lead to a maximum allowed clock frequency of about 1 GHz.

Considering all the other constraints, if the mentioned issues

will not be solved, the obtainable clock frequency is expected

to be between 10 MHz and 100 MHz [2].

VI. MV ENERGY ANALYSIS

Similarly to what done for the gate timing simulations,

we used NMAG to evaluate the power consumption of the

majority voter. There are two main contributions to power

consumption in NML technology: clock system losses and

intrinsic energy consumption necessary to force magnets in the

RESET state. Clock system losses cannot be evaluated using

Micromagnetic simulators. They can be estimated using other

methods as we proposed in [14]. Considering the best clocking

solution proposed [4], clock power losses can be estimated

of the same order of the intrinsic energy consumption [18]

[19]. The intrinsic energy consumption, instead, depends on

the energy barrier of the magnets. The energy barrier is

the difference between the magnets energy in the unstable

state and the magnet energy in the stable state. The intrinsic

energy consumption is equal to the value of the energy barrier

(multiplied for the total number of magnets) if an abrupt

switching is adopted. A very short rise time for the external

magnetic field (one hundred picoseconds) allows the magnets

to be forced into the RESET state correctly, but the energy

necessary to switch the magnets is equal to the whole energy

barrier. If, on the contrary, an adiabatic switching is adopted,

which means a rise time of at least 8-10 ns, the intrinsic energy

consumption is smaller than the energy barrier [4]. If the rise

time is increased, the energy consumption decreases, and it

can be reduced until it reaches the minimum value of 30-40

KbT [4], independently from the original energy barrier.

Following the maps of Fig. 3 it is possible to evaluate

the average energy barrier of the MV magnets for all the

distances. Results are shown in Fig. 7.A. For each horizontal

distance value (x-axis) the minimum and maximum energies

are reported. The minimum value of barrier is obtained when
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Fig. 7. Power analysis with all the possible inputs configurations, vertical and horizontal distances. A) a.r. 2. B) a.r. 2.5. C) a.r. 3.

the vertical distance is maximized, while the maximum energy

value is obtained for the minimum value of vertical distance.

Moreover, when the horizontal distance is risen, the energy

barrier increases, but it shows a saturation with horizontal

distances higher than 50 nm. This behavior can be explained

considering the composition of the energy barrier. It has,

indeed, two components. The first one depends on the volume

of the magnets and its physical properties (demagnetization

energy). The second one depends on the interaction with

neighbor magnets (exchange energy), which contributes to

a reduction of the overall value of the energy barrier. The

interaction between horizontally coupled magnets is lower than

the vertical one. Moreover, horizontal interaction increases

when the distance is enlarged, while vertical interaction de-

creases. Therefore, the value of energy barrier can be reduced

if the horizontal distance decreased and the vertical distance

increased. When distances become too big the contribution of

the exchange energy drops to zero, and the value of the energy

barrier becomes constant and equal to the demagnetization

energy. Fig. 7.B shows the variation of the energy barrier

considering a 2.5 a.r. The general trend is the same but the

absolute values are different with respect to the 2 a.r. case.

With an horizontal distance of 50 nm the energy barrier

increases from 5.2 aJ to 8 aJ. This happens because the value

of the demagnetization energy depends on the volume of the

magnets but also on the a.r. Increasing the a.r. the energy

barrier rises, as well as the noise immunity. However this also

causes higher power consumption if an abrupt switching is

adopted, or means lower clock frequency in case adiabatic

switching is the choice. Outcomes are similar if the a.r. of 3

is used (Fig. 7.C). The general trend is again the same but

the absolute value is notably risen. With a width of 50 nm

the value of the energy barrier is 11 aJ. This means that with

an increment of the a.r. from 2 to 3 (50%) the value of the

energy barrier is doubled.

We can derive now a few conclusions. First, the value of

the energy barrier can be considered independent of magnets

distances, if magnets are fabricated using Deep UV lithog-

raphy, which means distances of 40-50 nm. Second, the a.r.

must be kept as small as possible to reduce the absolute value

of energy barrier and to increase the clock frequency, in case

the adiabatic switching regime is chosen. By increasing the

a.r., the noise immunity also is improved, but with an a.r. of 2

the noise immunity is quite high as well. An energy barrier of

5,2 aJ, for example, corresponds to 1250 KbT, which is much

higher than the value of 40 KbT, the minimum value necessary

to assure the thermal stability and a low error probability.

Third, a final note can be done on magnet sizes. If technology

allows it, in case magnet sizes are reduced at least to a width

of 15 nm, a height of 30 nm height, and a thickness of 5

nm, the value of the energy barrier decreases to 40 KbT. In

this case it is possible to use an abrupt switching, obtaining

clocking frequency of 1 GHz, and thus minimizing at the same

time power consumption.

VII. MAJORITY VOTER INPUTS EXTENSION

The classic MV analyzed in this work requires that all the

inputs arrive at the same time. For this to happen the clock

zone should be limited to exactly the size of the majority

voter. However a feasible normal clock signal is generated

using parallel wires placed under the plane of the magnets.

In this case, inputs are required to come from the same

direction as shown in Fig. 8.A. The left picture in the dashed

box shows the structure in a simple sketch, the right picture

shows the result obtained by a OOMMF simulation [20] in the

same configuration. This magnets organization is problematic

because, while in the classic case (Fig. 1.B) the length of

every input arm of the gate is equal, in this case the length

of the upper and lower arms is bigger, due to the presence

of an angle. The consequence is that the left input signal

arrives before the others two, and the gate does not work

properly in all the configurations. Moreover, while the classic

majority voter can work also without the use of shielding

blocks, in this case they are mandatory. A possible solution

is presented in Fig. 8.B [20], where the length of the arms

are equalized reducing the number of magnets in the upper

and lower arms, placing them at an higher distance. Another

alternative solution is sketched in Fig. 8.C [20] where the

number of magnets is increased in the left arm, using smaller

magnets. Again, simulations show that both these solutions

do not give the expected results in all the configurations. The

structure of NML circuits must be symmetric with magnets

of the same sizes, and possibly with the same distances. A

further possible solution is presented in Fig. 8.D [20], where

dots are misaligned. Simulation shows that this solution does

not work due to the “reset problem” described in section III,

and to the impossibility to to place shielding blocks due to

lack of proper space.

These simulations highlight a characteristic of NML cir-

cuits: they must be as much symmetric as possible, with mag-
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Fig. 8. Majority voter possible solutions with inputs coming from one direction. Left pictures in the squared box: a sketch to clearly show the magnets
organization and magnetization. Right pictures: OOMMF simulation of the same configuration. A) Classical structure with inputs extended. B) Reduction of
the number of elements in the up and down arm. C) Increment of the number of elements in the central arm, making them smaller. D) Displacement of the
corner elements to equalize the number of magnets in each arm.

Fig. 9. Comsol Simulation of clock wires A) Clock wires model, upper
view. B) Clock wires model, section view. C) Clock signals waveform. D)
Simulation results with current flowing in the first clock wire. Color gradations
represent the horizontal component of the magnetic flux density (B) expressed
in Tesla. E) Simulation results with current flowing in the second clock wire.
F) G) Magnetization schematic representation of Comsol simulations.

nets of the same sizes and with the same distances. Therefore

the use of the classic majority voter with this clock system

seems impossible. A possible solution is to use a AND/OR

gate as presented in [21]. However this is an important

limitation, because the use of the MV can greatly improve the

set of logic gates available in the NML technology, allowing

the design of more dense circuits. For this reason, here,

we propose a different solution: a local modification of the

clock wires that makes possible the fabrication and the proper

operations of a MV. The structure is shown in figure 9.A.

Clock wires are shaped (routed in a different plane clearly, see

[14]) around the majority voter. In this way signals arrive at the

gate inputs simultaneously. The darker lines which surround

the wires represent a ferrite yoke used to confine magnetic flux

lines and to reduce the current necessary for magnets switching

as proposed in [22] (a section view is in figure 9.B).

Although this solution is not of easy implementation from

the technological point of view, simulations obtained using

Comsol Multiphysics [23] show that the structure assures a

proper MV behavior. In Fig. 9.D the magnetic flux density

is shown (top view) when the current flows through the left

wire. The current values applied are such that the intensity

of the magnetic field is kept at the minimum value necessary

for magnets to switch. This is done to reduce clock power

consumption. Magnets of the left clock zone should be forced

in the RESET state, while magnets on the right clock zone

are supposed to stay in the HOLD state (see figure 9.F).

Considering the worst case measured in the simulation, the

magnetic flux density is double on the magnets of the left

clock zone with respect to magnets of the right clock zone.

However, Fig. 9.D shows that on magnets of the left clock

zone placed in the corner the magnetic flux density is low,

and might be too low to assure the magnet reset. To assure

magnets reset an higher current should be used. However, in

this case also the (peripheral) magnets of the right clock zone

might reset. But this is not a problem if a three overlapped

phases clock regime is used as we proposed in [14] (figure

1.C). In this clocking system, magnetic field is first applied

to the left clock zone. Afterwards, when the magnetic field

is still applied to the left clock zone, the magnetic field is

applied also to the right clock zone (magnetic field of the two

phases are overlapped for a small time). As a consequence it

is not a problem if the magnetic field of the left clock zone

forces to the RESET state also some magnets of the right

clock zone due to bad field confinement. In any case there

will be a moment in which the magnetic field will be applied

to both clock zones. After this moment, then, the magnetic

field will be removed from the left clock zone but still it will

be applied to the right clock zone [14]. In this moment it is

important that the magnetic field of the right clock zone will

not interfere with magnets of the left clock zone that are in the

switching phase. But, again, this is granted as shown in figure

9.E, which shows the magnetic flux density when current flows

through the right wire. Here, in the worst case the difference

of the magnetic flux density of the left magnets and of the

right magnets is quite high. This means that magnets of the

left clock zone will not be forced to reset when the magnetic

field is applied to the right zone. Therefore this modification
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of clock wires, although not easy to implement, assures the

possibility to fabricate properly working MVs, increasing then

the set of gates available and the density for NML technology.

VIII. CONCLUSIONS

Our contribution notably improves the practical knowledge

on NML especially considering to the impact that technolog-

ical implementation has on NML circuits. We showed that it

is possible to obtain correctly working circuits if specific con-

straints are respected: i) with gaps of 40-50 nm between nano-

magnets the logic gate considered behaves correctly, thus deep

UV lithography becomes the preferred fabrication technique;

ii) magnets aspect ratio not far from 2 is the best solution for

behavior and performance; iii) small magnets sizes assure a

better rejection to process variations; iv) timing and energy

consumptions are precisely related to magnets distances, sizes

and input configurations, and values for a correct optimization

are given; v) Majority Voter realistic implementation might

require to satisfy considerably impractical constraints, that our

proposed solution based on an alternative clock distribution

technique can successfully overcome.

We are working on the experimental validation of these

results with focus on the analysis of the clock system, both

from the simulation and the experimental point of view, as we

believe the clock system being the real obstacle to a realistic

implementation of this technology.
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