80,209 research outputs found

    Low-Noise and High-Efficiency Near-IR SPADs in 110nm CIS Technology

    Get PDF
    Photon detection at longer wavelengths is much desired for LiDAR applications. Silicon photodiodes with deeper junctions and larger multiplication regions are in principle more sensitive to near-IR photons. This paper presents the complete electro-optical characterization of a P-well/ Deep N-well singlephoton avalanche diodes integrated in 110nm CMOS image sensor technology. The performance of time-of-flight image sensors is determined by the characteristics of the individual SPADs. In order to fully characterize this technology, devices with various sizes, shapes and guard ring widths have been fabricated and tested. The measured mean breakdown voltage is of 18V. The proposed structure has 0.4Hz/”m 2 dark count rate, 0.5% afterpulsing, 188ps FWHM (total) jitter and around 10% photon detection probability at 850nm wavelength. All figures have been measured at 3V excess voltage.Office of Naval Research (USA) N000141912156Junta de Andalucía P12-TIC 2338Ministerio de Economía y Competitividad RTI2018-097088-B-C3

    Low-noise microwave polarimeter

    Get PDF
    Two quarterwave-plate polarizers inserted between rotary waveguide joints transform received signals from arbitrary linear to circular polarizations and then from circular to fixed linear polarizations. Fixed linear polarizations are applied to amplifiers and filters in usual fashion

    Low-noise nozzle valve

    Get PDF
    A low noise, variable discharage area, valve is constructed having opposed recesses within which a pair of gates are slidably disposed. Each of the gates is provided with upstream edges having a radius thereon, the radius enabling smooth, accelerated, low noise flow therebetween. The gates are further provided with tracks along each side, which in turn slide along splines set in the side walls of the valve. A threaded rod which rotates in a threaded insert in a rear wall of each of the gates, serves to move the gates within their respective recesses

    Cryogenic MMIC low noise amplifiers

    Get PDF
    Monolithic (MMIC) and discrete transistor (MIC) low noise amplifiers are compared on the basis of performance, cost, and reliability. The need for cryogenic LNA’s for future large microwave arrays for radio astronomy is briefly discussed and data is presented on a prototype LNA for the 1 to 10 GHz range along with a very wideband LNA for the 1 to 60 GHz range. A table of MMIC LNA and mixer designs under development for the frequencies up to 210 GHz is reported and data on cryogenic amplifiers in the 85 to 115 GHz is reviewed. The current status of the topics of transconductance fluctuations and cryogenic noise modeling will be briefly summarized

    Perancangan Low Noise Hydrophone Preamp untuk Pengujian Akustik Noise Propeller

    Full text link
    Perancangan rangkaian Low Noise Balanced Hydrophone Preamp ini adalah digunakan untuk uji analisis noise yang dihasilkan oleh propeller kapal selam mini yang digunakan untuk berpatroli tanpa diketahui oleh pihak lain. Karena kontribusi penghasil noise terbesar adalah propeller, maka untuk uji analisis noise propeller ini dibutuhkan rangkaian preamp yang mempunyai noise sangat rendah serta mic hydrophone yang ditempatkan dalam cavitation tunnel yang digunakan untuk menangkap sinyal-sinyal noise yang dihasilkan propeller. Perancangan preamp nya berdasarkan konfigurasi diferensial transistor dengan common mode (floating) gain kontrol yang terhubung pada kaki-kaki emitter dari pasangan transistor. Rangkaian differensialnya adalah rangkaian diferensial in dan out, karena itu memerlukan balanced to unbalanced buffer sebagai penyangga keseimbangan untuk rangkaian tahap berikutnya. Rangkaian didesain dengan sederhana tapi memiliki noise yang sangat rendah, bahkan sangat dekat dengan minimum teoritis, serta memiliki penolakan hum (noise rejection) yang tinggi dan dilengkapi variabel gain dengan potensio rotary tungga

    Low-noise top-gate graphene transistors

    Full text link
    We report results of experimental investigation of the low-frequency noise in the top-gate graphene transistors. The back-gate graphene devices were modified via addition of the top gate separated by 20 nm of HfO2 from the single-layer graphene channels. The measurements revealed low flicker noise levels with the normalized noise spectral density close to 1/f (f is the frequency) and Hooge parameter below 2 x 10^-3. The analysis of the noise spectral density dependence on the top and bottom gate biases helped us to elucidate the noise sources in these devices and develop a strategy for the electronic noise reduction. The obtained results are important for all proposed graphene applications in electronics and sensors.Comment: 9 pages, 4 figure

    Low-noise slot antenna SIS mixers

    Get PDF
    We describe quasi-optical SIS mixers operating in the submillimeter band (500-750 GHz) which have very low noise, around 5 h/spl nu//k/sub B/ for the double-sideband receiver noise temperature. The mixers use a twin-slot antenna, Nb/Al-Oxide/Nb tunnel junctions fabricated with optical lithography, a two-junction tuning circuit, and a silicon hyperhemispherical lens with a novel antireflection coating to optimize the optical efficiency. We have flown a submillimeter receiver using these mixers on the Kuiper Airborne Observatory, and have detected a transition of H/sub 2//sup 18/O at 745 GHz. This directly confirms that SIS junctions are capable of low-noise mixing above the gap frequency
    • 

    corecore