2,325 research outputs found

    LOW-COMPLEXITY LINEAR PRECODING FOR MULTI-CELL MASSIVE MIMO SYSTEMS

    No full text
    International audienceMassive MIMO (multiple-input multiple-output) has been recognized as an efficient solution to improve the spectral efficiency of future communication systems. However, in-creasing the number of antennas and users goes hand-in-hand with increasing computational complexity. In particular, the precoding design becomes involved since near-optimal pre-coding, such as regularized-zero forcing (RZF), requires the inversion of a large matrix. In our previous work [1] we proposed to solve this issue in the single-cell case by ap-proximating the matrix inverse by a truncated polynomial expansion (TPE), where the polynomial coefficients are se-lected for optimal system performance. In this paper, we generalize this technique to multi-cell scenarios. While the optimization of the RZF precoding has, thus far, not been feasible in multi-cell systems, we show that the proposed TPE precoding can be optimized to maximize the weighted max-min fairness. Using simulations, we compare the pro-posed TPE precoding with RZF and show that our scheme can achieve higher throughput using a TPE order of only 3

    Joint Power Allocation and User Association Optimization for Massive MIMO Systems

    Full text link
    This paper investigates the joint power allocation and user association problem in multi-cell Massive MIMO (multiple-input multiple-output) downlink (DL) systems. The target is to minimize the total transmit power consumption when each user is served by an optimized subset of the base stations (BSs), using non-coherent joint transmission. We first derive a lower bound on the ergodic spectral efficiency (SE), which is applicable for any channel distribution and precoding scheme. Closed-form expressions are obtained for Rayleigh fading channels with either maximum ratio transmission (MRT) or zero forcing (ZF) precoding. From these bounds, we further formulate the DL power minimization problems with fixed SE constraints for the users. These problems are proved to be solvable as linear programs, giving the optimal power allocation and BS-user association with low complexity. Furthermore, we formulate a max-min fairness problem which maximizes the worst SE among the users, and we show that it can be solved as a quasi-linear program. Simulations manifest that the proposed methods provide good SE for the users using less transmit power than in small-scale systems and the optimal user association can effectively balance the load between BSs when needed. Even though our framework allows the joint transmission from multiple BSs, there is an overwhelming probability that only one BS is associated with each user at the optimal solution.Comment: 16 pages, 12 figures, Accepted by IEEE Trans. Wireless Commu

    Linear Precoding Based on Polynomial Expansion: Large-Scale Multi-Cell MIMO Systems

    Full text link
    Large-scale MIMO systems can yield a substantial improvement in spectral efficiency for future communication systems. Due to the finer spatial resolution achieved by a huge number of antennas at the base stations, these systems have shown to be robust to inter-user interference and the use of linear precoding is asymptotically optimal. However, most precoding schemes exhibit high computational complexity as the system dimensions increase. For example, the near-optimal RZF requires the inversion of a large matrix. This motivated our companion paper, where we proposed to solve the issue in single-cell multi-user systems by approximating the matrix inverse by a truncated polynomial expansion (TPE), where the polynomial coefficients are optimized to maximize the system performance. We have shown that the proposed TPE precoding with a small number of coefficients reaches almost the performance of RZF but never exceeds it. In a realistic multi-cell scenario involving large-scale multi-user MIMO systems, the optimization of RZF precoding has thus far not been feasible. This is mainly attributed to the high complexity of the scenario and the non-linear impact of the necessary regularizing parameters. On the other hand, the scalar weights in TPE precoding give hope for possible throughput optimization. Following the same methodology as in the companion paper, we exploit random matrix theory to derive a deterministic expression for the asymptotic SINR for each user. We also provide an optimization algorithm to approximate the weights that maximize the network-wide weighted max-min fairness. The optimization weights can be used to mimic the user throughput distribution of RZF precoding. Using simulations, we compare the network throughput of the TPE precoding with that of the suboptimal RZF scheme and show that our scheme can achieve higher throughput using a TPE order of only 3
    corecore