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Sommario

Negli ultimi anni le Software Defined Radio sono state un argomento di ricerca di

primo piano nell’ambito dei sistemi di trasmissione radio. Molti e variegati paradigmi

implementativi sono stati concepiti e proposti, con soluzioni capaci di spaziare da

sistemi basati su Field Programmable Gate Array (FPGA) a implementazioni ot-

tenute mediante un singolo General Purpose Processor (GPP) passando per dispositivi

caratterizzati dalla presenza computazionalmente preponderante di un Digital Signal

Processor (DSP) o da architetture miste. Tali soluzioni rappresentano punti di equilib-

rio diversi dell’inevitabile compromesso tra flessibilità e capacità computazionale del

sistema di trasmissione implementato, comprimendo in qualche modo l’aspirazione

ad un sistema radio universale propria del concetto originario dell’SDR. A questo

riguardo, le soluzioni SDR basate su GPP rappresentano il modello implementa-

tivo maggiormente desiderabile in quanto costituiscono l’alternativa più flessibile ed

economica tra tutte le tipologie di SDR. Ciò nonostante, la scarsa capacità com-

putazionale ha sempre limitato l’adozione di questi sistemi in scenari produttivi di

vasta scala. Se convenientemente applicati entro il contesto di sviluppo SDR, concetti

classici noti in informatica sotto la denominazione collettiva di space/time trade-off

possono essere di enorme aiuto quando si cerchi di mitigare un simile problema.

Traendo ispirazione da detti concetti, nonchè estendendoli ed applicandoli all’abito

dell’SDR, questa tesi sviluppa e presenta una tecnica di programmazione specifica per

software radio chiamata Memory Acceleration (MA) che, mediante un uso estensivo

delle risorse di memoria disponibili a bordo di un tipico sistema di calcolo general

purpose, può fornire alle SDR convenzionali basate su GPP fattori di accelerazione

sostanziali (circa un ordine di grandezza) senza ridurne la peculiare flessibilità. Alcune

rilevanti implementazioni di sistemi SDR capaci di lavorare in tempo reale su proces-

sori GPP consumer-grade realizzate in tecnica MA sono descritte in dettaglio entro

questo lavoro di tesi e fornite come prova della reale efficacia del concetto proposto.
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Abstract

In recent years Software Defined Radios (SDRs) have been quite a hot topic in wireless

systems research. Many implementation paradigms were conceived and proposed

ranging from Field Programmable Gate Array (FPGA) implementations to single

General Purpose Processor (GPP) systems while also including mixed architecture

and Digital Signal Processor (DSP) based devices. All such choices trade-off system

flexibility for computing power, compressing, to some extent, the quest for an uni-

versal radio system which is inherent to the original SDR concept. In this respect,

GPP-based solutions represent the most desirable implementation model as they are

the most flexible and cost effective among all types of SDRs. Still, the scarcity of com-

putational power on general purpose CPUs has always constrained their wide adoption

in production environments. If conveniently applied within an SDR context, classical

concepts known in computer science as space/time trade-offs can be extremely helpful

when trying to mitigate this problem. Inspired by and building on those concepts, this

thesis presents a novel SDR implementation technique called Memory Acceleration

(MA) that makes extensive use of the memory resources available on a general purpose

computing system, in order to accelerate signal computation. Actually, MA can

provide substantial (about one order of magnitude) acceleration factors when applied

to conventional SDRs without reducing their peculiar flexibility. Notable real-time,

consumer-grade GPP SDR implementations that were obtained while developing the

MA SDR programming technique are described in detail within this work and pro-

vided as factual proofs of the MA concept effectiveness. Opportunity for extending the

MA approach to the entire radio system, thus implementing what we call a Memory

Based Software Defined Radio (MB-SDR) is as well considered and discussed.
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Introduction

Motivations for a “different” SDR

The field of SDR is slowly attaining its maturity, especially in military and security-

related applications [1]. In spite of this, there is still a wide variety of HW platforms to

implement an SDR terminal, with no emerging well-established standard solution(s).

Amidst this variety, every platform generally adopts its own judicious mixture of

(powerful but not so flexible) FPGAs, dedicated DSP processors (less powerful and

sufficiently flexible), and/or (easily programmable and flexible but no so powerful)

GPPs [2]. Platforms based almost entirely on GPPs are very attractive for research,

development and small-scale market deployment, owing to short development time

and extremely low development costs [3]. Indeed, they constitute the closest imple-

mentation paradigm to the original SDR concept described in J. Mitola’s seminal

work [4] back in 1992: the dream of a “universal radio” where all of the needed signal

processing is performed directly over a fully reconfigurable computational back-end.

If achieved in practice, this fully software architecture could act as an authentic game-

changer within the market of radio-frequency (RF) transmission systems, as all pro-

duction costs ranging from hardware design to Application Specific Integrated Circuit

(ASIC) foundry production would be entirely saved. Reference implementations being

written in a high level programming language such as C or C++ could then directly

become system pre-production prototypes, or even actual complete products. On the

other hand, the drawbacks of such solutions are their limited computational power

or, seen from another perspective, their low throughput per Watt when compared to

equivalent HW-accelerated (e.g. FPGA-based) implementations [5]. In fact, it has

always been a universally accepted assumption that a greater amount of generality and

flexibility of the radio system has to be paid with heavy losses on power efficiency, due

to the necessary usage of general purpose CPUs. Accordingly, SDR implementations
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2 Introduction

up to the present date have simply aimed to replicate the classical HW-implemented

signal processing chains into the software realm. Aim of this research is to prove that,

by making use of all the resources available on a general purpose computing system

(i.e. not only calculus but also memory), it is possible – at least – to substantially

reduce the power efficiency gap that exists between SDRs based on general purpose

CPUs and HW implementations of the same radio system. Implications of such

results include potential for deploying flexible radio technologies on the industrial

scale (due to increase of power efficiency up to levels that would make them a practical

alternative to HW solutions) as well as do suggest the possibility to implement fully

generic, C/C++ definable radio signal processing cores being trivially derived from

currently available general purpose CPUs, yet able to deliver very high signal synthesis

and demodulation performances.
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Introduction 3

Principal issues and challenges

Peculiarities of implementing a real-world software defined radio, especially once the

full-software approach has been chosen, make the design and complete development

of the radio system substantially different from the traditional work-flow, usually

involved in producing conventional, hardware (ASIC) based, radio-communication

devices.

Different authors in different contexts adopt different definitions for the rather broad

class of what is often referred to as real-time constraints. The term real-time is

typically used to indicate both computing time issues and latency issues even if

the nature of such constraints is rather heterogeneous. Actually, a practical SDR

implementation has to take into account both needs. An SDR must in fact be

fast enough in processing (modulating and/or demodulating) its informative radio

signal to keep-up with the radio frequency (RF) signal rate mandated by the radio

communication standard it implements (computational constraint). Also, it must be

quick enough in reacting to a stimulus received from the radio frequency channel to

comply with external timing requirements imposed by external entities such as (but

not limited to) an infrastructured or peer-to-peer network architecture to which the

SDR is interfaced (latency constraint). Within this thesis, we will thus respectively

distinguish between:

• Computation-yielded real-time constraints

• Architecture-yielded latency constrains

Therefore we will only be using the term real-time with respect to computational

power related issues, as these constitute the toughest limit keeping the full-software

SDR paradigm from widespread adoption. Timing issues depending on the radio

system architecture will be instead referred to as latency issues. It is worth to consider

that, as long as an insufficient processing capability slows down the system in all of

its tasks due to the typical interdependence of functional blocks, computation yielded

real-time constraints can have an impact over latency performance of the radio system

while instead the opposite cannot happen, due to the definition we adopt for these two

constraint classes. Also, it must be noted that the customary distinction between soft

and hard real-time is completely orthogonal to the classification introduced above.

In software defined radio, all real-time constraints are to be considered hard real-
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4 Introduction

time bounds as long as missing a single deadline set by the implemented radio-

communication standard when processing a single given information unit will (both

on the transmit and on the receive chains) have catastrophic effects with respect

to the possibility of successfully transmitting that unit and, most likely, some of its

contiguous information blocks.

Whenever computational real-time requirements are met, which we must assume as

the normal operating condition for any SDR, latency issues might only arise from

architectural problems. This fact can have a relevant impact particularly when a full-

software implementation paradigm is chosen, which falls right into the main scope

of this research. GPP-based systems are conceived and designed around a central

computing core (or set of cores) whose operation is regulated by a certain interrupt

scheme. Choices taken in implementing such scheme directly yield latency bounds

when it comes to make the fully software SDR systems responsive to external stimula

acquired through the RF channel (e.g. responding to a transmission request within a

certain time which is assigned by some network regulator entity). For these reasons,

whenever the SDR system is part of a wider, time-regulated network or when it has to

be strictly locked to any sort of external, time-critical event, a real-time kernel must

be employed within the host operating system and interrupt as well as hardware-

yielded latencies (i.e. timing of buses and hardware interfaces) must be cautiously

considered.

Also, given the limited computational power available over GPP platforms, suitable

techniques must be implemented within the SDR system in order to maximize its

computational efficiency (and thus its throughput-per-watt figures). A proposal being

formulated within this context is the main subject of the following chapters of this

thesis.
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Introduction 5

Thesis outline

The remainder of this thesis is structured as follows.

In Chapter 1, we present the current state of the art of SDR systems with special

attention to the full-software option and to its main issues and criticalities. Both the

industrial and academic realms are considered.

In Chapter 2, we describe in full detail the proposed Memory Acceleration (MA)

SDR programming technique by presenting its logical and quantitative foundations

as well as by providing complete examples of its application within real full-software

SDR contexts.

In Chapter 3, we describe several complete real-world SDR systems which, along

the path of this research, were implemented by resorting to the MA technique, and

which we intend as the practical proof of the MA concept.

In Chapter 4, we explore and discuss the idea of extending the memory acceleration

design philosophy to the entire software radio system as we imagine and define the

concept of a Memory-Based SDR (MB-SDR).

Within the customary conclusions chapter, we discuss implications of the results

which were obtained within this research as well as development and research per-

spectives that exist within the field of computationally-accelerated software defined

radio.
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Chapter 1

SDR today:

the state of the art

1.1 “Historical” notes

Probably conceived in 1991, the term and the concept “Software Radio” first appear

on the world’s stage in 1992 at the IEEE National Telesystems Conference thanks

to Joseph Mitola’s work entitled “The Software Radio” [4] where a universal, fully

reconfigurable radio system is imagined as composed by no application-specific subsys-

tems and based only upon a general-purpose computational back-end being directly

interfaced to the radio medium only through A/D conversion. Since those days, the

concept inspired a wide variety of related initiatives in both research and production

contexts, which led to a plethora of SDR systems and implementation paradigms.

Precisely 20 years, at the time of writing, after Mitola’s seminal work, industry and

academia, civilian authorities and the military have all become involved into SDR

to some extent and for different reasons. Indeed, the label of early adopters belongs

to the United States military whose involvement in SDR technologies dates back

to the pioneering days of the SPEAKeasy, phase I and II projects. Such projects

consisted in implementing a reconfigurable, multi-standard radio capable of working

with ground, naval, airborne and naval forces communication systems (phase I) as well

as in obtaining standard-bridging capabilities (i.e. the actual SDR acting as a gateway

between heterogeneous RF standards) and in reducing weight and configuration times

of former implementations (phase II). The early SPEAKeasy effort extends into

nowadays Joint Tactical Radio System: an US military program aiming to obtain
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SDR today:

the state of the art

flexible and interoperable communication within a broad set of radio standards. Such

system is based on the internationally endorsed Software Communications Architec-

ture (SCA): a highly layered software radio architecture designed in order to obtain

remarkable cross-platform portability of the implemented radio systems (waveforms

in the SCA parlance), which was implemented in a multitude of contexts, including

civilian ones. Common Object Request Broker Architecture (CORBA), a special

software mechanism allowing pieces of software written in different languages to

interoperate is intended as the behind the scenes magic which should allow for the

very high level of radio application portability and seamless interfacing targeted by

SCA.

Indeed, SDR adoption didn’t only happen within military environments, a swarm of

initiatives also proliferated throughout academic institutions and their research labs

as the possibility of gaining cheap and quick access to any region of the spectrum

was regarded as a true breakthrough by many. Finally, in recent years, industry as

well has proposed a wide variety of software defined radio platforms, spanning the

full range of SDR implementation paradigms from FPGA to GPP-based systems.

Such platforms, intended for both experimentation and development, are typically

used to implement rather narrow-band communication standards and however never

attempt the implementation of high capacity signals (where high capacity is assumed

as > 10 Mbps) on general purpose CPU systems. Actually, the majority of those

systems prefers the choice of hybrid architectures where GPPs only act as the overall

regulator and information gateway of the system, while all of the heavy processing

effort is performed over FPGAs and/or DSPs that are also on-board. A rather popular

example of such concept is the LYRtech Virtex-4 FPGA SDR Development Platform

(shown in figure 1.1), which features a so-called co-processor SDR architecture (i.e.

FPGA + DSP + microprocessor) in a small form factor, all-in-one, computation-

embedded solution. It uses CORBA-enabled middleware for all processing devices

and runs stand alone without the need for integration with an host computer system.

Another quite paradigmatic device is Sundance SMT8146, again a stand-alone system

which, developed by Sundance, inc. and mainly targeted at academic institutions,

features both FPGA and a DSP based modules (figure 1.2). Recurrent costs and

development effort yielded by such class of systems is typically much higher than that

of GPP-based counterparts, also SDR code portability is greatly reduced.
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Figure 1.1: LYRtech Virtex-4 FPGA SDR Development Platform

Figure 1.2: Sundance SMT 8146 SDR Development Platform
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1.2 Academic and amateur research

Above all academic projects, GNU GNURadio [6], an open source community project

with remarkable academic participation, and Open-Source SCA Implementation -

Embedded (OSSIE) [7], originated and maintained at VirginiaTech, deserve a special

mention as long as their GPP-oriented implementation paradigm falls right into the

scope of this research. The former is an open source initiative born in 2001, which

consists of a software section, the GNURadio framework, and a hardware section pro-

duced by Ettus Research LLC [8] named Universal Software Radio Peripheral (USRP).

The latter is an open source implementation of the JTRS Software Communications

Architecture in the form of an SDR development framework, primarily intended to

enable research and education in SDR and wireless communications, but also includes

tools for rapid development of SDR components and waveforms applications. The

GNURadio framework is a fully open source, class-oriented programming framework

where C++ classes are used to implement each and every functional block of the

radio signal processing chain (the flow-graph in GNURadio speak) while at runtime

the flow-graph set-up and interconnection happens by means of a Python script

which is often referred to as the glue of the system. Recently, a graphical tool

called GNURadio Companion (GRC) has been implemented and distributed along

with the GNURadio source tree, that allows for graphical flow-graph design and

instantiation. A full C++ programming architecture has been developed as well in

order to make Python language dependence just optional. On the hardware side,

starting from the early 2001 prototypes, the USRP system grew rapidly (along with

its manufacturing company, ETTUS Research LLC) to a full “ecosystem” of products

which today includes as many as 5 SDR peripheral types covering the spectrum

from DC to 6 GHz while being capable to handle an instantaneous bandwidth of

up to 25 MHz at 16 bit sample resolution (or 50 MHz @ 8 bit). Many independent,

even individual, and commercial projects were developed on-board both GNURadio

and OSSIE but it was academic wireless systems research that appeared to enjoy

such systems the most. Research projects were carried on by using such software

environments (very often also autonomous software frameworks directly interfaced

to USRP hardware) which implemented a wide variety of communication standards

and RF applications. Some examples, taken from an extremely abundant published

literature, can be: aeronautical Very High Frequency (VHF) receiver and transmitter
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(up to 50 8.33 kHz AM channels) on a SCA-compliant waveform [9], GNSS design, test

and analysis [10], RF system verification, validation and measurement [11], communi-

cation protocol and device prototyping in Multiple Input Multiple Output (MIMO),

cooperative and/or cognitive environments [12], [13], [14], prototyping of radio sensing

systems [15]. Other open source community powered implementations also exist. The

Open Base Transceiver Station (OpenBTS) [16], is an open source Global System for

Mobile communication (GSM) SDR-implemented base station featuring standard 200

kHz GSM traffic and broadcast channels (Gaussian Minimum Shift Keying - GMSK

modulation) and being capable of interfacing to standard GSM handsets.

As long as not only academic people happen to love radios, but many individuals

around the world have always been fascinated and enthralled by radio experimen-

tation, SDR platforms and implementations also arouse within amateur contexts.

This way, such projects were born as High Performance Software Defined Radio

(HPSDR) [17], which concentrates on narrow-band, usually analogue, voice radio

signals in use for short wave listening and point to point communication by radio

amateurs worldwide. The implementation paradigm it adopts is GPP-based and

extremely close to that of GNURadio and OSSIE.

It appears quite clearly from examples listed above, that a truly wideband, modern,

computation-intensive RF communication chain including state-of-the-art Forward

Error Correction (FEC) techniques and being entirely implemented over GPP-based

SDRs within an acceptable power budgets is still a target to be reached.

1.3 Commercial systems

Again, also in the industrial SDR domain, which is mostly focused on military appli-

cations, typical systems are based upon proprietary hybrid FPGA-DSP architectural

solutions, which provide enormous computing resources at the expenses of system

power consumption rates, SDR application portability and SDR development costs,

for all the reasons that were discussed within the introduction to this thesis. Neverthe-

less, typical capacities reached by such systems, although significant, and in the Mbps

range, remain well below those 10 Mbps we consider acceptable for a truly broadband

system. Examples of this fact are state-of-the-art products from major worldwide

military SDR players such as the Italian Selex-Elsag and the French Thales group,

respectively the Swave (figure 1.5) and FlexNet-Four (figure 1.6) vehicular software
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Figure 1.3: USRP n210, the highest profile USRP currently available from Ettus Research

Figure 1.4: HPSDR hardware peripheral
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Figure 1.5: Selex-Elsag Swave Vehicular SDR

radios.

Such systems implement the European Secure SOftware defined Radio (ESSOR)

architecture waveforms while also guaranteeing SCA compliance, and obtain maxi-

mum capacity (for multimedia applications) of 6 Mbps, while more typical operating

data-rates stop at 1.5 Mbps. Such SDR computational performance, when consid-

ered in conjunction with the huge computational power available over the presented

platforms, is definitely not impressive, this is most likely due to the inefficiency of the

middle-ware-encumbered SCA architecture.

1.4 Industrial research

The closest point to the purposes of this research has probably been reached so far by

an industrial research project carried out by Microsoft Research Asia in Beijing and

called Sora, which plainly stands for “Software Radio”. People at Microsoft Research

implemented a Peripheral Component Interconnect Express (PCIe) board acting as

a radio front-end for transmission and reception (figure 1.7) on-board a standard

Personal Computer (PC) (figure 1.8), much alike what happens within the typical

GNURadio full-GPP processing + USRP peripheral paradigm. It is a clear, explicit

aim of the Microsoft Research Sora project to achieve high performance, state of the

art, real-time radio-communication signal processing over GPP-based computing plat-
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Figure 1.6: Thales FlexNet-Four Vehicular SDR

forms such as commodity PCs. Thus, Sora proposes joint usage of multi-threading,

look-up tables and Single Instruction Multiple Data (SIMD) programming within a

software radio context in order to obtain significant speedups. Within their main

work [18], people from the Sora group report some rather good performance numbers

obtained while implementing a proof-of-concept software IEEE 802.11 transceiver by

means of all the above-quoted techniques. Although good and very interesting, such

performance numbers are not easy to evaluate due to the inherently discontinuous

nature of 802.11 traffic which can, by itself, in some quite typical conditions, greatly

relief the computational burden imposed upon network nodes’ radio interfaces.

Within this work, we instead reckoned that multi-thread programming and SIMD

instructions are already well known implementation enhancements and can always,

rather easily, be applied to any GPP-SDR design. Therefore, based on the assumption

that increasing cache size and memory resources on a computing system comes at a

much smaller power consumption cost than increasing clock frequency, and therefore

offers larger performance improvement margin than any other possible acceleration

technique, we tried instead to focus only on the memory Vs computation trade-off.

We did this by exploring the application of such trade-off to radio signal processing in
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Figure 1.7: Microsoft Research Asia Sora PCIe SDR Board

Figure 1.8: Microsoft Research Asia Sora PCIe SDR Board operating within a standard

PC

depth in order to provide a convenient and rather general SW design criterion which

enables fast implementation of any radio chain in a memory-intensive fashion. Finally,

it must be adequately emphasized that all the advantages of the Memory Acceleration

technique that we are about to introduce can also be obtained while applying MA along

with other computation enhancement strategies such as multi-threading architectures

and SIMD instruction sets, thus leveraging the SDR system performance by the sum

of all contributions.
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The memory option:

MA research activity

According to all considerations presented in previous chapters, as well as in the quest

for an acceleration technique that was both easy to implement and fully-scalable

with respect to the available resources, we decided to focus our research effort onto

memory-based speedup techniques revisiting classical concepts already known in com-

puter science under the collective denomination of space/time trade-offs. In previous

literature, space/time trade-offs are intended as a means to reduce the execution time

of a certain algorithm either by increasing the degree of HW/SW parallelism of a given

implementation (therefore consuming more space) [19], [20], or by pre-computing the

data produced by some well-determined algorithm and casting it into some tabular

form [21] (sacrificing again space, in terms of size of the table to be stored, to gain

execution time). Our effort aims instead at obtaining memory implementation of

entire radio signal processing algorithms (e.g. convolutional encoders, Reed-Solomon

encoders, Viterbi decoders, channel estimators and synchronizers) tending towards the

limit where any radio signal processing algorithm can indifferently be implemented

either in calculus or just through memory look-ups to suitable tables.
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2.1 Description of the Memory Acceleration design

rule

2.1.1 System representation and useful quantities

We start our discussion by observing that any radio terminal and, more generally, any

system performing signal processing functions, can be represented as the interconnec-

tion of a number of constituent functional blocks. Simple systems are arranged as

a straightforward cascaded “chain” of elementary blocks, more complicated schemes

(possibly with feedback connections) look more like a “mesh” of components and

connections, as depicted in figure 2.1 a). Focusing for simplicity on a radio receiver,

whatever the mesh of blocks and connection is, the end-to-end signal processing

function of our system is equivalent to a mathematical function f(...) which maps a

certain amount of soft-valued input symbols (for instance the signal samples collected

in a given signal frame) into the corresponding hard-valued demodulated information

bits as shown in figure 2.1 b). We call the minimum set of soft channel symbols

that can be processed independently from the remainder of the stream the Minimum

Independent Data Set (MIDS). For the ETSI DVB-T [22] standard (our principal

case study) , this would be 4 Orthogonal Frequency-Division Multiplexing (OFDM)

frames (i.e. what is called a superframe in [22]). We indicate the size (number of

items) of the MIDS with symbol l and with A the cardinality of the alphabet each

input datum of the MIDS belongs to.

Functional Block 1 Functional Block 2

Functional Block 3 Functional Block 5

Functional Block 4

ETSI DVB-T DEMODULATOR,
BASEBAND SECTION

Demodulated bits4 OFDM frames

4 OFDM
frames

Demodulated 
bits

a)

b)

Figure 2.1: Possible system representations: black box and web of constituent blocks
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The domain of f(...) is then defined as the set of all possible different messages

within a MIDS. We also call input space the domain of f(...) and Ci the cardinality

of such space. Clearly

Ci = Al (2.1)

If we could find a convenient analytical expression for the function f(...), we could

consider implementing our sample DVB-T demodulator by programming such analyt-

ical expression into a computing system via any high-level programming language like

C/C++. This would be a computation-only implementation of the system, one that is

completely located at the time end of the time/space trade-off. Such implementation

would only (or mainly) take advantage of the computational resources being available

on a GPP-based platform, with very little attention to the memory resources that

are available.

After this remark on memory resources, it would be natural to think of replacing

our function f(...) with a tabular implementation of f(...): a table t(...) containing,

for each of the Al items of the overall input space, the associated output value. This

would be a memory-only implementation, located at the space end of the trade-off,

and would not require any (or would require negligible) real-time computation. On

the other hand, the size Ci of the table would not be practical for any memory

technology available today or in the foreseeable future. The table t(...) could be filled

up by running once and forever, at instantiation time (i.e., at the time of initialization

or configuration of the terminal) any standard, computation-only, implementation of

function f(...) (i.e. the traditional radio system chain) over the entire input space.

Such considerations suggest that the path towards optimal SDR implementations

lies somewhere in between the two ends, with a hybrid approach that could use

both computational and memory resources to the greatest possible extent (situation

graphically represented in figure 2.2).

Let us now come back to the mesh representation of the signal processing functions

of our SDR. We call this representation the 0-step of a procedure underlying MA, that

we label algorithm segmentation. Such 0-step may be the direct translation of the

signal processing functions described in a communications standard, in a reference

implementation, or, in the parlance of SCA-based SDRs [23], in a waveform. The

implicit assumption in this decomposition is that each of the functional blocks fn(...)

in the mesh is atomic, i.e., impossible to break-up in a further mesh of constituent

functional blocks. On the contrary, the aim of our algorithm segmentation approach is
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Required CPU TIME
or Computational Work

MEMORY OCCUPANCY:

Conventional SDR

Optimum SDR 
with MAM

W

Memory-Only SDR

Figure 2.2: Table boundary after one step, released block is peripheral

just coming to a further decomposition of a functional block fn(...), formerly assumed

to be atomic, into a chain (or mesh) of constituent sub-blocks fn,p(...), p = 1, ..., Pn

whose end-to-end behavior is equivalent to the original function fn(...). One advan-

tage of this is that the input spaces of sub blocks Cin,p
will be different from and

significantly smaller than Cin
, provided that the segmentation is performed correctly.

Algorithm segmentation cannot be considered as a form of algorithm re-design: as a

consequence, algorithm segmentation does not change the overall computational cost

of the segmented algorithm. We will describe algorithm segmentation with convenient

detail in section 2.1.5.

Figure 2.3: Computational cost weighted functional block representation. Blocks 1 and 4

are peripheral

2.1.2 Acceleration design

An expedient visual representation of the SDR signal processing mesh is obtained

as follows: we call Wn the computational cost of the n-th functional block (required

number of CPU instructions or operations per second (ops)), and we use a graphical
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Table 2.1: MA / MB-SDR symbols and taxonomy

Symbol Meaning

fn(...) Computation-only implementation of block n

tn(...) Memory-only implementation of block n

l Number of items within the MIDS

A Cardinality of Alphabet for each item of MIDS

Cin
Cardinality of input space of block fn(...)

Con
Cardinality of output space of block fn(...)

W Total available computational power

Wn Computational cost of block fn(...)

WTB Computational cost of subsystem within table boundary

Wm Computational cost of subsystem replaced by table m

Wr Computational cost of not yet memory-accelerated subsystem

Ωm Computational cost for handling table tm(...)

M Total size of available memory

Mm Total memory footprint of table tm(...)

Sm Data size of items stored in tm(...)

a Acceleration factor

η Acceleration efficiency

ηm Acceleration efficiency of table tm(...)

I Overall SDR implementation merit parameter
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representation of the SDR in which the size of the functional block is directly propor-

tional to such cost, as in figure 2.3. This gives at a glance an indication of the relative

computational weight of each block (function) within the whole radio. Let us also

introduce the symbol Ωm as the total computational cost of memory management

for table tm(...), something that has nothing to do with algorithm complexity, but

that represents the cost of memory address calculation plus memory access latency

(if significant). The latter parameter can be made equivalent to a computational cost

by reducing it to CPU time or to equivalent ops/clock cycles.

We come now to the core of the MA technique. Broadly speaking, the aim of MA

is aiding the GPP in processing the informative signal through a proper (extensive)

usage of memory resources. Such result is obtained by replacing the functional blocks

fn(...) usually implemented according to a purely-computational (time) approach

(with marginal usage of memory), with pre-computed tables tm(...) as introduced

in 2.1.1. The replacement is done after one or more steps of algorithm segmentation

have been carried out, and on the most demanding blocks in terms of computational

power only. In subsection 2.1.4, we will introduce the so-called Recursive Table

Aggregation Rule (RTAR) that finalizes tables that will have to be implemented

into memory, while also calling for algorithm segmentation to be applied upon the

convenient functional blocks. In this respect, notice that the input space cardinality

Cin
of each fn(...) is usually unrelated to its computational cost Wn. Just to make

an example, consider the data deinterleaver in a DVB-T demodulator, that performs

the inverse operation of the interleaver used in the modulator to scatter around the

protected bits of an encoded data block in order to protect them from time-correlated

errors. The cardinality of the input space of the deinterleaver is the same as that

of its own adjacent binary FEC decoder (they bear the same block length), but the

computational complexity of the decoder is way larger than that of the deinterleaver.

We already mentioned that, after segmentation, only the most computation-demanding

blocks need being implemented in a tabular form. This rule comes from the consid-

eration that the amount of memory resources M is finite, and has to be used in

an optimal fashion. Performing memory-acceleration (i.e., tabular implementation)

of low-complexity blocks would only result in a waste of memory resources, with

negligible impact on processing speed. The MA rule attains an optimum configuration

whenever the available memory resources are exhausted, and the maximum number

of operations (or the maximum possible amount of CPU time) has been replaced by
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memory look-ups implementing the same functions. Replacement of computation-

dominated blocks has to follow a hierarchical approach, starting form the most, down

to the least demanding, until available memory resources are over.

2.1.3 Table aggregation and cache friendliness

The computational complexity of a tabular implementation tm(...) is not zero, though.

We have to consider in fact the memory management cost Ωm that can be at times

non negligible. From this standpoint, it is apparent that the larger is the number

of functional blocks fn(...) that we collapse into a single tabular implementation

tm(...), the smaller is the total memory management cost Ω of our memory-accelerated

implementation. In addition to this, we must also consider that GPP-based platforms

have a hierarchical memory structure with smaller and faster caches in the proximity

of the computing cores and bigger, slower extended memories in a more peripheral

location of the system. The general rule to use efficiently such hierarchical memory

arrangement is storing contiguously in memory information which is used contiguously

in time. This means for instance that a series of consecutive blocks in a processing

chain are accelerated very efficiently when their processing is aggregated (as far as

possible) into a single table tm(...) whose internal arrangement reproduces the same

cascaded structure of the original chain (RTAR is designed in order to yields this).

This happens because if such criterion is observed, either the whole table fits into the

CPU cache or any subset of the table is fetched into cache only once and never gets

used twice, thus maximizing cache friendliness. Once recognized that aggregating

blocks in such a structured way is a virtue per se, we introduce in the next subsection

a Recursive Table Aggregation Rule. Following this rule, we can on one hand provide

the aggregation of as many functional blocks as possible into the same table, while on

the other we can perform algorithm segmentation –which still remains a demanding

design task– only for those blocks where it is really needed and useful.

2.1.4 Recursive Table Aggregation Rule

Assuming that we have an atomic mesh decomposition of our end-to-end algorithm

(our SDR), what is the optimum level of break-up to replace computation-intensive

blocks with tables? We try to give an answer to this fundamental question through

the RTAR, whose aim is to come to a balanced (optimum) time/space trade-off in the
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design of the SDR, possibly providing also cache friendliness. We start by enclosing

Figure 2.4: Table boundary after one step, released block is peripheral

Figure 2.5: Atomicity limit reached

the subsystem we intend to memory-accelerate into a closed line that we call the

table boundary (TB). The connections that crosses the TB represent the input/output

interface towards the external world of the subsystem under consideration. An atomic

block of the subsystem is called peripheral if all of its input or all of its output

connections cross the TB. Once this is defined, the RTAR proceeds as follows:

1. (Initialization) Define the whole radio the as the (sub-)system to be memory-

accelerated. This is equivalent to enclosing the entire radio within a TB.

Calculate the size Ci of the table that is necessary to memory-implement the

selected subsystem (the whole radio). If the table fits into memory, then go to

step 3

2. (Reduction) Identify the computationally-lightest block contained within the

TB and reduce the subsystem by releasing such block (move it outside the TB

as in Fig. 2.4). If the released block is not peripheral, then release also all

blocks depending on its output, see Fig. 2.6. Calculate the size Ci of the table
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Figure 2.6: Example of released block (FB5) being non-peripheral. In this case cascaded

blocks (FB4) are released as well. At next step of the iterative algorithm, formerly released

blocks will be enclosed in the new table boundary

equivalent to the enclosed system; if the table fits, then go to step 3), otherwise

reduce again until either i) the table fits (in this case, still go to step 3), or ii) the

atomicity limit fn(...) is reached (figure 2.5). If the latter becomes true, perform

algorithm segmentation upon the block fn(...) being currently surrounded by TB

and go back to step 2). 1

3. (Memory-only Implementation) Implement the subsystem being enclosed in the

current table boundary by replacing its computation-only functional blocks

with an equivalent table tm(...). If the system still contains blocks not yet

implemented in memory, and memory resources are not exhausted, initialize

the table boundary for another MA iteration by enclosing all of the remaining

computational blocks of the radio system, then go to step 2).

The proposed RTAR rule is admittedly heuristic - an exhaustive approach to algo-

rithm segmentation to find the optimum configuration of the SDR appears unfeasible.

Nonetheless, we believe that our rule captures the majority of the achievable MA gain

with a manageable approach. In some test cases (conducted upon rather heteroge-

neous signal processing algorithms), RTAR was shown to provide substantial speedup

1Note that, in the case atomicity limit is reached, the block which undergoes algorithm seg-

mentation is the heaviest block of the whole radio, and therefore the sub-blocks obtained from its

segmentation still collectively yield the majority of the computational cost of the SDR. Still, as

soon as the first of obtained sub-blocks gets released, we cannot guarantee that this keeps true.

Thus, whenever one of the sub-blocks obtained from algorithm segmentation is released, it must be

checked whether the table boundary encloses a computational cost WTB which is still greater than

the cost of any functional block outside the TB. In case this condition becomes false, the TB must

be re-initialized to enclose the entire system and the procedure shall continue from step 2).
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factors (roughly one order of magnitude) with an acceptable MA design effort.

Cache-friendliness provided by RTAR also constitutes the basis for MA compatibility

with parallel programming. Memory access contentions that could indeed happen

when loading the required memory table (or table portion) from the external Random

Access Memory (RAM) into the core-dedicated caches of a multicore computing

system can be made extremely sporadic by performing most of the look-ups within

the cache, therefore minimizing the number of fetches being necessary from the RAM.

For the reader’s convenience, an MA flowchart is sketched in in figure 2.7.

Figure 2.7: Schematic representation of MA Recursive Table Aggregation Rule. Exit

condition on memory exhaustion is not graphically represented for readability
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2.1.5 More on Algorithm Segmentation

As previously stated, Algorithm Segmentation is the process of breaking down a

single functional block f(...) into its constituent functional sub-blocks or segments.

This process just identifies the segments within a given block f(...) without actually

performing any re-design of the segmented algorithm, so that the computational

cost of the segmented system f(...) is not changed. A segment is any sub-system

of f(...) with a specific and identifiable MIDS over one or more input connections.

The output yielded by the processing of such MIDS (the segment output) is in its

turn input to another segment (with another, possibly different MIDS) which concurs

to build up f(...) as a whole. The gain of the process of segmentation lies just in

the difference between the cardinality Ci of the overall MIDS of f(...), and those

of the constituent segments, Ci,m. The MIDS of the segments are often (much)

smaller than that of f(...). Typically, the overall MIDS has a size that is given by

the Least Common Multiple of the segments’ MIDS. Therefore, when considering

(2.1), it turns out immediately that the set of tabular implementations tm(...) of the

segments is dramatically much less demanding than the (global) table t(...) of the

whole subsystem, in terms of memory resources.

Considering the extreme variety of architectures and functions of the signal process-

ing algorithms in an SDR terminal, trying to find an optimal segmentation/aggregation

configuration is very hard. We can just say that the best algorithm segmentation is

the one providing the smallest granularity of input spaces of the obtained sub blocks.

This is true because the smaller the granularity is, the closer the RTAR will manage

to bring the total memory occupancy of the MA-ed SDR to the memory capacity of

the computing platform M . Broadly speaking, the more sub-blocks Nsb algorithm

segmentation obtains from the given block, the better algorithm segmentation was

performed.

To sum up, the joint action of algorithm segmentation and RTAR (i.e., the gist of

the MA concept) is to i) decompose the given SDR system down to the finest possible

level of computational granularity; ii) generate a re-implementation which uses the

available memory resources in order to perform as much computation as possible by

means of memory look-ups, and iii) do it with the smallest possible computational

cost of memory management.
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2.2 Application and performance metrics of MA

2.2.1 MA compatibility with different acceleration techniques

All performance results that will be presented in section 2.3 were obtained by applying

MA alone, i.e. by making use of no other performance enhancement technique such as

low level (Assembler) programming or code parallelization. Still, such implementation

techniques are fully compatible with MA. Compatibility with low level programming

is trivial and does not deserve any discussion. For parallel implementation instead,

a possible issue lies in the concurrent access to a certain memory area from multiple

computing cores. This may call for some form of collision control and consequent

performance bottlenecks. Such problem can be substantially mitigated through the

“cache friendliness” approach that we mentioned above. Multicore/multiprocessor

GPP-based platforms often feature cache memories which are dedicated to each single

core as depicted in figure 2.8. Such memories are independently accessed by each of

the cores, so that the probability of collision events is zero. Collisions may instead

happen when loading the required memory table (or table portion) from the external

Random Access Memory (RAM) into the core-dedicated caches as shown in figure 2.8.

Appropriate use of a cache-friendly table structure will make these fetches extremely

sporadic. Should access contention happen at the RAM-level, it would be rare enough

not to degrade system performance. Practical proof of this is provided in [24].

2.2.2 Performance evaluation

To quantify the performance in terms of processing speed-up of the MA technique,

we define the acceleration efficiency for any functional block f(...) as

η =

∑Nsb−1

n=0
Wn −

∑Nt−1

m=0
Ωm

∑Nt−1

m=0
Mm

(2.2)

where Nsb is the number of the sub-blocks fn(...) obtained after algorithm segmenta-

tion which are implemented in tabular form, and Nt is the number of tables that will

be used to produce such an implementation as resulting from the application of RTAR.

In other words, the acceleration efficiency η is the ratio between the computational

effort being saved by means of the resulting memory-based implementations (reduced

by the amount of computational work needed for table management) and the total
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Figure 2.8: Multiple processing cores, their dedicated caches and table loading from RAM

to the core-dedicated cache

memory footprint being required. A negative value for η indicates that the chosen MA

design will reduce system performance. Once the acceleration process is completed,

it is possible to calculate the obtained acceleration factor a as

a =
Wr +

∑Nsb−1

n=0
Wn

Wr +
∑Nt−1

m=0
Ωm

=
1 +

∑Nsb−1

n=0
Wn/Wr

1 +
∑Nt−1

m=0
Ωm/Wr

(2.3)

where Wr accounts for the total computational cost of the remaining blocks which

where not implemented in memory.

As previously stated, different algorithms offer different opportunities for segmen-

tation. The consequence of this statement is that it is very difficult to give an upper

bound for a. Still, a naive and probably loose upper bound for a can be found

assuming that the whole radio can be memory-accelerated. In such condition we get

amax =

∑Nsb−1

n=0
Wn

∑Nt−1

m=0
Ωm

≤

∑Nsb−1

n=0
Wn

∑Nt−1

m=0
[Lm + (im − 1)(x + σ)]

(2.4)

where Nsb is now the total number of computational blocks within the segmented

system, Lm is the access latency for each table (that depends on the table size and on

the chosen implementation platform), im is the number of inputs to each table, x is the

computational cost for one multiplication by a constant, and σ is the computational
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cost of one sum with a variable. All such quantities, including Lm, can be expressed

in terms of number of equivalent elementary operations, or of required CPU time.

The term (im − 1)(x + σ) is a lower bound for Ωm that only considers the simplest

elementary computation of the memory address.

2.3 A case study: the DVB-T Viterbi decoder

2.3.1 MA design for the Viterbi decoder

We wish to describe in this section the results we obtained by applying the MA

technique to a fully software, GPP-based implementation of a an ETSI DVB-T [22]

receiver called SR-DVB [25], [26], which will be instead described as a whole in section

3.4. Our starting point was an optimized C/C++ source code with no parallelism,

developed in-house with a conventional computation-dominated approach. In such

reference implementation, the demodulator turned out to run on a set of pre-recorded

input signal samples roughly 10 times slower than the real time. R-DVB included all of

the ETSI DVB-T demodulation functions (except synchronization and equalization),

starting form a stream of previously synchronized and equalized baseband I-Q samples

acquired from a standard broadcasting band, and delivering the demodulated MPEG

Transport Stream (TS). Our GPP test and reference platform is just a run-of-the-mill

Intel quad core Q9400 CPU clocked at 2.66 GHz, our software does not make any use

of parallelization: all code is single threaded and only one of the four cores available

on the platform is actually used.

We set forth to apply MA and see if an acceleration factor of at least 10 could

be gained, thus allowing for real-time processing of a DVB channel. An all-memory

implementation of the entire ETSI DVB-T demodulator as a single memory table

(i.e. by applying no RTAR cycle) was of course not feasible. Therefore, we profiled

the computational cost of the conventional demodulation chain on a block-by-block

basis (akin to what appears in Fig. 2.3), thus performing what we called the 0-step of

algorithm segmentation. It was immediately clear that the K=7 Viterbi Decoder (VD)

[27] included in the demodulation chain [22] was by far the heaviest block of the system

(followed at a large distance by time/frequency signal synchronization and FFT-

based OFDM demodulation) accounting for about 80% of the CPU effort. According

to RTAR, the VD was therefore meant to be the first block to undergo memory
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acceleration. Such activity produced a Memory Accelerated, novel implementation of

the VD itself (the MA-VD, to be further detailed in the following) that relies almost

entirely upon memory resources. The MA-VD, together with the subsequent MA

implementation of the signal synchronization functions described in section 2.4, was

the enabling factor to to obtain a real-time, fully software ETSI DVB-T receiver on

a low budget off-the-shelf GPP [24].

After identifying the VD as the most computation-intensive block, we started ap-

plying our technique of segmentation and aggregation as in 2.1.4. A classical decom-

position of the VD is shown in figure 2.9 where all of the functions are meant to be

implemented through pure computation. The blocks of such decomposition implement

four different functions [28]: i) Add-Compare-Select (ACS), ii) refresh of the survivors

(the memories of the tentative decoded bits for each state of the decoder), iii) update

of the accumulated metrics (weights) for each of the survivors, and iv) selection of the

likeliest (smallest metric), associated with corresponding output of the decoded bit

after a certain decoding latency (depth). After such a coarse-grain segmentation,

the input space cardinalities Cin
were still far too large to fit into the available

memory. We iterated RTAR until segmentation produced the much finer-grained

implementation of figure 2.10, with convenient table boundaries. The constituent

sub-blocks then were:

• Branch Metrics Computer (BMC)

• Sum of branch metrics to the accumulated metrics (ADD)

• Accumulated metrics comparison and selection (C & S)

• Storage and update of accumulated metrics (AMM)

• Storage and update of survivors (SM)

The sub-blocks come in number of 64 since the decoder has 64 internal states corre-

sponding to the number of states of the DVB-T convolutional channel encoder. We

finally were awarded with candidate tables having reasonable and practical Ci. RTAR

was then ready to start re-aggregation of the segmented system into larger tables

intended for direct memory implementation. The configuration we attained at, after a

number of further RTAR cycles is shown in figure 2.11, where the distinction between

memory-only (space, t(...)) and computation-only (time, f(...)) implementation is
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clearly shown. In such implementation, the ACS function for as many as 4 states

is lumped into a single memory look up. Another memory table implements the

selection of the likeliest state, while update of decoded bit memories and of current

metrics for all states is still being performed through pure computation by the f(...)1

and f(...)2 blocks respectively. This arrangement is the result of a judicious allocation

of memory and computational resources, and the degree of its optimality depends on

the particular computing platform that we assumed. More time blocks could have

been implemented as space blocks with a somewhat more ”extreme” exploitation of

available memory (that we did not want to pursue).

The final result of MA design is that the computational cost required to perform

the single memory look-up is by far smaller than the sum of all elementary operations

that would be needed in order to derive in a computation-dominated (i.e. time-

dominated) fashion the required result. For this reason we may also claim that

the described approach is also power-saving, and reduces the power efficiency gap

between SW and HW implementations of the radio terminal, without losing anything

in reconfigurability and flexibility of the system. This comes of course at the cost of

larger memory occupancy.

Figure 2.9: Classical functional block decomposition of the Viterbi Decoder. All displayed

functional blocks are implemented through pure computation

On the reference platform described in section 2.3, the processing (decoding) of a

fixed amount of data (namely 631, 701, 504 bits), by the standard C/C++ computation-

dominated implementation of the DVB-T VD took about 66.56 seconds, thus yielding

a computational requirement of 101.31 nanoseconds per decoded bit. The MA imple-

mentation above takes on the contrary 6.35 seconds (10.05 nanoseconds per decoded

bit), for a resulting acceleration factor aMA−V D = 10.4. The total memory occupancy
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of the memory-accelerated implementation is 50.0 MiB which, by today’s standards, is

negligible on a GPP-based platform. Residual, non memory-accelerated computation

is responsible for a computation time of 0.5 seconds, while decoding the same amount

of data mentioned above, resulting in a computational load of 0.79 nanoseconds per

decoded bit. Such figure is indeed a good estimate of what we called Wr in 2.4.

The sum of table-management computational costs Ωm associated with all the tables

implementing the VD is therefore 5.85 seconds, equivalent to 9.26 nanoseconds per

decoded bit. The acceleration efficiency η for our implementation2 turns out to be

ηMA−V D =
101.31 − 0.79 − 9.26

50
= 1.82 [

nanosec/decoded bit

MiB
] (2.5)

The benchmark CPU exhibiting such acceleration result has a 6M cache size. Tests

with smaller CPUs featuring smaller caches (3M, 2M, 1M, 512K) exhibited quasi-

linear scaling of the total CPU time required by the MA implementation with the

cache size, suggesting an extremely strong dominance of cache size over clock fre-

quency. Considering the nature of the MA technique, such dominance was expected

(indeed it was aimed-for), still, the quasi-linear behaviour was pretty surprising.

It is not possible instead to provide an estimate for amax as such maximization is

directly dependent on the optimality of algorithm segmentation for the considered

algorithm. Optimality of algorithm segmentation for a given DSP algorithm is in fact

still an open research issue at the time of writing.

2.4 Other memory-accelerated algorithms

In the last part of this chapter, some results obtained while applying MA to other

algorithms are worth to be mentioned as well. Within the synchronization section of

the SR-DVB receiver, a carrier frequency fractional (i.e. expressed as a fraction of

OFDM subcarrier spacing) offset corrector, which used to be implemented by means of

pure calculus, was accelerated by a factor 46.3 after undergoing MA. In short, within

this very basic MA application, a single, computationally-implemented, oscillator

generating any complex tone that could be required to compensate the estimated frac-

tional offset is algorithm-segmented down to a set of oscillators capable of generating

2The presented performance results were obtained by running the algorithm under Linux Fedora

10 and compiling the source code with the g++ compiler, version 4.3.2− 7
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only a single frequency. Generated complex tones are spectrally spaced by two times

the standard deviation of the fractional frequency offset estimator, thus, the oscillator

set is kept finite and small. Each of such sub-blocks (sub-oscillators) is implemented

by means of a memory table, therefore obtaining full memory implementation of the

fractional frequency offset corrector block as shown in figure 2.12.

We believe that this example, although very simple and providing very little or no

innovation wrt current common practice, suggests a different and much more general

way to think of Look-Up Tables (LUTs) in SDR implementation. Such generality,

as described in section 2.1, can be extremely useful when it comes to use memory in

order to speed up much more complicated algorithms.

As discussed above, functional blocks inherently working on large amounts of data

(i.e. featuring big MIDS) require well-designed segmentation in order to be conve-

niently accelerated. When such blocks do perform very basic operations on such

broad data sets, they are difficult to segment. Still, it was possible to obtain quite

a significant memory-acceleration of a computationally heavy algorithm presenting

such challenges, namely the OFDM time and frequency offset estimator described

by van de Beek, Sandell and Borjesson in [29]. Memory-accelerated implementations

obtained so far provided acceleration factors as big as 11.996 which are expected to

grow by means of further development and will be described in future MA-related

works. Reference HW/SW platform for this implementation is the same as described

above.

We believe that acceleration factors of about one order of magnitude in terms of

computational efficiency obtained by applying MA to the two highly diverse signal

processing algorithms described above (namely an hard-valued Viterbi decoder and a

soft-valued, correlator-based OFDM synchronizer), already suggest the generality of

MA approach as well as its applicability to an extremely wide variety of radio signal

processing algorithms.

For such a reason, we propose MA as an implementation technique for radio signal

processing within SDR systems which can provide substantial boost to their perfor-

mances and therefore move SDR technologies much closer to market segments they

are currently excluded from, because of their poor energy efficiency.

An issue to be discussed for memory-dominated SDRs is the initialization process.

Whenever the terminal has to be (re-)configured, the memory tables in the space-

implemented blocks have to be (re-)initialized. This can be done by i) bootstrapping
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their contents from a local pre-programmed ROM, ii) running once and for ever

the computation-only version of the same block on all of the possible values of the

input space, or iii) getting the contents via another available communications link

from a remote table. Each approach has pros and cons: i) is very fast but increases

the memory resources demand on the platform; ii) may be slow since exhaustive

calculation of all entries in the memory may take a lot of computing time; iii) does not

require any additional computation/memory resource, but is subject to the availability

of a live communication link. This by no means diminishes flexibility of the MA SDR,

but is something that nonetheless has to be considered.
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Figure 2.10: Computation-only implementation of our Viterbi decoder, right after under-

going algorithm segmentation. f(...) indicates a purely computational implementation
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Figure 2.11: Memory-accelerated Viterbi decoder as returned by RTAR. f(...) indicates a

purely computational implementation, t(...) a memory table
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Figure 2.12: A very basic MA application: segmentation of a computationally-implemented

local oscillator a), into a finite set of tabled complex oscillations b)
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MA application to real-world

systems

As a proof of concept of the MA SDR programming technique we provide a description

of software defined radios which were developed and implemented according to the

MA rule, along the MA development and research path.

All such implementations have close relations to the ETSI DVB family of radio

communication standards. This choice was dictated by the need to test MA concepts

and strategies against real-world SDR implementations of radio systems which had to

be both state-of-the-art (i.e. feature the most modern FEC systems and modulations)

and as purely physical layer as possible, in order to minimize all possible uncertain-

ties and interference in performance assessment that could possibly be yielded by

interaction with upper layer protocols.

3.1 The ETSI DVB-T transmission standard, some

PHY-layer notes

Digital video broadcasting (DVB), in its terrestrial version (DVB-T), is currently

the most widely deployed system for delivering standard and high definition video

content to digital TV users worldwide. Although born as a European initiative,

with the standardization process led by the European Telecommunications Standards

Institute (ETSI) [22], DVB-T is today already deployed or adopted in more than 70

countries [30].

The main reasons for the almost worldwide application of ETSI DVB-T lie in the
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Figure 3.1: Functional block scheme for the standard ETSI DVB-T transmitter [22].

high spectral efficiency and in the robust multipath resistance due to the Orthogonal

Frequency Division Multiplexing (OFDM) modulation technique.

The ETSI DVB-T system allows one baseband motion picture expert group-2 (MPEG2)

transport stream (TS) to be transmitted over the air. (Optionally, two TSs can

be combined through the use of hierarchical modulation techniques.) Each TS is

designed to carry multiple audio/video and/or data channels. Distribution over single

frequency networks (SFNs) is also supported.

3.1.1 Analysis of ETSI DVB-T functional blocks

In this subsection we will briefly analyze the structure of the functional blocks that

adapt the baseband MPEG2 signal to the typical multipath radio frequency channel,

as described in [22].

Only the transmitter device will be considered, as receive chain blocks are mainly

symmetrical to the transmitting ones.

Fig. 3.1 shows the functional block diagram of a DVB-T modulator. Each function

block is shortly described as follows:

• the multiplex adaptation for energy dispersal (MAED) is the first block of the

system, thus it receives the baseband MPEG2 input stream organized in fixed

length packets. It then removes time domain correlation from its byte-wise input

by performing a bit-level XOR with a pseudo-random binary sequence (PRBS).

The proper PRBS is generated via a linear feedback shift register (LFSR) by

the generator polynomial:
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p(x) = 1 + x14 + x15 (3.1)

The initialization of both scrambler and descrambler is bound to the MPEG2

SYNC byte.

• the outer encoder performs Reed-Solomon (RS) encoding at byte level and in

systematic form. The chosen code is an RS(204,188), obtained by shortening

an RS(255,239). The main purpose of the RS code is to mitigate the impact of

the error bursts produced at the receiver side by the Viterbi algorithm. Such

RS code is capable of correcting up to 8 random erroneous bytes in a received

RS word that is 204 bytes long.

The GF (28) Galois Field the code operates within is generated by the following

field generator polinomial:

p(x) = x8 + x4 + x3 + x2 + 1 (3.2)

The code is instead generated by:

g(x) = (x + λ0)(x + λ1)(x + λ2)...(x + λ15), λ = 02HEX (3.3)

• the outer interleaver aims to minimize time correlation between the residual

errors at decoding time, it is implemented by a convolutional interleaver based

on the Forney approach.

The interleaved data bytes are composed of error protected packets and delim-

ited by inverted or non inverted MPEG2 sync bytes;

• the inner encoder performs convolutional encoding and puncturing to achieve

quasi-error-free (QEF) transmission.

The mother convolutional code, running at a coding rate r = 1/2 has generators:

G1 = 171OCT and G2 = 133OCT ;

• the inner interleaver provides support for hierarchical modulation and fairness

in assigning the payload bits to the OFDM carriers, i.e., it prevents certain bits

from the original TS from being constantly assigned to the same set of OFDM

carriers with unsatisfactory signal-to-noise ratio (SNR). It is made up of two

different interleavers, named ”bit-wise interleaver” and ”symbol interleaver”,

each driven by different permutation laws and working on different data blocks;
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• the mapper modulates the encoded bits onto QPSK, 16-QAM, and 64-QAM

constellations. Both non-hierarchical and hierarchical modulations are sup-

ported, thus allowing two different TSs with different error performance to be

transmitted simultaneously;

• frame adaptation (FA) provides insertion of all needed reference signals: pilot

carriers, used for synchronization and channel estimation, and carriers convey-

ing information upon the transmission parameters being implemented. This

operation is called transmission parameter signaling (TPS);

• the OFDM modulation block adds virtual carriers, reference signals and per-

forms an inverse fast Fourier transform (IFFT) with 2048 (2k) or 8192 (8k)

subcarriers.;

• guard interval insertion inserts the guard interval (cyclic prefix) required by the

duration of the channel impulse response.

• the digital-to-analog (D/A) conversion interpolates the samples, thus producing

an analog signal;

• the RF front-end shifts the basesband I/Q analog signal to the proper carrier

frequency of the desired TV channel.

3.2 Soft-DVB, a software defined DVB-T modula-

tor

First obtained by applying basic space-time trade-off concepts, Soft-DVB is a fully

software, real-time, ETSI DVB-T modulator which later, through full application

of the MA design rules, reached Ultra Low Voltage (ULV) processor compatible

computational performance. It implements either a 7 or an 8-MHz DVB-T channel

with non-hierarchical 16-QAM mapping, convolutional coding rate 2/3 and OFDM

guard interval 1/4. As stated in [22], this yields a useful bitrate for our transmission

of 11.612Mb/s. The spectrum of the output OFDM digital signal is presented in Fig.

3.2. As can easily be verified, its shape is consistent with typical spectra of OFDM

transmission schemes.
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Figure 3.2: Spectrum of the digital signal at the output of the Soft-DVB SDR

Experimental tests have been performed using several different receivers including:

i) some off-the-shelf digital TV set-top-boxes and ii) several typical USB-pen DVB-T

receivers. The output of one of the used test receivers (namely the Access Media STB

L3012) is shown in Figure 3.3. All receivers can easily and quickly acquire the MPEG

TS synchronization byte and report a BER below 10−9.

The very first Soft-DVB version used to run in 6.8 times the amount of time required

by real-time transmission. After initial application of basic space-time trade off

concepts and some other computational improvements, the Soft-DVB SDR became

capable of running in real-time on a 3.0-GHz Intel R© Pentium IV processor, draining

83% of its computational power [31].

We later considered that managing to run a fully standard DVB-T modulator over a

2.5W Thermal Design Power (TDP) embedded CPU would provide good proof for our

MA concept within an embedded context as well as constitute a nice and useful piece

of SDR equipment. In fact, such a system would enable to quickly set-up an extremely

agile and cheap DVB-T broadcasting station using only off-the shelf hardware. An

architecture was thus set-up as in figure 3.4 in which all baseband computation is

performed over an Intel Atom N270 CPU, located on-board a GMB-N270 Mini-ITX



i

i

“main” — 2012/4/26 — 21:45 — page 44 — #64
i

i

i

i

i

i

44 MA application to real-world systems

Figure 3.3: Output of the Access Media STB1230 test receiver fed by the Soft-DVB trans-

mitted signal
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Figure 3.4: Soft-DVB SDR over the Atom embedded-class CPU. Development setup

embedded board equipped with 1 GB DDR2 RAM [32]. Baseband signal samples

travel along an USB 2.0 bus to the GNURadio project [6] USRP where they are

interpolated, converted into the analogue domain, frequency-shifted to the desired

DVB-T channel and suitably amplified.

Initially, transmission and reception tests could only be run in virtual time as long

as, before extensively applying MA, the fully loaded Atom N270 CPU was 6.3 times

slower than the real-time. Recursive application of RTAR to the full modulator

chain identified the IFFT, the convolutional encoder, the OFDM framing, the inner

interleaver and the outer FEC encoder (Reed-Solomon encoder) as the heaviest blocks

in decreasing order of computational weight. It was decided to skip the IFFT block as

long as it was implemented since the beginning by using the FFTW library [33] which

is itself very efficient and because research on an MA-optimized FFT algorithm, due

to its importance, is considered a separate, stand-alone research effort. Proceeding

in applying RTAR to the remainder of the chain allowed for memory-implementation

of the computationally heaviest blocks in the order mentioned above. After applying

MA, the target ETSI DVB-T modulator got capable of running on the chosen ATOM

N270 CPU in real-time, while absorbing only about 60% of its total computing

capabilities. Overall memory footprint of the MA-implemented system is 342 MiB.

Such two quantities are shown in figure 3.5 as they were measured by the Linux Table

of Processes (TOP) utility during program execution.

It is worth to mention that RTAR wasn’t halted on either of the exit conditions

described in 2.1.4 (i.e. on exhaustion of memory resources or on having memory-

accelerated the entire chain) but its application was simply stopped when the per-
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Figure 3.5: Soft-DVB SDR over the Atom embedded-class CPU. Performance Figures.

Total CPU absorption is about 60%. Note that, in the representation adopted by the Table of

Processes (TOP), Unix utility, full CPU occupancy for a CPU featuring Intel HyperThreading

technology (virtually dual-core) as the Intel Atom N270 is marked as 200% usage
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Figure 3.6: Classical MFN Vs SFN configuration. Courtesy of Enensys

formance of the accelerated chain was considered significant, that is after achieving

real-time with a robust safety margin. Further (most likely marginal) improvement is

therefore possible by proceeding in applying RTAR. Moreover, as long as the non-MA

implementation of the FFT is currently by far the computationally-heaviest block of

the modulator, a substantial performance boost is expected when the MA-FFT block

(under development at the time of writing) will be moved to the chain. This result

was live-demoed within GLOBECOM 2010 demo session, held at IEEE GLOBECOM

2010 international communications conference in Miami, FL, USA.

3.3 Soft-SFN, a software-defined Single Frequency

Network

Latency issues as described in section are among the most critical aspects that should

be taken into account when it comes to implementing a full-software, GPP-based SDR.

A rather challenging implementation wrt signal synchronization and latency, which

naturally arises from choosing the DVB family of standards as a testing field for

SDR and MA technology, is the classical DVB-T Single Frequency Network (SFN).

SFN, indeed a typical operating mode for today’s DVB-T networks, is a particular

broadcasting configuration in which all transmitters share the same frequency without

destroying each other’s signal, therefore dramatically increasing the network’s spectral

efficiency wrt Multiple Frequency Networks (MFNs), as depicted in figure 3.6.

This is possible by exploiting the multipath resistance which is inherent to the

OFDM modulation, as long as, under certain conditions, the potentially interfering
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signal originated by a secondary transmitter can be considered equivalent to an echo of

the main transmitter’s signal and thus turned into an useful information source. The

required conditions for this to happen are that the SFN’s transmitters are precisely

aligned in phase, frequency and time. Particularly, the mutual timing offset at the

receiver side must be significantly smaller than the guard interval duration of the

transmitted signal, which, in Soft-DVB transmission mode, is set at 64µs. As long as

GPP systems involve, by their own nature, a lot of latency issues for the reasons which

were described in section , suitability of GPP-based SDR for applications involving

SFNs or similar, highly synchronization-critical architectures might be seriously ques-

tioned. On the other hand, obtaining extremely flexible and cheap modulators based

on embedded-grade GPPs that are also SFN-capable could be an extremely interesting

possibility in a wide variety of application scenarios. We therefore decided to attempt

a full-software SDR SFN implementation and started by assessing the latency imposed

by a standard Linux kernel over a commodity PC upon a synchronization signal being

distributed via Internet Protocol (IP) over Ethernet, which we found to be safely

compatible with practical DVB-T guard intervals. IP over Ethernet was chosen as

the means to distribute the timing synchronization among the transmitters due to

the extreme cost-efficiency that results from being able to time-synchronize and feed

a small-scale SFN with broadcast content without having to use a dedicated satellite

downlink or Synchronous Digital Hierarchy (SDH) transport network (as in current

implementations).

After setting-up the two-transmitters architecture shown in figure 3.7, we found

that our test-bench SFN worked steadily with mobile, hand-held receivers always

accepting and correctly demodulating its signal even while they were being rapidly

moved throughout the lab room, flooded with signal from both broadcasting nodes.

A video clip of the experiment is available online at [34]. We believe this result

demonstrates the feasibility of full-software OFDM single frequency networks. Also,

as long as both timing and broadcast content are distributed through an IP over

Ethernet architecture, this low-cost, alternative distribution system for content and

timing synchronization is validated as well. This distribution strategy is expected to

be both practical and highly competitive for small, localized SFNs.
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Figure 3.7: Soft-SFN test setup architecture

Figure 3.8: Soft-SFN test setup. A still from the demonstration video, available online at

http://www.youtube.com/watch?v=mQ6YorV4VKE
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3.4 SR-DVB, a software defined DVB-T demodula-

tor

SR-DVB is a proof-of-concept, fully-software receiver for OFDM, ETSI DVB-T sig-

nals which aims to demonstrate effectiveness of the MA technique not just on the

transmitting side but also on the receiving chain. All baseband receiver functions are

implemented through MA-accelerated C++ code that was developed from scratch

at the University of Pisa, Digital Signal Processing for Communication Laboratory

(DSPCoLa) within the research work described in this thesis. The receiver can be seen

as the result of the concatenation of two signal processing chains: the synchronization

and channel estimation/equalization chain and the channel decoding subsystem, de-

veloped in [26] and [25] respectively. Implementation quality of the synchronization

and channel estimation/equalization blocks has major impact over the sensitivity

and the goodness of the receiver. Blocks within channel decoding subsystem, which

account for the majority of the computational cost, implement functions ranging from

frame adaptation to TS extraction.

As all other the other implementations being described within this thesis, SR-DVB

demodulator lives within an SDR framework called newRADIO [35]. Such framework

is conceived in order to remove from the actual radio any level of abstraction which is

not strictly necessary. The rationale behind this choice is that the complexity within

an SDR is always much more computational than logical. Therefore, the switch from

an HW implementation to a SW one, though obtained by means of a very basic object

abstraction level, provides enough generality and flexibility to the entire SDR system.

Development effort is instead needed in minimizing computational overhead as well

as in finding practical ways to relieve computing cores from their huge burden in any

possible way.

Each functional block of SR-DVB, except the FFT block which is based on FFTW

[33], was implemented from scratch in order to have full control of available system

resources and to reach, by means of MA application, real-time performance. Within

SR-DVB architecture, signal captured by the antenna (its spectrum is visible in figure

3.2) is sent via a 50 Ω coaxial cable to the USRP front-end and then (after undergoing

just baseband conversion and sampling) via USB 2.0 to the host PC, a system based

on the Intel Q9400 CPU (2.66 GHz). SR-DVB was tested and validated by receiving

the Soft-DVB 11.612 Mbps signal which it proved able to correctly demodulate in
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real-time while absorbing less than 50% of computational resources available aboard

the host PC. Figure 3.9 shows a screenshot of one of the received channels, whereas

3.10 shows statistics and content analysis relating to the entire demodulated MPEG

Transport Stream.

Figure 3.9: Output of the mplayer Linux media player being fed by the MPEG TS received

with SR-DVB.

3.5 Second generation DVB systems, improvements

and evolutions

In 2006, just two years after the final release of the currently deployed DVB-T stan-

dard [22], work began for defining the forthcoming DVB-T2 system, which has already

reached the market in several countries, including the United Kingdom, Italy and

Sweden, and is planned to be fully rolled-out in the next few years. Actually, DVB-T2

provides a 30% increased payload capacity and supports High Definition TeleVision

(HDTV) delivery via Motion Picture Experts Group 4 (MPEG4) codecs. Physical
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Figure 3.10: Analysis of the demodulated MPEG Transport Stream

layer improvements include, but are not limited to, a much stronger (and computa-

tionally heavier) FEC made up of concatenated Bose Chaudhuri Hocquenghem (BCH)

and Low Density Parity Check (LDPC) codes, higher order constellations, rotated-

constellations mapping strategy, improved channel estimation and equalization (figure

3.11). Here is a brief description of the most relevant blocks that distinguish DVB-T2

from DVB-T.

• FEC codes probably are the most relevant innovation in DVB-T2 with respect

to its first generation counterpart. Here the concatenation of the Reed-Solomon

and convolutional codes which was derived, for DVB-T, from the deep-space

communication experience and knowledge developed in the ’70s and ’80s has

been replaced by the concatenation of BCH and LDPC codes. As in DVB-T
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the Reed Solomon code is responsible for correcting some error clusters which

might occasionally appear at the output of the Viterbi decoder 1, in DVB-

T2, the BCH completes the error protection provided by the main (LDPC)

encoding by lowering its error floor. DVB-T2 codes perform within a fraction

of a dB from the Shannon theoretical channel capacity limit, whereas DVB-T

FEC stops at about 5 dB from Shannon. This huge step forward in terms of

communication performance of the system comes, of course, at the expenses

of the computational cost both on the tx and rx sides. The LDPC code is

systematic and the encoded block length can be as much as 64800 bits.

• Constellation maps up to 256-QAM can be used due to the more robust error

protection capabilities provided by the new FEC scheme (DVB-T stops instead

at 64-QAM as the maximum constellation size option).

• Rotated Constellations are, most likely, the other big innovation introduced

into the DVB terrestrial broadcasting system by its second generation family

of standards. The rationale behind the idea, implemented in T2, of rotating

the mapper’s constellation and transmitting symbols on the quadrature channel

with a given delay with respect to the I channel is the following. In a rotated

constellation, correct recovery of even just one of the two symbol components

(either I or Q) is sufficient to unambiguously determine the transmitted constel-

lation point (this is not true for conventional constellations instead). Therefore,

if the I and Q components of a rotated constellation symbol are transmitted via

separate subcarriers, it might be possible, even if a given OFDM tone is lost

due to channel impairments of whatever kind, to still recover all the symbols

(provided that the two symbols which were affected by such loss can still rely

on the other subcarriers to be received correctly). This new DVB-T2 feature

has proved to be of great use when operating upon heavily impaired, frequency

selective channels.

• Several Pilot Subcarrier Patterns were standardized that offer options for re-

ducing the total amount of symbols used for channel.

• Possible Guard Interval Lengths do follow the same strategy

1used for convolutional codes on the rx side
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Figure 3.11: The ETSI DVB-T2 broadcasting chain. Source: wikipedia.org

• Further Transport Stream Level error protection, bandwidth saving and syn-

chronization capabilities were added by also featuring a brand-new input pre-

processing stage.

With the purpose of demonstrating MA effectiveness and suitability for the im-

plementation of high-profile, high-performance (and therefore highly computation-

hungry) transmission standards, a full-software, GPP-based real-time DVB-T2 mod-

ulator was developed by massively resorting to the MA acceleration technique, just

some weeks after the completion of the official PhD program this thesis relates to.

3.6 Soft-DVB2, a software defined DVB-T2 modu-

lator

Due to the state-of-the-art of commercial wireless transmission systems approaching

the single-user channel capacity within a few fractions of a dB, during the first two
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months following the end of the PhD program, actually by the time of finalizing this

thesis, we considered it worthwhile to test our MA approach also against emerging

and future-proof communication standards. It was for this reason that we set off for

the implementation of the ETSI DVB-T2 standard for digital TV broadcasting [36].

After about two months of intensive work we got to some results which we describe

within this section.

The DVB-T2 standard is inherently much more computationally demanding than

its first generation predecessor. This is largely, but not only, due to the much more

powerful BCH + LDPC FEC coding that was adopted by the ETSI for second

generation DVB systems. Also, the inclusion into the modulator of several additional

processing features (e.g. rotated constellations, four stages of interleaving, a whole

hierarchy of pilot symbols and information) along with lots of MPEG transport stream

pre-processing (Mode Adaptation / Stream Adaptation in the DVB-T2 speak) con-

siderably increased the computational requirement (figure 3.11). Still, by extensively

using MA concepts 2, it was possible to obtain a DVB-T2 modulator implementing

either a 7 or an 8-MHz DVB-T2 channel with 16-QAM mapping, LDPC coding rate

3/5, 2K FFT size and OFDM guard interval 1/8, yielding a total useful bitrate of

12.567911 Mbps and capable of running in real-time while loading at about 44%

an Intel E8400 3-GHz dual core CPU (figure 3.12). The output signal generated

by Soft-DVB2 was validated by transmitting it towards a SHARP TU-T2 set-top-

box, one of the very first DVB-T2 home receivers worldwide to be commercially

distributed, (figure 3.13) which was able to flawlessly demodulate it for test cycles

lasting a few hours (figure 3.14). The CPU that was used to carry out such tests is

based upon an architecture being already quite obsolete at the time of writing, the

computational load imposed by Soft-DVB2 upon a recent (both desktop and mobile

grade) Intel core-i7 processor is therefore expected to be much lower. We believe

this implementation proves that the MA SDR programming rules are also suitable

when it comes to implementing the newest, broadband and close-to-Shannon wireless

communication standards.

2which in this case were not applied upon an existing reference, calculus-only implementation to

be used as a starting point, as it had happened with previous systems, but were directly applied

starting from the the first draft of the SDR
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Figure 3.12: Soft-DVB2 SDR over the Intel E8400 CPU. Performance Figures. Total CPU

absorption is about 44%, memory occupancy about 118 MiB. Note that, in the representation

adopted by the Table of Processes (TOP) Unix utility, full CPU occupancy for a dual core

CPU as the Intel E8400 is marked as 200% usage
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Figure 3.13: The SHARP TU-T2 set-top-box used as a test receiver
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Figure 3.14: Soft-DVB2 SDR at work. Output of the SHARP TU-T2 test receiver being

fed by the Soft-DVB2 transmitted signal
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Chapter 4

MB-SDR, opportunities of a

full-memory approach

Based on the performance boost obtained by applying MA approach to our radios,

curiosity naturally arises about evaluating the possibility to take the MA concept to its

absolute limit: memory-implementation of the entire radio system, after – obviously

– suitable algorithm segmentation and table aggregation.

At this point it might be useful to discuss a little more in depth what actually

distinguishes software implementations from hardware ones to the extent that average

power efficiency gap between the two is as wide as two orders of magnitude in favour

of HW systems (with worst cases reaching three orders of magnitude). Key concept in

order to understand this huge separation is specificity. Software implementations do

rely on general purpose processors, which means that such computing systems feature

as-small-as-possible operation granularity. I.e. the simplest arithmetic operations

(sums) are serially performed a huge number of times and combined in order to

produce the required processing. This yields that a given (rather complex) operation

will require a very big number of clock cycles to be performed. On the other hand,

HW implementations consist of task-specific circuits made up of many synchronous

logic components. Thus, in a HW implementation a large number of elementary

operations will be aggregated within a single clock cycle (i.e. each time the system

clock is incremented by one, many elementary operations take place throughout the

entire system, in all of its sections), clock frequency then can be kept much lower

than what is required by SW systems in order to perform, in real-time, the amount of

computation required by a certain radio standard. This is actually where the power

efficiency gap between the two implementation classes is generated.
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In section 2.1.2 we described MA technique as a way of assisting processing-yielded

computation through the usage of memory resources. Indeed, given the above analysis

of the difference between HW and SW systems, we could even look at the MA

approach as a way of making up for the low operation granularity that characterizes

software systems and impairs them compared to their HW counterparts, when it

comes to comparing power efficiencies. I.e. as HW systems do aggregate many

operations within the same clock cycle by means of implementing several dedicated

subsystems all triggered by each and every clock edge, MA approach aggregates many

elementary operations by storing the result of their combination into a single table.

Some clock cycles will then be used in order to access the content of the table but

still, if MA was designed correctly, the amount of equivalent elementary operations

performed per single clock cycle will be greatly increased. Based on such considera-

tions, the idea of extending memory implementation to the entire radio system starts

getting attractive.

Thus, we define a Memory Based SDR (MB-SDR) as a software defined radio where

most (or all) of the computation is performed by means of suitable memory look-ups.

It might appear at a first glance that such a design choice conflicts with what stated

in section 2.1.1, where we claimed that efficient SDR implementations must use up

all resources available (calculus and memory) in order to perform their computation.

Actually, by implementing an MB-SDR, calculus resources are not left unused, they

are used (exclusively or almost exclusively) to cover the computational work [Wm]

yielded by memory management. This obviously loosens performance requirement

over computing resources and therefore mandates downsizing of the computing core

in order to have it fully loaded and obtain the required increase in power efficiency.

As a result, the role of the computing core of an MB-SDR is just to move the data

around and fetch the necessary information from the suitable memory tables while

actual computation truly happens only in memory. Considering that, with present

technology, an average computer CPU can take about 140 Watts of electrical power

while 2 GiB, Double Data Rate 2 (DDR2) RAM modules typically require 4.4 to 5

Watts, this appears to be an interesting strategy to increase power efficiency of SDRs.

It is important to note how such a power efficiency gain has absolutely no impact

upon the flexibility of the system. The flexibility and ease of reconfiguration which

are peculiar to any SDR are fully conserved by the MA approach as long as resources

used for speeding up the computation are provided by memory and not by a different



i

i

“main” — 2012/4/26 — 21:45 — page 61 — #81
i

i

i

i

i

i

61

(less flexible) computation technology, as it always happens whenever performance

boost is gained by replacing SW implementations with specialized HWs.

As long as we have defined above an MB-SDR as accommodating in memory all,

but even just most, of the computation yielded by the radio communication system,

hierarchical, computational-cost-driven memory-mapping of functional blocks remains

a necessity. RTAR is thus kept as the instrument of such prioritization while algorithm

segmentation still provides input space cardinality reduction as described for the

general case in subsection 2.1.5.
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Chapter 5

Conclusions and perspectives

Within this thesis, we introduced the notion of memory-acceleration for the functions

of an SDR terminal, and we showed that such technique can bring considerable

speedup factors in a fully-SW, GPP-based implementation. We also illustrated how

to regard MA as a technique to enhance the energy efficiency of the SDR, in that

it replaces many power-consuming CPU operations with a single memory access.

With proper segmentation and in-memory re-aggregation of signal processing algo-

rithms, MA yields a typical performance boost of one order of magnitude, mak-

ing an SDR energy- and/or computation-efficient without any impact on flexibil-

ity/reconfigurability. The acceleration factors presented in this work were obtained

with computing architectures and compilers (GNU g++) that are totally unaware

of the MA approach and therefore tend to disfavor memory access to privilege pure

computation. It is expected that applying MA on computational back-ends that take

into account memory management and access optimization results in larger acceler-

ation factors. We believe that the results that were obtained within this research

work do prove the possibility to implement state-of-the-art, “close-to-Shannon” radio

transmission systems by resorting only to general-purpose silicon, or, in other words,

by means of pure software over GPP processors. Although hardware implementations

still retain a significant advantage in terms of throughput-per-Watt, the application

of the MA programming technique shrinks the performance gap substantially. As

factually proven by the developed systems, several radio communications applications

are already within the reach of memory-accelerated full-software SDRs.
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In fact, all modern radio communication applications either

• being non highly-mobile, thus non extremely power-critical

• or involving only the transmission side

can be implemented today in pure software upon reasonable power budgets if the

MA technique is used, even if they feature data rates in the range of several tens of

Mbps. This includes, for example, vehicular communication systems, receivers and

transmitters operating upon typical set-top-box power budgets, fixed (base-station-

like) applications, point-to-point links, broadcast applications etc.

Usual, SDR-based signal integrity monitoring applications as well can take a lot of

advantage from the application of MA.

5.1 Development perspectives

Although RTAR is expressed and operates in a sufficiently algorithmic way, due to

Algorithm Segmentation still requiring a considerable amount of human contribution

to be suitably designed, the memory-acceleration of an SDR remains a task involving

human effort. An extremely relevant possibility would be instead to achieve auto-

matic implementation of both RTAR (already pretty straightforward) and algorithm

segmentation (much more complicated but surely viable, at least if segmentation

optimality is not strictly required). This development path would lead to the im-

plementation of what we might call an MA-compiler : a piece of software accepting

as an input a standard implementation of a given functional block of a certain SDR

and returning the corresponding memory-accelerated implementation of the same

block as its output. Such a system would be extremely useful for SDR research and

development as well as a quickly market-deployable tool.

5.2 Research perspectives

Considering the large variety of the processing algorithms typically encountered in ra-

dio terminals, we could not give a general criterion to perform segmentation. Finding

the optimal segmentation of classical radio signal processing algorithms that leads to

the most efficient memory acceleration might be a promising research path. Knowing
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optimal segmentation of the most widely used radio signal processing functional

blocks, besides being an interesting memory/calculus optimization problem, would

make it possible to build an extremely powerful and useful tool-box of memory-

accelerated algorithms to be assembled together when building an SDR for a given

radio application or radio-communication standard.
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