'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
Photon detection at longer wavelengths is much desired for LiDAR applications. Silicon photodiodes with deeper junctions and larger multiplication regions are in principle more sensitive to near-IR photons. This paper presents the complete electro-optical characterization of a P-well/ Deep N-well singlephoton avalanche diodes integrated in 110nm CMOS image sensor technology. The performance of time-of-flight image sensors is determined by the characteristics of the individual SPADs. In order to fully characterize this technology, devices with various sizes, shapes and guard ring widths have been fabricated and tested. The measured mean breakdown voltage is of 18V. The proposed structure has 0.4Hz/µm 2 dark count rate, 0.5% afterpulsing, 188ps FWHM (total) jitter and around 10% photon detection probability at 850nm wavelength. All figures have been measured at 3V excess voltage.Office of Naval Research (USA) N000141912156Junta de Andalucía P12-TIC 2338Ministerio de Economía y Competitividad RTI2018-097088-B-C3