2,848 research outputs found

    A self-calibration circuit for a neural spike recording channel

    Get PDF
    This paper presents a self-calibration circuit for a neural spike recording channel. The proposed design tunes the bandwidth of the signal acquisition Band-Pass Filter (BPF), which suffers from process variations corners. It also performs the adjustment of the Programmable Gain Amplifier (PGA) gain to maximize the input voltage range of the analog-to-digital conversion. The circuit, which consists on a frequency-controlled signal generator and a digital processor, operates in foreground, is completely autonomous and integrable in an estimated area of 0.026mm 2 , with a power consumption around 450nW. The calibration procedure takes less than 250ms to select the configuration whose performance is closest to the required one.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    Noise Efficient Integrated Amplifier Designs for Biomedical Applications

    Get PDF
    The recording of neural signals with small monolithically integrated amplifiers is of high interest in research as well as in commercial applications, where it is common to acquire 100 or more channels in parallel. This paper reviews the recent developments in low-noise biomedical amplifier design based on CMOS technology, including lateral bipolar devices. Seven major circuit topology categories are identified and analyzed on a per-channel basis in terms of their noise-efficiency factor (NEF), input-referred absolute noise, current consumption, and area. A historical trend towards lower NEF is observed whilst absolute noise power and current consumption exhibit a widespread over more than five orders of magnitude. The performance of lateral bipolar transistors as amplifier input devices is examined by transistor-level simulations and measurements from five different prototype designs fabricated in 180 nm and 350 nm CMOS technology. The lowest measured noise floor is 9.9 nV/√Hz with a 10 µA bias current, which results in a NEF of 1.2

    Implantable Biomedical Devices

    Get PDF

    A Two Channel Analog Front end Design AFE Design with Continuous Time Σ-Δ Modulator for ECG Signal

    Get PDF
    In this context, the AFE with 2-channels is described, which has high impedance for low power application of bio-medical electrical activity. The challenge in obtaining accurate recordings of biomedical signals such as EEG/ECG to study the human body in research work. This paper is to propose Multi-Vt in AFE circuit design cascaded with CT modulator. The new architecture is anticipated with two dissimilar input signals filtered from 2-channel to one modulator. In this methodology, the amplifier is low powered multi-VT Analog Front-End which consumes less power by applying dual threshold voltage. Type -I category 2 channel signals of the first mode: 50 and 150 Hz amplified from AFE are given to 2nd CT sigma-delta ADC. Depict the SNR and SNDR as 63dB and 60dB respectively, consuming the power of 11mW. The design was simulated in a 0.18 um standard UMC CMOS process at 1.8V supply. The AFE measured frequency response from 50 Hz to 360 Hz, depict the SNR and SNDR as 63dB and 60dB respectively, consuming the power of 11mW. The design was simulated in 0.18 m standard UMC CMOS process at 1.8V supply. The AFE measured frequency response from 50 Hz to 360 Hz, programmable gains from 52.6 dB to 72 dB, input referred noise of 3.5 μV in the amplifier bandwidth, NEF of 3

    A Sub-500 mu W Interface Electronics for Bionic Ears

    Get PDF
    This paper presents an ultra-low power current-mode circuit for a bionic ear interface. Piezoelectric (PZT) sensors at the system input transduce sound vibrations into multi-channel electrical signals, which are then processed by the proposed circuit to stimulate the auditory nerves consistently with the input amplitude level. The sensor outputs are first amplified and range-compressed through ultra-low power logarithmic amplifiers (LAs) into AC current waveforms, which are then rectified through custom current-mode circuits. The envelopes of the rectified signals are extracted, and are selectively sampled as reference for the stimulation current generator, armed with a 7-bit user-programmed DAC to enable patient fitting (calibration). Adjusted biphasic stimulation current is delivered to the nerves according to continuous inter-leaved sampling (CIS) stimulation strategy through a switch matrix. Each current pulse is optimized to have an exponentially decaying shape, which leads to reduced supply voltage, and hence similar to 20% lower stimulator power dissipation. The circuit has been designed and fabricated in 180nm high-voltage CMOS technology with up to 60 dB measured input dynamic range, and up to 1 mA average stimulation current. The 8-channel interface has been validated to be fully functional with 472 mu W power dissipation, which is the lowest value in the literature to date, when stimulated by a mimicked speech signal

    A Closed-Loop Deep Brain Stimulation Device With a Logarithmic Pipeline ADC.

    Full text link
    This dissertation is a summary of the research on integrated closed-loop deep brain stimulation for treatment of Parkinson’s disease. Parkinson's disease is a progressive disorder of the central nervous system affecting more than three million people in the United States. Deep Brain Stimulation (DBS) is one of the most effective treatments of Parkinson’s symptoms. DBS excites the Subthalamic Nucleus (STN) with a high frequency electrical signal. The proposed device is a single-chip closed-loop DBS (CDBS) system. Closed-loop feedback of sensed neural activity promises better control and optimization of stimulation parameters than with open-loop devices. Thanks to a novel architecture, the prototype system incorporates more functionality yet consumes less power and area compared to other systems. Eight front-end low-noise neural amplifiers (LNAs) are multiplexed to a single high-dynamic-range logarithmic, pipeline analog-to-digital converter (ADC). To save area and power consumption, a high dynamic-range log ADC is used, making analog automatic gain control unnecessary. The redundant 1.5b architecture relaxes the requirements for the comparator accuracy and comparator reference voltage accuracy. Instead of an analog filter, an on-chip digital filter separates the low frequency neural field potential signal from the neural spike energy. An on-chip controller generates stimulation patterns to control the 64 on-chip current-steering DACs. The 64 DACs are formed as a cascade of a single shared 2-bit coarse current DAC and 64 individual bi-directional 4-bit fine DACs. The coarse/fine configuration saves die area since the MSB devices tend to be large. Real-time neural activity was recorded with the prototype device connected to microprobes that were chronically implanted in two Long Evans rats. The recorded in-vivo signal clearly shows neural spikes of 10.2 dB signal-to-noise ratio (SNR) as well as a periodic artifact from neural stimulation. The recorded neural information has been analyzed with single unit sorting and principal component analysis (PCA). The PCA scattering plots from multi-layers of cortex represent diverse information from either single or multiple neural sources. The single-unit neural sorting analysis along with PCA verifies the feasibility of the implantable CDBS device for to in-vivo neural recording interface applications.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60733/1/milaca_1.pd

    A 23μW Solar-Powered Keyword-Spotting ASIC with Ring-Oscillator-Based Time-Domain Feature Extraction

    Full text link
    Voice-controlled interfaces on acoustic Internet-of-Things (IoT) sensor nodes and mobile devices require integrated low-power always-on wake-up functions such as Voice Activity Detection (VAD) and Keyword Spotting (KWS) to ensure longer battery life. Most VAD and KWS ICs focused on reducing the power of the feature extractor (FEx) as it is the most power-hungry building block. A serial Fast Fourier Transform (FFT)-based KWS chip [1] achieved 510nW; however, it suffered from a high 64ms latency and was limited to detection of only 1-to-4 keywords (2-to-5 classes). Although the analog FEx [2]–[3] for VAD/KWS reported 0.2μW-to-1 μW and 10ms-to-100ms latency, neither demonstrated >5 classes in keyword detection. In addition, their voltage-domain implementations cannot benefit from process scaling because the low supply voltage reduces signal swing; and the degradation of intrinsic gain forces transistors to have larger lengths and poor linearity

    Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices

    Get PDF
    This tutorial is aimed primarily to non-engineers, using or planning to use surface electromyography (sEMG) as an assessment tool for muscle evaluation in the prevention, monitoring, assessment and rehabilitation fields. The main purpose is to explain basic concepts related to: (a) signal detection (electrodes, electrode–skin interface, noise, ECG and power line interference), (b) basic signal properties, such as amplitude and bandwidth, (c) parameters of the front-end amplifier (input impedance, noise, CMRR, bandwidth, etc.), (d) techniques for interference and artifact reduction, (e) signal filtering, (f) sampling and (g) A/D conversion, These concepts are addressed and discussed, with examples. The second purpose is to outline best practices and provide general guidelines for proper signal detection, conditioning and A/D conversion, aimed to clinical operators and biomedical engineers. Issues related to the sEMG origin and to electrode size, interelectrode distance and location, have been discussed in a previous tutorial. Issues related to signal processing for information extraction will be discussed in a subsequent tutorial

    Low-Noise Micro-Power Amplifiers for Biosignal Acquisition

    Get PDF
    There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors. Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise. For example, EEGs have amplitudes from 1 μV [microvolt] to 100 μV [microvolt] with much of the energy in the sub-Hz [hertz] to 100 Hz [hertz] band. APs have amplitudes up to 500 μV [microvolt] with much of the energy in the 100 Hz [hertz] to 7 kHz [hertz] band. In wearable/implantable systems, the low-power operation of the biopotential amplifier is critical to avoid thermal damage to surrounding tissues, preserve long battery life, and enable wirelessly-delivered or harvested energy supply. For an ideal thermal-noise-limited amplifier, the amplifier power is inversely proportional to the input-referred noise of the amplifier. Therefore, there is a noise-power trade-off which must be well-balanced by the designers. In this work I propose novel amplifier topologies, which are able to significantly improve the noise-power efficiency by increasing the effective transconductance at a given current. In order to reject the DC offsets generated at the tissue-electrode interface, energy-efficient techniques are employed to create a low-frequency high-pass cutoff. The noise contribution of the high-pass cutoff circuitry is minimized by using power-efficient configurations, and optimizing the biasing and dimension of the devices. Sufficient common-mode rejection ratio (CMRR) and power supply rejection ratio (PSRR) are achieved to suppress common-mode interferences and power supply noises. Our design are fabricated in standard CMOS processes. The amplifiers’ performance are measured on the bench, and also demonstrated with biopotential recordings
    corecore