211 research outputs found

    Design and Validation of a Software Defined Radio Testbed for DVB-T Transmission

    Get PDF
    This paper describes the design and validation of a Software Defined Radio (SDR) testbed, which can be used for Digital Television transmission using the Digital Video Broadcasting - Terrestrial (DVB-T) standard. In order to generate a DVB-T-compliant signal with low computational complexity, we design an SDR architecture that uses the C/C++ language and exploits multithreading and vectorized instructions. Then, we transmit the generated DVB-T signal in real time, using a common PC equipped with multicore central processing units (CPUs) and a commercially available SDR modem board. The proposed SDR architecture has been validated using fixed TV sets, and portable receivers. Our results show that the proposed SDR architecture for DVB-T transmission is a low-cost low-complexity solution that, in the worst case, only requires less than 22% of CPU load and less than 170 MB of memory usage, on a 3.0 GHz Core i7 processor. In addition, using the same SDR modem board, we design an off-line software receiver that also performs time synchronization and carrier frequency offset estimation and compensation

    A survey of digital television broadcast transmission techniques

    No full text
    This paper is a survey of the transmission techniques used in digital television (TV) standards worldwide. With the increase in the demand for High-Definition (HD) TV, video-on-demand and mobile TV services, there was a real need for more bandwidth-efficient, flawless and crisp video quality, which motivated the migration from analogue to digital broadcasting. In this paper we present a brief history of the development of TV and then we survey the transmission technology used in different digital terrestrial, satellite, cable and mobile TV standards in different parts of the world. First, we present the Digital Video Broadcasting standards developed in Europe for terrestrial (DVB-T/T2), for satellite (DVB-S/S2), for cable (DVB-C) and for hand-held transmission (DVB-H). We then describe the Advanced Television System Committee standards developed in the USA both for terrestrial (ATSC) and for hand-held transmission (ATSC-M/H). We continue by describing the Integrated Services Digital Broadcasting standards developed in Japan for Terrestrial (ISDB-T) and Satellite (ISDB-S) transmission and then present the International System for Digital Television (ISDTV), which was developed in Brazil by adopteding the ISDB-T physical layer architecture. Following the ISDTV, we describe the Digital Terrestrial television Multimedia Broadcast (DTMB) standard developed in China. Finally, as a design example, we highlight the physical layer implementation of the DVB-T2 standar

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design of a DVB-T2 simulation platform and network optimization with Simulated Annealing

    Get PDF
    The implementation of the Digital Terrestrial Television is becoming a reality in the Spanish territory. In this context, with the satellite and cable systems, this technology is one of the possible mediums for the television signal transmission. Its development is becoming crucial for the digital transition in those countries which mainly depend on the terrestrial networks for the reception of multimedia contents. However, due to the maturity of the current standard, and also to the higher requirements of the customer needing (HDTV, new contents, etc.), a revision of the current standard becomes necessary. The DVB organisation in collaboration with other entities and organisms has developed a new standard version capable to satisfy those requirements. The main objective of the project is the design and implementation of a physical layer simulation platform for the DVB-T2 standard. This simulator allows the theoretical evaluation of the new enhanced proposals, making easier a later field measurement stage and the future network deployment. The document describes the implementation of the simulation platform as well as its subsequent validation stage, including large graphical results that allow the evaluation and quantification of the improvements introduced over the current standard version (DVB-T). On the other hand, and as future investigation lines, a solution for the future DVB-T2 network deployment is performed, enhancing the coverage capacity of the current network by the use of iterative meta-heuristic techniques. Finally it has to be mentioned that this work has been performed within the context of a project called FURIA, which is a strategic research project funded by the Spanish Ministry of Industry, Tourism and Commerce

    Design of a DVB-T2 simulation platform and network optimization with Simulated Annealing

    Get PDF
    The implementation of the Digital Terrestrial Television is becoming a reality in the Spanish territory. In this context, with the satellite and cable systems, this technology is one of the possible mediums for the television signal transmission. Its development is becoming crucial for the digital transition in those countries which mainly depend on the terrestrial networks for the reception of multimedia contents. However, due to the maturity of the current standard, and also to the higher requirements of the customer needing (HDTV, new contents, etc.), a revision of the current standard becomes necessary. The DVB organisation in collaboration with other entities and organisms has developed a new standard version capable to satisfy those requirements. The main objective of the project is the design and implementation of a physical layer simulation platform for the DVB-T2 standard. This simulator allows the theoretical evaluation of the new enhanced proposals, making easier a later field measurement stage and the future network deployment. The document describes the implementation of the simulation platform as well as its subsequent validation stage, including large graphical results that allow the evaluation and quantification of the improvements introduced over the current standard version (DVB-T). On the other hand, and as future investigation lines, a solution for the future DVB-T2 network deployment is performed, enhancing the coverage capacity of the current network by the use of iterative meta-heuristic techniques. Finally it has to be mentioned that this work has been performed within the context of a project called FURIA, which is a strategic research project funded by the Spanish Ministry of Industry, Tourism and Commerce

    Algorithm-Architecture Co-Design for Digital Front-Ends in Mobile Receivers

    Get PDF
    The methodology behind this work has been to use the concept of algorithm-hardware co-design to achieve efficient solutions related to the digital front-end in mobile receivers. It has been shown that, by looking at algorithms and hardware architectures together, more efficient solutions can be found; i.e., efficient with respect to some design measure. In this thesis the main focus have been placed on two such parameters; first reduced complexity algorithms to lower energy consumptions at limited performance degradation, secondly to handle the increasing number of wireless standards that preferably should run on the same hardware platform. To be able to perform this task it is crucial to understand both sides of the table, i.e., both algorithms and concepts for wireless communication as well as the implications arising on the hardware architecture. It is easier to handle the high complexity by separating those disciplines in a way of layered abstraction. However, this representation is imperfect, since many interconnected "details" belonging to different layers are lost in the attempt of handling the complexity. This results in poor implementations and the design of mobile terminals is no exception. Wireless communication standards are often designed based on mathematical algorithms with theoretical boundaries, with few considerations to actual implementation constraints such as, energy consumption, silicon area, etc. This thesis does not try to remove the layer abstraction model, given its undeniable advantages, but rather uses those cross-layer "details" that went missing during the abstraction. This is done in three manners: In the first part, the cross-layer optimization is carried out from the algorithm perspective. Important circuit design parameters, such as quantization are taken into consideration when designing the algorithm for OFDM symbol timing, CFO, and SNR estimation with a single bit, namely, the Sign-Bit. Proof-of-concept circuits were fabricated and showed high potential for low-end receivers. In the second part, the cross-layer optimization is accomplished from the opposite side, i.e., the hardware-architectural side. A SDR architecture is known for its flexibility and scalability over many applications. In this work a filtering application is mapped into software instructions in the SDR architecture in order to make filtering-specific modules redundant, and thus, save silicon area. In the third and last part, the optimization is done from an intermediate point within the algorithm-architecture spectrum. Here, a heterogeneous architecture with a combination of highly efficient and highly flexible modules is used to accomplish initial synchronization in at least two concurrent OFDM standards. A demonstrator was build capable of performing synchronization in any two standards, including LTE, WiFi, and DVB-H

    On Transmission System Design for Wireless Broadcasting

    Get PDF
    This thesis considers aspects related to the design and standardisation of transmission systems for wireless broadcasting, comprising terrestrial and mobile reception. The purpose is to identify which factors influence the technical decisions and what issues could be better considered in the design process in order to assess different use cases, service scenarios and end-user quality. Further, the necessity of cross-layer optimisation for efficient data transmission is emphasised and means to take this into consideration are suggested. The work is mainly related terrestrial and mobile digital video broadcasting systems but many of the findings can be generalised also to other transmission systems and design processes. The work has led to three main conclusions. First, it is discovered that there are no sufficiently accurate error criteria for measuring the subjective perceived audiovisual quality that could be utilised in transmission system design. Means for designing new error criteria for mobile TV (television) services are suggested and similar work related to other services is recommended. Second, it is suggested that in addition to commercial requirements there should be technical requirements setting the frame work for the design process of a new transmission system. The technical requirements should include the assessed reception conditions, technical quality of service and service functionalities. Reception conditions comprise radio channel models, receiver types and antenna types. Technical quality of service consists of bandwidth, timeliness and reliability. Of these, the thesis focuses on radio channel models and errorcriteria (reliability) as two of the most important design challenges and provides means to optimise transmission parameters based on these. Third, the thesis argues that the most favourable development for wireless broadcasting would be a single system suitable for all scenarios of wireless broadcasting. It is claimed that there are no major technical obstacles to achieve this and that the recently published second generation digital terrestrial television broadcasting system provides a good basis. The challenges and opportunities of a universal wireless broadcasting system are discussed mainly from technical but briefly also from commercial and regulatory aspectSiirretty Doriast

    Fast Memory-Based Processing in Software-Defined Radios

    Get PDF
    Negli ultimi anni le Software Defined Radio sono state un argomento di ricerca di primo piano nell'ambito dei sistemi di trasmissione radio. Molti e variegati paradigmi implementativi sono stati concepiti e proposti, con soluzioni capaci di spaziare da sistemi basati su Field Programmable Gate Array (FPGA) a implementazioni ottenute mediante un singolo General Purpose Processor (GPP) passando per dispositivi caratterizzati dalla presenza computazionalmente preponderante di un Digital Signal Processor (DSP) o da architetture miste. Tali soluzioni rappresentano punti di equilibrio diversi dell'inevitabile compromesso tra flessibilità e capacità computazionale del sistema di trasmissione implementato, comprimendo in qualche modo l'aspirazione ad un sistema radio universale propria del concetto originario dell'SDR. A questo riguardo, le soluzioni SDR basate su GPP rappresentano il modello implementativo maggiormente desiderabile in quanto costituiscono l'alternativa più flessibile ed economica tra tutte le tipologie di SDR. Ciò nonostante, la scarsa capacità computazionale ha sempre limitato l'adozione di questi sistemi in scenari produttivi di vasta scala. Se convenientemente applicati entro il contesto di sviluppo SDR, concetti classici noti in informatica sotto la denominazione collettiva di space/time trade-off possono essere di enorme aiuto quando si cerchi di mitigare un simile problema. Traendo ispirazione da detti concetti, nonché estendendoli ed applicandoli all'abito dell'SDR, questa tesi sviluppa e presenta una tecnica di programmazione specifica per software radio chiamata Memory Acceleration (MA) che, mediante un uso estensivo delle risorse di memoria disponibili a bordo di un tipico sistema di calcolo general purpose, può fornire alle SDR convenzionali basate su GPP fattori di accelerazione sostanziali (circa un ordine di grandezza) senza ridurne la peculiare flessibilità. Alcune rilevanti implementazioni di sistemi SDR capaci di lavorare in tempo reale su processori GPP consumer-grade realizzate in tecnica MA sono descritte in dettaglio entro questo lavoro di tesi e fornite come prova della reale efficacia del concetto proposto

    Soft-DVB: A Fully-Software DVB-T Modulator Based on the GNU-Radio framework

    Get PDF
    Introduction Full-Hardware solutions: a heavy burden for further DSP development A real world example: FM Broadcast, persistence of an old technology Modern, Competitive Multimedia Broadcasting Infrastructure: a Wishlist The Full-Software proposal: a bridge between research effort and deployment The Soft-DVB concept implementation: a feasibility proof Advantages of a Fully-Software solution for ETSI DVB-T signal generation 1 The DVB-T Standard for broadcasting terrestrial digital television Main features Typical DVB-T propagation scenarios: Rayleigh and Ricean Channels Analysis of ETSI DVB-T functional blocks 2 The OFDM Modulation Overview Usage within ETSI DVB-T: benefits and implementation choices Orthogonality of Signals and Spectral Efficiency Multipath Resistance 3 Soft-DVB Preliminary choices: The USRP system and the GNURadio Framework Soft-DVB Architecture Development Stages: the check-dumps TPS Implementation Hardware trivia and Headaches On Air... pardon, on Coax Signal Debugging On Air, Actually! 4 Optimization CPU-time vs Memory Trade-Off Bit-Level Operations and the convolutional encoder example Vectorized vs Scalar Structures 5 Implementation Results Laboratory Benchmarks Final Implementation Results 6 Real World Deployment scenarios and Perspectives Emergency Broadcasts Mission-Dedicated Broadcasts Highway Traffic Information Systems Quick and Cheap Network: Ideas for a new Media Broadcasting Model On Site Broadcasting Parallel CPU Architectures: a huge computing power boost 7 Conclusion
    corecore