385 research outputs found

    Design and Validation of A High-Power, High Density All Silicon Carbide Three-Level Inverter

    Get PDF
    Transportation electrification is clearly the road toward the future. Compared to internal combustion engine, the electrified vehicle has less carbon-dioxide emission, less maintenance costs and less operation costs. It also offers higher efficiency and safety margin. More importantly, it relieves human’s dependence on conventional fossil energy. In the electrification progress, the revolution of electric traction drive systems is one of the most important milestone. The traction system should keep high efficiency to avoid performance reduction. Moreover, the motor drive should be designed within limited space without sacrificing output power rating. Based on the road map from US Drive Electrical and Electronics Technical Team, US Department of Energy, a gap is still there between roadmap target and the state-of-art. To fill the gap, this dissertation performs a systematic research in motor drive system for traction inverters. This paper starts from optimal theoretical design of power converters by using loss model and real-time simulation system. Based on optimal paper design, hardware design is implemented. The component design for converter, such as the laminated busbar, are the focus in this dissertation. The optimized busbar structure can effectively reduce stray inductance in the current-commutation loop, reducing switching overshoots of power modules and increasing semiconductor reliability. The system-level design and trade-off is also analyzed and illustrated by using a 250kW three-level T-type neutral-point clamped converter. The design has reached high efficiency and high-power density. The converter system is also evaluated through comprehensive tests, such as double-pulse tests and continuous tests. The test setup, test condition and test result analysis are discussed in the dissertation. In the end, the dissertation also proposed an improved impedance characterization method for components parasitic inductance measurement in traction drive systems, such as laminated busbar, power module and capacitors. The characterization shares better accuracy and can be customized for device under test with any geometry

    Electrical Parasitics and Thermal Modeling for Optimized Layout Design of High Power SiC Modules

    Get PDF

    Design and Evaluation of High Power, High Efficiency and High Power Density Motor Drives for More Electric Aircrafts

    Get PDF
    More-electric aircraft (MEA) is an attractive concept as it can reduce carbon dioxide emission, relieve fossil-fuel consumption, improve the overall efficiency of aircraft, and reduce the operational costs. However, it poses substantial challenges in designing a high-performance motor drive system for such applications. In the report of Aircraft Technology Roadmap to 2050, the propulsion converter is required to be ultra-high efficiency, high power density, and high reliability. Though the wide band-gap devices, such as the Silicon-carbide based Metal Oxide Silicon Field Effect (SiC-MOSFET), shows better switching performance and improved high-temperature performance compared to the silicon counterparts, applying it to the MEA-related application is still challenging. The high switching speed of SiC-MOSFET reduces switching loss and enables the design of high-density converters. However, it poses intense challenges in limiting the stray inductance in the power stage. The fast switching behavior of SiC-MOSFET also challenges the design scalability by multi-chip parallel, which is essential in high-power-rating converters. Moreover, the partial discharge can happen at the lower voltage when the converter is operated at high altitude, low air-pressure conditions, which threatens the converter lifetime by the accelerated aging of the insulation system. This dissertation addresses these issues at the paper-design level, power-module level, and converter level, respectively. At the paper-design level, the proposed model-based design and optimization enables shoulder-by-shoulder performance comparison between different candidate topology and then generates optimal semiconductor design space for the selected topology. At the power-module level, this dissertation focuses on the development of an ultra-low inductance module by using a novel packaging structure that integrates the printed circuit board (PCB) with direct-bounding copper (DBC). The detailed power-loop optimization, thermal analysis, and fabrication guidance are discussed to demonstrate its performance and manufacturability. At the converter level, this dissertation provides a comprehensive design strategy to improve the performance of the laminated busbar. In the design of the busbar conduction layer, this work analyzed the impacts of each stray inductance item and then proposed a novel double-side decoupled conduction-layer structure with minimized stray inductance and improved dynamic current sharing. In the design of the insulation system of the busbar, this dissertation investigates the design strategy to ensure the busbar is free of partial discharge without sacrificing the parasitic control. Through the dissertation, a single-phase 150 kVA converter, a three-phase 450 kVA converter, and a 1.2 kV, 300 A power module are designed, fabricated, and tested to demonstrate the proposed design strategies

    Contributions to the design of power modules for electric and hybrid vehicles: trends, design aspects and simulation techniques

    Get PDF
    314 p.En la última década, la protección del medio ambiente y el uso alternativo de energías renovables están tomando mayor relevancia tanto en el ámbito social y político, como científico. El sector del transporte es uno de los principales causantes de los gases de efecto invernadero y la polución existente, contribuyendo con hasta el 27 % de las emisiones a nivel global. En este contexto desfavorable, la electrificación de los vehículos de carretera se convierte en un factor crucial. Para ello, la transición de la actual flota de vehículos de carretera debe ser progresiva forzando la investigación y desarrollo de nuevos conceptos a la hora de producir vehículos eléctricos (EV) y vehículos eléctricos híbridos (HEV) más eficientes, fiables, seguros y de menor coste. En consecuencia, para el desarrollo y mejora de los convertidores de potencia de los HEV/EV, este trabajo abarca los siguientes aspectos tecnológicos: - Arquitecturas de la etapa de conversión de potencia. Las principales topologías que pueden ser implementadas en el tren de potencia para HEV/EV son descritas y analizadas, teniendo en cuenta las alternativas que mejor se adaptan a los requisitos técnicos que demandan este tipo de aplicaciones. De dicha exposición se identifican los elementos constituyentes fundamentales de los convertidores de potencia que forman parte del tren de tracción para automoción.- Nuevos dispositivos semiconductores de potencia. Los nuevos objetivos y retos tecnológicos solo pueden lograrse mediante el uso de nuevos materiales. Los semiconductores Wide bandgap (WBG), especialmente los dispositivos electrónicos de potencia basados en nitruro de galio (GaN) y carburo de silicio (SiC), son las alternativas más prometedoras al silicio (Si) debido a las mejores prestaciones que poseen dichos materiales, lo que permite mejorar la conductividad térmica, aumentar las frecuencias de conmutación y reducir las pérdidas.- Análisis de técnicas de rutado, conexionado y ensamblado de módulos de potencia. Los módulos de potencia fabricados con dies en lugar de dispositivos discretos son la opción preferida por los fabricantes para lograr las especificaciones indicadas por la industria de la automoción. Teniendo en cuenta los estrictos requisitos de eficiencia, fiabilidad y coste es necesario revisar y plantear nuevos layouts de las etapas de conversión de potencia, así como esquemas y técnicas de paralelización de los circuitos, centrándose en las tecnologías disponibles.Teniendo en cuenta dichos aspectos, la presente investigación evalúa las alternativas de semiconductores de potencia que pueden ser implementadas en aplicaciones HEV/EV, así como su conexionado para la obtención de las densidades de potencia requeridas, centrándose en la técnica de paralelización de semiconductores. Debido a la falta de información tanto científica como comercial e industrial sobre dicha técnica, una de las principales contribuciones del presente trabajo ha sido la propuesta y verificación de una serie de criterios de diseño para el diseño de módulos de potencia. Finalmente, los resultados que se han extraído de los circuitos de potencia propuestos demuestran la utilidad de dichos criterios de diseño, obteniendo circuitos con bajas impedancias parásitas y equilibrados eléctrica y térmicamente. A nivel industrial, el conocimiento expuesto en la presente tesis permite reducir los tiempos de diseño a la hora de obtener prototipos de ciertas garantías, permitiendo comenzar la fase de prototipado habiéndose realizado comprobaciones eléctricas y térmicas

    Demonstration of High Power Density kW Converters utilizing Wide-Band Gap Devices

    Get PDF

    The role of power device technology in the electric vehicle powertrain

    Get PDF
    In the automotive industry, the design and implementation of power converters and especially inverters, are at a turning point. Silicon (Si) IGBTs are at present the most widely used power semiconductors in most commercial vehicles. However, this trend is beginning to change with the appearance of wide-bandgap (WBG) devices, particularly silicon carbide (SiC) and gallium nitride (GaN). It is therefore advisable to review their main features and advantages, to update the degree of their market penetration, and to identify the most commonly used alternatives in automotive inverters. In this paper, the aim is therefore to summarize the most relevant characteristics of power inverters, reviewing and providing a global overview of the most outstanding aspects (packages, semiconductor internal structure, stack-ups, thermal considerations, etc.) of Si, SiC, and GaN power semiconductor technologies, and the degree of their use in electric vehicle powertrains. In addition, the paper also points out the trends that semiconductor technology and next-generation inverters will be likely to follow, especially when future prospects point to the use of “800 V" battery systems and increased switching frequencies. The internal structure and the characteristics of the power modules are disaggregated, highlighting their thermal and electrical characteristics. In addition, aspects relating to reliability are considered, at both the discrete device and power module level, as well as more general issues that involve the entire propulsion system, such as common-mode voltage.This work has been supported in part by the Government of the Basque Country through the fund for research groups of the Basque University System IT1440-22 and the Ministerio de Ciencia e Innovación of Spain as part of project PID2020-115126RB-I00 and FEDER funds. Finally, the collaboration of Yole Développement (Yole) is appreciated for providing updated data on its resources

    High Efficiency Reversible Fuel Cell Power Converter

    Get PDF

    Design of a 350 kW Silicon Carbide Based 3-phase Inverter with Ultra-Low Parasitic Inductance

    Get PDF
    The objective of this thesis is to present a design for a low parasitic inductance, high power density 3-phase inverter using silicon-carbide power modules for traction application in the electric vehicles with a power rating of 350 kW. With the market share of electric vehicles continuing to grow, there is a great opportunity for wide bandgap semiconductors such as silicon carbide (SiC) to improve the efficiency and size of the motor drives in these applications. In order to accomplish this goal, careful design and selection of each component in the system for optimum performance from an electrical, mechanical, and thermal standpoint. At each level from top to bottom the inverter sub-assembly performance will be characterized including DC link inductance, power module switching losses, and inverter efficiency. The core power electronics will be built around the latest generation of 1200 V half-bridge SiC power modules with an ultra-low inductance dc bus capacitor and laminated bussing, fast switching speed and very low loss. A custom controller and gate drivers are designed capable of driving the power electronics at high switching speed without disturbance from high dv/dt noise. Finally, the inverter is packaged into a complete system and tested under various conditions with a 3-phase inductive load simulating a motor load. The test results presented include output power and efficiency at various bus voltages, currents, and switching frequencies

    FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Full text link
    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015
    • …
    corecore