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ABSTRACT 

Transportation electrification is clearly the road toward the future. Compared to internal 

combustion engine, the electrified vehicle has less carbon-dioxide emission, less maintenance 

costs and less operation costs. It also offers higher efficiency and safety margin. More importantly, 

it relieves human’s dependence on conventional fossil energy. In the electrification progress, the 

revolution of electric traction drive systems is one of the most important milestone. The traction 

system should keep high efficiency to avoid performance reduction. Moreover, the motor drive 

should be designed within limited space without sacrificing output power rating.  Based on the 

road map from US Drive Electrical and Electronics Technical Team, US Department of Energy, a 

gap is still there between roadmap target and the state-of-art. To fill the gap, this dissertation 

performs a systematic research in motor drive system for traction inverters.  This paper starts from 

optimal theoretical design of power converters by using loss model and real-time simulation 

system. Based on optimal paper design, hardware design is implemented. The component design 

for converter, such as the laminated busbar, are the focus in this dissertation. The optimized busbar 

structure can effectively reduce stray inductance in the current-commutation loop, reducing 

switching overshoots of power modules and increasing semiconductor reliability. The system-

level design and trade-off is also analyzed and illustrated by using a 250kW three-level T-type 

neutral-point clamped converter. The design has reached high efficiency and high-power density. 

The converter system is also evaluated through comprehensive tests, such as double-pulse tests 

and continuous tests. The test setup, test condition and test result analysis are discussed in the 

dissertation.  In the end, the dissertation also proposed an improved impedance characterization 

method for components parasitic inductance measurement in traction drive systems, such as 



 

 

laminated busbar, power module and capacitors. The characterization shares better accuracy and 

can be customized for device under test with any geometry.   
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1 

CHAPTER 1 

INTRODUCTION  

1.1 Motivation and challenges 

Transportation electrification has been a trend for many years. The electrified vehicle offers 

great benefits compared to the conventional internal combustion engine (ICE) including less 

carbon-dioxide emission, less dependents on fossil energies, less operation costs, less maintenance, 

higher safety rating and better efficiency. The recent breakthrough battery technologies further 

making the high-performance and heavy-duty electrified vehicles possible.  

Nevertheless, the electric traction drive systems (ETDS) could be a bottleneck.  With the 

limited vehicle space, the power electronics motor drive should have high power density to deliver 

sufficient energy at limited time. Besides, ETDS are required to maintain high efficiency in various 

operation conditions to keep long mileage.   

Accordingly, the office of efficiency and renewable energy, department of energy (DOE) has 

proposed US Drive Electrical and Electronics Technical Team (EETT) Roadmap [1], which 

proposed design targets of ETDS in 2025, as seen table 1-1. A power density over 33kW/L and 

88% volume reduction is required. 

It is seen a huge gap between the state-of-art and the 2025 target. To fill the gap, tremendous 

works have been made in several aspects. For example, the topology innovation and selection are 

one of the keys to improve motor drive performance.  It is seen that the conventional three-phase 

two-level topology enjoys simple structure, high reliability, and low conduction loss [2]. However, 

its insufficient output-THD performance [3], high EMI noise introduced by high dv/dt [4], and 

extraneous switching loss [5] could limit its performance for high power motor drive. 
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Table 1-1 DOE EETT Roadmap for Power Electronics Converters in Year of 2020 and 2025 [1]  

Technical Targets of Power-electronics Equipment in Electrified Vehicles 

                 Years 

  Items 
2020 2025 

ETDS 
Cost 4.7 $/kW 3.3 $/kW 

Power Density 5.7 kW/L 50 kW/L 

On-board Charger 

Cost 50 $/kW 35$/kW 

Specific Power 3 kW/kg 4 kW/kg 

Power Density 3.5 kW/L 4.6 kW/L 

Efficiency 97.0% 98.0% 

Buck 

DC/DC Converter 

(325V to 14V) 

Cost <50 $/kW 30 $/kW 

Specific Power >1.2 kW/kg 4 kW/kg 

Power Density >3.0 kW/L 4.6 kW/L 

Efficiency > 94.0% 98.0% 

 

Recently, the three-level neutral-point clamped converter (3L-NPC) and three-level active 

neutral-point clamped converter (3L-ANPC) gains more and more attentions.  The University of 

Tennessee and General Electric have demonstrated its efficiency of 99.0% through designing a 1-

MW 3L-ANPC motor-drive prototypes [6,7]. Such a topology can greatly reduce switching loss, 

dv/dt noise and limit THD. Because each device only needs to withstand half DC-link voltage, 

higher DC-link voltage can be utilized for given device ratings. Or the lower voltage-rating 

semiconductors can be used for the given DC-link voltages. However, 3L-NPC and 3L-ANPC 
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increase the counts of power semiconductor per phase, causing higher conductional loss and more 

complicated hardware design and optimization.   

Three-level T-type neutral-point clamped topology (3L-TNPC) also has great potential in 

motor drive applications [8]. Compared to the two-level converter, 3L-TNPC has advantages of 

common three-level topologies, such as low dv/dt, low switching loss and lower output THD [9]. 

When compared it to 3L-NPC and 3L-ANPC, the 3L-TNPC has less switch counts and conduction 

loss [10]. However, the 3L-TNPC’s external-leg has higher voltage stress compared to the 3L-

NPC and 3L-ANPC. And the conduction loss of 3L-TNPC is lower than 3L-NPC but it is higher 

than two level converters [11]. Working with Advanced Research Projects Agency–Energy (Apar-

E), and the Center for Power Optimization of Electro-thermal Systems (POETS), the University 

of Arkansas has built three prototypes of 3L-TNPC with power density over 25kW/L, and peak 

efficiency greater than 99.0% [12,13].  

Besides the two-level converter and three-level converter, researchers also found a place for 

nine-level converters in high-performance motor drive. The recent research in Dr. Pilawa’s group 

from the University of California Berkeley and the University of Illinois at Urbana-Champaign 

Urban demonstrates that nine-level switch-cap converters deliver power up to 200kVA with high 

efficiency high power density [14]. 

Great efforts are made in applying advanced semiconductors in motor drive. The wide-bandgap 

(WBG) based devices, such as Silicon-carbide (SiC) Metal–oxide–semiconductor Field-effect 

Transistor (MOSFET) [15], SiC junction-gate field-effect transistor (JFET) [16], SiC diode [17], 

Gallium Nitride (GaN) High-electron-mobility Transistors (HEMT) [18] and GaN field-effect 

transistor (FET) [19].  
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Compared to the conventional Si material, the WBG materials have higher break-down E-field, 

higher drift velocity, better thermal conductivity, and can handle higher carrier concentration. As 

a result, the WBG-based power semiconductors offer better figure-of-merit. For example, at the 

given bare-die dimension, the SiC-MOSFET and GaN HEMT offers lower on-state resistance and 

lower switching loss compared to the Si-IGBT and Si-MOSFET [20].  

As a result, applying such devices into motor drive can bring benefits. For example, the [21] 

replaces four Si-Diodes by SiC-diodes in a 3L-NPC converter, reducing total loss by about 13%. 

Additionally, [22] combines SiC-MOSFET and Si-IGBT as a hybrid switch unit. It allows Si-

IGBT carries majority conduction loss and SiC-MOSFET offers lower switching loss. The 3L-

TNPC converter based on hybrid-switch concept can offer efficiency over 99.0% at switching 

frequency of 20kHz. Moreover, [23] utilizes full-SiC-MOSFET module in a 450-kVA converter. 

The full-SiC-MOSFET enables over tripled switching frequency and can keep peak efficiency over 

99.47%. 

1.2 Research objectives 

Though tremendous efforts are made in improving motor drive performance, it is still seen a 

huge gap between the state-of-art and the 2025 target. To fill the gap, research should be made in 

the following aspects. 

1. High-accuracy modeling system to guide motor drive design, such as semiconductor loss 

modeling and estimation, DC-link ripple modeling, and hardware parasitic modeling. 

2. Understanding the system-level trade-off of motor drive systems, including 

• The trade-off between different motor-drive topologies, 
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• The trade-off between switching loss, conduction loss and output THD, 

3. Multi-dimensional integration of power electronics system to achieve 

• Optimized parasitic control, 

• Optimized thermal dissipation, 

• Compact converter-level packaging with high power density. 

4. Fully utilize the advantages of wide bandgap devices, such as Silicon-carbide metal–oxide–

semiconductor field-effect transistor (MOSFET), including 

• Optimized SiC-MOSFET configuration with optimized conduction loss and switching loss, 

• Minimized stray inductance of SiC-MOSFET’s commutation loop for overshoot mitigation, 

• Proper switching speed with sufficient switching loss reduction, 

• Well-controlled junction temperature 

1.3 Dissertation outline 

Chapter 2 is at the inverter’s paper-design stage. After determining the topology and fully 

understanding its advantages, this chapter discusses the decision of specifications. First of all, a 

real-time simulation model is built, which can use the look- up table to recall the information from 

the datasheet, and by judging the operation mode of the switch device, we can see the conduction 

and switching loss distribution in real time. At the same time, the dc-bus voltage and switching 

frequency are easy to be adjusted, so through case studies, the best dc-bus and switching frequency 
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for our topology application scenarios are determined. At the same time, the hardware selection of 

dc-link capacitor is also preliminarily determined considering the requirements of capacitance and 

RMS current. Finally, through HIL simulation, the inverter's modulation is verified. This chapter 

paved the way for subsequent hardware design and experiments in the following chapters. 

Chapter 3 is a summary of the inverter hardware design and high-power test results. The 

beginning is an in-depth analysis of the operation mode of the SiC MOSFET based T-type inverter. 

There is also a summary of power loss under various voltage and current directions. The next step 

is to use the real-time simulation mentioned in Chapter 2 to analyze the loss distribution, and find 

the module with higher power loss. This is very helpful for the subsequent cold plate design. At 

the same time, by breaking down the loss, we can find the main source of total loss is the 

conduction loss. These simulation results can help to initially determine whether the efficiency 

target can be achieved theoretically. Next, the clamped inductor test (CIL) is introduced. Through 

the switching loss results obtained from the CIL, we can optimize the accuracy of the loss model. 

This chapter also explains the phenomenon that the oscillation of T-type inverter is larger than that 

of two-level inverter. The following of this chapter explains the selection of module, gate driver, 

and dc-link cap, and also briefly introduces the design of the laminated bus bar. Finally, this 

chapter shows the results of the full-power test. Through the analysis of the power analyzer 

measurement, the target efficiency of 98.5% is achieved. 

Chapter 4 focuses on the design of the laminated bus bar of this inverter. First, it theoretically 

explains why the laminated bus bar with low stray inductance has benefit to the whole inverter 

system, and then introduces the composition of the specific T-type inverter bus bar. Then the 

design difficulty considering the specific module layout is pointed out. Then this chapter 

summarizes and analyzes all the current communication loops (CCLs) of the inverter and obtained 
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the guidance of optimizing bus bar design. Next, the busbar design principles in the traditional 

method are elaborated, and self-inductance and mutual inductance are introduced at the same time. 

The final bus bar design of this inverter is introduced in detail. In the design process, we found 

that reducing self-inductance and increasing mutual inductance are two effective ways for reducing 

the total stray inductance. Based on this analysis, this chapter proposes a new bus bar 3-

dimentional (3D) design concept. The bus bar layer buried under others at certain potentials can 

reduce self-inductance and increase mutual inductance. This chapter proves that the new bus bar 

design concept can effectively reduce total stray inductance through Q3D simulation and direct 

measurement with impedance analyzer. In addition, the article also proposed a hybrid bus bar 

structure with PCB snubber circuit using high-frequency capacitors. Finally, it is proved through 

experiments that the new 3D concept bus bar with low ESL dc-link capacitor can effectively reduce 

the Vds overshoot. Additionally, the hybrid bus bar structure with PCB snubber circuit can also 

suppress Vds overshoot. 

Chapter 5 introduces the issue of how the fixture should be designed when the impedance 

analyzer is used to measure non-standard components. Through the previous chapters, we have 

learned that the stray inductance in the entire CCL has an impact on the Vds overshoot of the 

switch device. So, in the components’ design and selection stages, it is particularly important to 

accurately know the internal inductance of each component. At present, when measuring with an 

impedance analyzer, high-precision fixtures are mainly designed for SMD and lead terminal 

components. In the design of high-power converters, we need to know some non-standard 

components' inductance, such as bulk dc-link capacitors and customized bus bar, which requires 

us to design a fixture to connect these devices with the impedance analyzer. This chapter discusses 

the design of this fixture to improve the accuracy of the measurement. First of all, as a comparison, 
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a leaded film capacitor is selected as the standard reference, and it is measured by two commercial 

fixtures and impedance analyzers. Then three PCB customized fixtures were designed, and the 

standard film capacitor is measured again. Through comparative experiments, we found one of the 

customized designs is closest to the commercial fixture measurement results, then the design 

guidance is summarized. In the end, experiments are conducted to verify this optimal design. The 

CCL inductance of a 2-L inverter is measured through an impedance analyzer and fixture. The 

results proved that the inductance derived from the Q3D simulation results and double-pulse-test 

(DPT) Vds waveform oscillation frequency are highly consistent with our fixture measurement 

results, thus proving the accuracy of the customized fixture measurement. 
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CHAPTER 2  

A COMPACT 250 KW SILICON CARBIDE MOSFET BASED THREE-LEVEL 

TRACTION INVERTER FOR HEAVY EQUIPMENT APPLICATIONS 

© 2018 IEEE. Reprinted, with permission, from Z. Wang et al., "A Compact 250 kW Silicon 

Carbide MOSFET based Three-Level Traction Inverter for Heavy Equipment Applications," 2018 

IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, 2018, pp. 

1129-1134. 

2.1 Abstract 

A sustained effort is required to realize the aggressive targets of electrification of heavy 

equipment, e.g., the heavy-duty off-road vehicles, due to numerous emerging challenges, which 

are different from those in the automotive industry. Heavy equipment manufacturers are 

increasingly investing in new generation of power electronics technology to fulfill the high 

performance and reliability targets under harsh environments while reducing fuel consumption and 

staying cost competitive. In this work, a holistic power electronic circuits design is proposed to 

achieve 4× power density at 98% peak efficiency for a compact 250 kW three-phase three-level 

(3-L) T-type traction inverter. The proposed T-type inverter is designed using the best-in-class 

silicon carbide (SiC) power modules. Most importantly a multi-objective optimization approach 

to trade the volumetric power density (kW/l) against SiC device type (650, 900 and 1200 V), dc 

bus voltage, switching frequency, the size of the passive components. T-type inverter system 

design guidance is given in this work, including loss calculation, dc-link capacitor selection, 

thermal management solution, and bussing structure. In addition, the hardware-in-the-loop 
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simulation study is performed to validate the performance of the control system designed for the 

traction inverter.   

2.2 Introduction 

The electrified drivetrain of the heavy equipment demands outstanding efficiency at low costs. 

Recently, significant amount of research effort has gone into the development of highly efficient 

and compact traction inverters [1], [2], since the improved efficiency and power density coupled 

with lower losses in the motor and lighter weight all combine to produce more powerful, more 

energy efficient heavy equipment that is expected to reduce more than 25% operating costs [3]. 

To reduce the size and cost of passive components, the switching frequency often needs to be 

increased to medium range, e.g., 10-25 kHz. With higher switching frequency, conventional 2-

level silicon (Si) based power converters will have significantly increased losses that require bulky 

cooling systems. Potential loss reduction can be achieved through either topology innovation or 

the adoption of wide bandgap (WBG) power semiconductor devices. It has been proven that multi-

level topologies, e.g., the 3-level (3-L) neutral point clamped converter and T-type converter, have 

better efficiency if the switching frequency is higher than 10 kHz [4]. The rapid development of a 

new generation WBG technologies opens up the possibility of high efficiency and high-

performance operation at higher switching frequencies. In this work, a system-level multi-

objective optimization is proposed to realize a compact 250 kW T-type that will fully exploit the 

benefits of both the SiC devices and the 3-level topology.  

The main circuit topology is built upon the T-type inverter [5], which combines the positive 

aspects of two-level converters, such as low conduction losses and simple operation principles 

with the advantages of a three-level converter such as low switching losses and superior output 

voltage quality. The schematic of the proposed traction inverter system is shown in Fig. 2.1, which 
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includes the dc-link capacitors, gate drivers, various voltage and current sensors, and the main T-

type inverter realized by two sets of SiC MOSFET half-bridge modules at different voltage ratings. 

 

Figure 2-1 Schematic of proposed traction inverter system. 

In this work, the multi-objective optimization approach is proposed to trade power density 

(kW/l) against SiC device type (650, 900, 1200V), switching frequency, dc bus voltage, the dc-

link capacitor, and thermal management solutions.  

Silicon Carbide (SiC) devices have the ability to operate at higher voltage. At a given power 

rating, the higher dc bus voltage of the inverter enables cable size reduction, resulting in significant 

copper savings and an overall weight reduction of the electric drivetrain [3]. In addition, a higher 

dc bus voltage will extend the constant torque-speed range of the motors. Therefore, in this work, 

the dc bus voltage is intended to increase from 700 V normally used for heavy-duty vehicles to an 

optimal value for most efficient design, which is higher than 850 V.  
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The selected voltage rating of the SiC devices is determined by the topology and the dc bus 

voltage. As shown in Fig. 1, Sa,1 and Sa,2 need to block full dc bus voltage, while Sa,3 and Sa,4 only 

need to block half of the dc bus voltage. All SiC devices are packaged into Wolfspeed’s HT-3000 

platform as shown in Fig. 2.2 [6], but the configuration of the devices in the module may be 

different. For instance, Sa,1 and Sa,2 are packaged as a standard half-bridge module, while Sa,3 and 

Sa,4 are packaged in a module using a common-source configuration. 

 

Figure 2-2 Wolfspeed’s all SiC high-performance half-bridge power module. 

In this work, space vector pulse-width modulation (SVPWM) is used for its higher dc bus 

voltage utilization. An inverter system level loss model in real-time is firstly designed to estimate 

the system semiconductor losses based on the possible operation states. The comparison of 

simulation results on different dc voltages as well as the switching frequency is done to help system 

design from loss aspect. Then dc-link capacitor selection procedure is introduced considering both 

minimum capacitance calculation and capacitor root-mean-square (RMS) current calculation. In 

addition, thermal management solutions and bussing structure are also mentioned in this work 

briefly. Finally, the hardware-in-the-loop (HIL) simulation study is performed to validate the 

performance of designed T-type traction inverter system. 
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2.3 Instantaneous fundamental-cycle average loss calculation  

Semiconductor power loss analysis plays a critical role in inverter system design, which not 

only gives guidance in the thermal design but also indicates the major contributors to the losses, 

which in turn helps to improve system efficiency. Two major parts, conduction loss and switching 

loss are included in semiconductor power loss analysis in this work. Due to the physical structure 

difference among various power devices, e.g., IGBTs, MOSFETs, and etc., the device loss models 

are slightly different, especially when the current and voltage are in the opposite direction. The 

following loss analysis presented in this work focuses on SiC MOSFETs, and the real-time loss 

model can be applied to various topologies. Most of the existing loss calculation methods are based 

on mathematical models, and they usually assume some ideal conditions, for instance, neglecting 

harmonics [7]. On the other hand, mathematical models are often case by case when gate control 

part varies. As a result, building a flexible generic real-time loss model benefits a lot in inverter 

design. 

In this work, six CAS325M12HM2 1.2 kV SiC MOSFET modules are used in the design, in 

which main switches, Sa,1 and Sa,2, are configured in the standard half bridge structure, while 

middle switches, Sa,3 and Sa,4, are using common-source configuration. It is assumed that electrical 

characteristics of single MOSFET chip in both these two kinds of modules are the same. According 

to [8], the loss model is built in Matlab Simulink. The overall flow chart of real-time loss 

calculation is shown in Fig. 2.3. Both instantaneous power loss and average loss over a 

fundamental cycle can be generated by the model. The sampling period, which is set as 0.5 μs, 

should be set small enough to ensure the accuracy. The instantaneous voltage and current 

information are read directly from MOSFET block measurement ports.  
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Figure 2-3 The overall flow chart of loss model. 

2.3.1 MOSFETs 

To determine the switching loss, the switching state should be detected firstly. Assume over 

two consecutive sampling periods, i.e., the kth and k-1th, 

Ik > 0 & Ik-1 = 0 → turn on 

Ik = 0 & Ik-1 > 0 → turn off 

 Once the switching state is detected, the turn-on and turn-off energy look-up table is used to 

determine the switching energy. Switching energy vs. IDS is usually tested at 25 °C and presented 

in the datasheet. Temperature conversion should be done using the figure of switching energy vs. 
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the junction temperature, Tj. Till now, the value of switching energy has been corrected by 

temperature and current, but not the voltage, e.g., VDS-test is 800 V. It can be assumed that Eon and 

Eoff are proportional with VDS, then equation (2-1), (2-2) can be used to calculate the final loss 

energy. 

,

1

kon I DS test

on

k

E V
E

V

−

−


=                                                                       (2-1) 

          
1, koff I DS test

off

k

E V
E

V
− −

=                                                                      (2-2) 

For conduction loss, due to the physical structure of MOSFETs, it can be regarded when 

current and voltage are in the opposite direction, current will go through MOSFET itself in steady 

state, not the antiparallel diode. So both drain-source/source-drain voltage vs. current in 1st and 

3rd quadrant need to be considered. Look-up tables are built using the data when Vgs = 20 V, then 

conduction power loss can be calculated by equation (2-3). 

con. DS DP V I S=                                                            (2-3) 

where S represents switching state, either 0 or 1. 

2.3.2 Diodes 

For switching loss, diode turn-on loss is usually neglected since it is very small. Reverse 

recovery energy Err or reverse recovery charge Qrr is usually given in the datasheet. Based on 

these information, the switching state detection and switching energy correction can be done by 

previous the MOSFET loss calculation procedure. In this work, since SiC Schottky diodes have 
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already been anti-paralleled in the module used in this work, the diode reverse recovery loss is 

neglected. 

For conduction loss, the antiparallel diode characteristic in the datasheet is needed when Vgs 

= ‒5 V and at the actual operating temperature. Then conduction power loss can be calculated by 

con. DS DP V I S=                                                                        (2-4) 

Real-time simulation results of power loss are shown in Fig. 2-4, in which both MOSFET and 

diode instantaneous losses are captured. Meanwhile, average power loss over the fundamental 

frequency is also given, which is very useful in thermal design. Due to the symmetry of modulation 

waveform, the loss on Sa,1 and Sa,2 are equal, similar for Sa,3 and Sa,4.  

Table 2-1 Power loss simulation result on 700, 800, 900 V dc bus when fs = 20 kHz 

Vdc 

(V) 

m Power loss on S1 (W) Power loss on S3 (W) 3-phase 

total (W) 

Percentage 

on system 

power (%) 

  Sw. Con. Total Sw. Con. Total   

700 0.97 47 198 245 6 79 85 1980 0.792 

800 0.849 56 173 229 7 119 126 2130 0.852 

900 0.754 61 153 214 8 149 157 2226 0.890 

 



20 

       

(a)                                                                                

 

 (b) 

Figure 2-4 Simulation result of power losses when Vdc = 700 V, pf = 0.8, fs = 20 kHz for (a) Sa,2 

in main switch bridge (b) Sa,4 in the middle switch bridge. 
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Table 2-2 Power loss simulation result on 700, 800, 900 V dc bus when fs = 40 kHz 

Vdc 

(V) 

m Power loss on S1 (W) Power loss on S3 (W) 3-phase 

total (W) 

Percentage 

on system 

power (%) 

  Sw. Con. Total Sw. Con. Total   

700 0.97 93 194 287 13 76 89 2256 0.902 

800 0.849 108 167 275 14 116 130 2430 0.972 

900 0.754 122 149 271 16 146 162 2598 1.039 

 

2.3.3 A case study of DC bus voltage 

In this work, the design target is a 250 kW traction drive inverter with T-type topology with 

rated 480 Vrms line-to-line voltage and 300 Arms phase current. The modulation index needs to 

be tuned to coordinate the dc bus voltage. 700 V, 800 V, 900 V are selected to be compared in this 

work. The loss result is listed in Table 2-1. Switching frequency is set to be 20 kHz here, and 

power factor is 0.8. Due to the T-type operation characteristics, the conduction power loss on the 

diode is 0 with RL load. In addition to the aforementioned zero reverse recovery energy in SiC 

Schottky diodes. The total diode loss is assumed as 0. Therefore, only MOSFET loss data is given 

in Table 2-1.  

From Table 2-1, it can be seen that 700 V DC results in the smallest total power losses, which 

is around 0.79% of the total inverter power, which means the 98% peak efficiency is achievable 

even considering other type losses. In addition, the modulation index has a critical impact on 

conduction loss. The conduction loss on Sa,1 is proportional to modulation index, but reversed for 

Sa,3. Here assumed middle bridge also use 1.2 kV module, but actually only half of the dc voltage 

rating is enough for middle bridge module. If 650 V device is used in middle bridge, the Rds-on will 
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be reduced significantly, and therefore the loss will also reduce. The tradeoff between power loss 

and loss distribution should also be noticed. Although the 900 V dc bus case has 12.42% more 

power loss than 700 V case, the loss distribution is more even on the two modules per phase. 

Finally, switching loss in middle bridges Sa,3 is almost negligible, conduction loss accounts for the 

major loss. This is mainly because when current and voltage is in the same direction, the MOSFET 

is “soft” switching. Here the small switching loss comes from the 0.8 power factor. The larger the 

power factor, the smaller the middle bridge switching loss.  

2.3.4 A case study of switching frequency 

Since CAS325M12HM2 can work at a switching frequency much higher than 20 kHz, the 

power loss at 40 kHz switching frequency is also compared in Table 2-2. As can be seen from the 

table, when switching frequency increases to 40 kHz, conduction loss decreases slightly, while 

switching loss increases dramatically. As a result, although higher switching frequency can give 

better output voltage quality, the tradeoff between output quality and power loss needs to be 

considered.  

2.4 DC-link capacitor selection 

Because the dc bus has stray inductance and resistance and the dc side current is pulsating, the 

dc-link capacitor is needed to solve potential EMI issues. Also, dc-link capacitor takes large 

portion of the overall inverter volume, the dc link capacitor selection will obviously affect the 

system power density. The dc-link capacitance depends on the energy of current ripple need to be 

absorbed and the rating of RMS current. DC-link current ripple includes not only load current at 

the fundamental frequency, but also current at PWM switching frequency and their harmonic 

contents.  
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According to [9], theoretical minimum dc-link capacitance in a three-phase 3-L converter is 

derived as equation (2-5). This calculation method is based on two main considerations: the 

maximum input power and the maximum allowable voltage fluctuation. 

,min
2

Max d
d

dc dc

P T
C

V V

 


 
                                                                        (2-5) 

where ΔPMax is maximum power variation of inverter; Td is response time of voltage control loop 

(5 to 10 times of switching period); and ∆Vdc is maximum allowable voltage fluctuation.  

In this work, ∆PMax is set to 30% of the full power, and ∆Vdc is set to 15% of the dc bus voltage. 

Then the minimum dc-link capacitance is 

,min
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255
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C F
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From equation (2-7), it can be seen that to keep the capacitor working at allowable temperature; 

the RMS current needs to be predicted when selecting the capacitor [10]. 

2

,c a CAPRMS ESR th c aT T I R R −= +                                                               (2-7) 

where Tc is the capacitor temperature, Ta is the ambient temperature, RESR is the equivalent series 

resistance of the capacitor, Rth,c-a is the thermal resistance between capacitor and ambient.  

The DC-link capacitor RMS current is related to PWM modulation index and power factor. 

According to [10], for the 3-L inverter, it can be derived as following 
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2 2

CAPRMS RMS AVGI I I= −                                                              (2-10) 

where IN is the phase peak current. 
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Also, the capacitance, ESR, ESL are all changing with temperature and switching frequency, 

these need to be noticed during the capacitor selection. Due to safety concerns, it is better to select 

components’ parameters larger than the calculated value. Since the temperature has a significant 

impact on the dc-link capacitor, proper thermal management approach needs to be considered, 

such as natural or forced air cooling or liquid cooling. In addition, attaching the capacitors directly 

to bus bar will be beneficial for cooling.   

In this work, the calculated RMS current is 173 A, and 225 μF capacitance is needed. To give 

sufficient safety margin, six film capacitors FFVE6K0227K are selected, they are 3×220 μF in 

series. 

2.5 Thermal management and bussing structure 

The loss calculation can guide the selection of proper thermal management approach, using 

proper heatsink or cold plate. Datasheet indicates that the limitation of power dissipation is related 

to module case temperature. After the average power loss over the fundamental period is known, 

it is obvious that main switch bridge has more heat dissipation than middle switch bridge. In this 

work, the maximum calculated power loss is 245×2 = 490W per module. This information can be 

translated to the maximum allowable case temperature. Based on the performance and cost, proper 

heatsink and cold plate can be determined. 

For high power inverter, bus bar design is a significant part. Bus bar can withstand higher 

current than traditional cables, and also has much lower impedance, such that the reliability is 

enhanced. For dc bus bar, 400 circular mils/A is the traditional basis for the design of single 

conductor, and 5% more cross-sectional area of a conductor needs to be added for each additional 

conductor laminated into the bus structure [11]. Capacitance between different conductor levels is 
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preferred to be large, and inductance need to be small so that the overall impedance will be much 

smaller. This will benefit the noise attenuation. As a result, within the tolerance of voltage rating, 

the thickness of insulation layer should be as thin as possible. Skin effect needs to be considered 

for AC bus bar design.  

 

(a) 

 

(b) 
Fig. 2-5 HIL simulation result when Vdc = 700 V, pf = 0.8, fs = 20 kHz (a) line-to-line voltage 

(b) phase current. 
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2.6 Preliminary real-time simulation results 

To evaluate the performance of the proposed T-type traction inverter, hardware-in-the-loop 

(HIL) simulation is performed. The HIL simulation is mainly used to validate the effectiveness of 

controller design. In this work, the control algorithms are implemented in the control platform 

designed using TI’s TMS320F28379D dual-core microcontroller. As shown in Fig. 2-5, HIL 

studies have been performed to validate the capability of the controller to synthesize a 480 Vrms 

three-phase output voltage. The switching frequency is set 20 kHz, DC bus is 700 V, and power 

factor is simulated at 0.8. Both three-phase line-to-line voltage and phase current waveforms are 

given. 

2.7 Conclusion 

In this work, to design a compact 250 kW three-level T-type traction inverter, a holistic PE 

design approach is proposed trade the power density (kW/l) against SiC device type, the dc bus 

voltage, the switching frequency, and the heat dissipation method. The real-time loss calculation 

model is given in this work, which can be applied to other circuit topology. The dc-link capacitor 

selection approach is also briefly introduced. Thermal management and bus bar design are also 

important for the integrated high-power density inverter system design. Finally, preliminary HIL 

simulation study is performed to validate the performance of the designed control for the traction 

inverter system. 
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CHAPTER 3 

DESIGN AND VALIDATION OF A 250 KW ALL SILICON CARBIDE HIGH-DENSITY 

THREE-LEVEL T-TYPE INVERTER 

© 2020 IEEE. Reprinted, with permission, from Z. Wang, Y. Wu, M. H. Mahmud, Z. Zhao, 

Y. Zhao and H. A. Mantooth, "Design and Validation of A 250-kW All-Silicon Carbide High-
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Electronics, vol. 8, no. 1, pp. 578-588, March 2020. 

3.1 Abstract 

This paper presents a comprehensive design and validation of a compact all silicon carbide 

(SiC) 250 kW T-type traction inverter with a power density of 25 kW/l and 98.5% peak efficiency. 

All the operation modes and switching transitions in a T-type phase leg are analyzed to model the 

semiconductor power losses over a fundamental cycle. Special attention has been paid to 

investigate the behavior and losses due to the reverse conduction of the SiC MOSFETs. Then a 

loss model is built based upon this analysis to calculate the device loss distribution and system 

efficiency, which is further used to determine the optimal switching frequency. In addition, 

detailed inverter system design and prototyping procedure, including the selection of SiC modules 

and dc-link capacitors, and the optimization of a 4-layer laminated busbar, are presented. In this 

work, the T-type phase leg is formed by a normal half bridge module and a common source module. 

The switching performance and losses in this configuration are different from two-level topology 

that only uses one SiC module. Therefore, the switching performance and the associated switching 

energy in each switch position are characterized using a custom clamped inductive load (CIL) test 
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setup designed for a T-type phase leg. The performance of the full power traction inverter 

prototype has been verified experimentally using pulse testing and continuous power testing. 

3.2 Introduction 

A sustained effort is required to realize the aggressive targets of electrification of heavy 

equipment, e.g., the heavy-duty and off-road vehicles [1], due to numerous emerging challenges, 

which are different from those in the automotive industry. Heavy equipment manufacturers are 

increasingly investing in the new generation power electronics technology [2], [3] to fulfill the 

high performance and reliability targets under harsh environments while reducing fuel 

consumption and staying cost-competitive. The potential solutions to enable high-density and 

high-efficiency traction inverters are still needed to reduce the volume and lower the cost of the 

electric or hybrid electric drivetrain. For instance, using the emerging wide-bandgap (WBG) 

devices, the inverter switching frequency can be moved into the medium frequency range, e.g., 

10-25 kHz, but still as efficient as the state-of-the-art (SOA) silicon-based solution. The increase 

of the switching frequency can reduce the volume and cost of passive components significantly 

[4].  

The conventional two-level inverter still dominates the market. However, a significant amount 

of effort from both industry and academia has gone into the research and development of new 

topologies to address the issues with the 2-L inverters, such as the harmonics in output voltage and 

relatively low efficiency at a higher switching frequency. In contrast to 2-L inverters, multi-level 

inverters can generate output voltage waveforms with lower harmonics to better resemble the 

sinusoidal references [5]-[7]. Moreover, lower dv/dt and electromagnetic interference (EMI) 

emissions also could be achieved using multi-level topology, such that bulky filters can be replaced 

by smaller volume and lower cost counterparts. Three-level (3-L) inverters, e.g., neutral-point-
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clamped (NPC) inverters, active-NPC (ANPC), and T-type NPC are the most commonly used 

among multi-level inverter topologies [8]-[10]. Especially, in most of the high-power industrial 

applications, NPC is the most mature 3-L inverter topology since introduced in 1981 [11]-[13]. 

For lower power and low voltage applications, the NPC suffers from higher conduction loss due 

to the series connection of two devices in the conduction paths. In contrast, T-type topology has a 

smaller number of devices in the conduction path, which notably decreases the conduction loss. 

However, the switching losses in the T-type topology may be higher than that of the NPC due to 

higher voltage stress over a single switch position and devices with higher voltage rating are 

needed. These issues can be potentially addressed by emerging WBG devices.  

In this work, silicon-carbide (SiC) MOSFETs are used, which has much less switching energy 

than the conventional silicon device. There are several reports on the development of T-type 

inverters using either silicon or SiC modules or even hybrid switches. Reference [14] presented a 

10 kVA T-type converter using silicon IGBTs. A 100-kW single-phase T-type power electronics 

building block (PEBB) is reported in [15], in which both silicon and SiC modules were used to 

build hybrid switches. Addition cables and/or busbars are needed to build a three-phase system 

using single-phase PEBBs, which further complicates the design and may affect the overall system 

performance. Reference [16] reported a 60 kW five-level interleaved T-type inverter using SiC T-

type modules, which however are not commercially available on the market. 

In this paper, a compact three-phase 250 kW all-SiC T-type traction inverter is designed and 

prototyped to fully exploit the benefits of both SiC devices and the 3-L T-type topology. Each T-

type phase leg consists of a half-bridge (HB) module and a common-source (CS) module. Both 

the HB and CS modules are commercially available. The schematic of the proposed traction 

inverter system is shown in Fig. 3-1, where S1 and S4 are the two switch positions in the HB 



32 

module, while S2 and S3 belong to the CS module. The optimal switching frequency in this design 

is 20 kHz, which selected based on the desired peak efficiency is 98.5%. The power density target 

is 25 kW/L. For a three-phase 3-L SiC inverter at this power rating, the optimization of the 

commutation loop, especially to ensure low parasitic inductance, is critical to the switching 

performance of SiC modules. The switching characteristics of a 2-L SiC MOSFET phase leg have 

been extensively studied [17]-[19]. However, the switching characteristics of the 3-L T-type phase 

leg have not been discussed in detail. Therefore, in this work, a clamped-inductive load (CIL) test 

setup is designed to capture the switching behavior of each switch position in a T-type 

configuration. A thorough analysis of the captured results is also presented. 

 

Fig. 3-1 A schematic of the proposed T-type traction inverter. 

In this work, a comprehensive analysis of the operating modes and switching loops in a T-type 

phase leg is presented to derive the corresponding loss distribution. Then a real-time system loss 

model is built to determine the optimal switching frequency while meeting the efficiency target. 
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From CIL test results, the switching energy associated with turn-on, turn-off, and reverse recovery 

is calculated, which are used to further enhance the accuracy of the loss model. In addition to the 

investigation of a T-type phase leg, this paper also presents the design and optimization at the 

system level, in this context, the three-phase T-type inverter. To fulfill the design requirements, 

power modules, gate drivers, and dc-link capacitors need to be carefully selected. In addition, the 

laminated busbar and cold plate need to be optimized. The design flow and components selection 

procedure of a three-phase SiC inverter will provide design guidance for future applications. 

3.3 Operating modes analysis and loss evaluation of a T-type phase leg 

3.3.1 The operating modes of a T-type phase leg 

The topology of a 3-L T-type converter is shown in Fig. 1. The switching states P, O, N of a 

T-type converter are defined in Table 3-1 [10]. These three switching states lead to three voltage 

levels of phase-neutral voltage VxM, i.e., +Vdc/2, 0, and ‒Vdc/2, where x = a, b, or c. The operation 

of a T-type phase leg over one fundamental cycle can be divided into four intervals, as shown in 

Fig. 3-2. In this work, the direction of load current, i.e., Io, is defined as positive when flowing 

from inverter output terminal to the load. Table 3-2 summarizes the relationship among the range 

of the output voltage phase angle, load current direction, voltage polarity in each interval, where 

φ is the load power factor (pf) angle.  

 

Fig. 3-2 An illustration of four operating intervals in a T-type phase leg. 
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Table 3-1 Switching states 

State VxN S1 S2 S3 S4 

P +Vdc/2 on on off off 

O 0 off on on off 

N ‒Vdc/2 off off on on 

 

 

Table 3-2 Device conduction intervals 

Interval Number 1 2 3 4 

Phase Angle of Vo [0, ] [, ] [,  + ] [ + , 2] 

Current Direction Io < 0 Io > 0 Io > 0 Io < 0 

Voltage Polarity Vo > 0 Vo < 0 

 

 

Figure 3-3. illustrates the switching transition from P state to O state during interval 1, where 

Io is negative, the fundament component of the line-to-neutral output voltage, i.e., VxM, is positive 

and the actual line-to-neutral output voltage is switching between zero (O state) and +Vdc/2 (P 

state), Vdc is the voltage across the entire dc link. In this case, the polarity of VxM and Io are the 

opposite. Therefore, SiC MOSFET in switching position S1 works in the reverse conduction mode 

or operates in the third quadrant. In the reverse conduction mode [20], switch position S1 may 

have two different loss mechanisms. When load current is low, only the MOSFET in switch 

position S1 carries the current, as shown in Fig. 3-3(a). When load current is high enough, which 

leads to the voltage drop across the MOSFET exceeds the threshold voltage of the antiparallel 

diode, the diode conducts and carries a portion of the load current, as shown in Fig. 3-3(b). For 

HB modules used in this work, the threshold current for the anti-parallel diode turn-on is 

temperature dependent. For instance, when using 18 V gate-source voltage, at 25 °C, the anti-

parallel diode turns on when source current is higher than 250 A, while at 150 °C, the anti-parallel 
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diode turns on when source current is higher than 130 A. Therefore, the conduction loss at high 

current can be a critical contributor for the loss in the presented design.    

 

(a) 

 

 

(b) 

Fig. 3-3 The operating mode when VxM > 0 and Io < 0 with (a) low load current and (b) high load 

current. (S1 to S4 are the four switch positions in a T-type phase leg. The ON or OFF associated 

with each switch position stands for the gate signal in that particular operating mode.) 

The IGBT-based T-type converter loss analysis has been developed in [10], [21], while this 

work provides the SiC MOSFETs based T-type converter loss analysis. Using Fig. 3-3(a) as an 

example, the 1st operating mode is in P state, i.e., VxM is positive, and the load current flows from 

the source to the drain of the MOSFET in S1, which therefore works in the reverse conduction 

mode having a reverse conduction loss, i.e., Econ_R. Although the turn-on gate signal is applied to 

the S2, there is no current flowing through the CS module, since S3 is in the OFF state. The gate 

signals applied to S1 and S3 are always complimentary with dead-time inserted to avoid short 
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through. The 2nd operating mode is during the dead-time, where both S1 and S3 are in the OFF 

states; the load current goes through the antiparallel diode in S1, i.e., D1. During the transition 

from the 1st operating mode to the 2nd one, the load current shifts from the MOSFET in S1 to its 

anti-parallel diode. Due to the conduction of the anti-parallel diode, the voltage across the 

MOSFET is close to zero when it turns off. Therefore, the turn-off process of MOSFET is close to 

the zero voltage switching (ZVS), and the turn-off loss in the MOSFET is negligible. Then once 

the turn-on gate signal is applied to S3, the current is gradually commutated from the D1 to the CS 

module, which is the clamping leg. In the very end of this operating mode, D1 has a reverse 

recovery with an associated loss, i.e., Err. In the 3rd operating mode, which is an O state operation, 

Io is still negative. S3 works in the forward conduction mode, while S2 operates in reverse 

conduction mode. Since the turn-on gate signal is always applied to S2 during the interval 1, there 

is no switching loss in S2. But there are conduction losses in both S2 and S3 and the switching 

loss in S3 in the third operating mode. As a summary for the switching transition from P state to 

O state during interval 1, the semiconductor losses here are distributed among S1, S2, and S3, 

including the reverse recovery loss (Err) and reverse conduction loss (Econ_R) on switch position 

S1, reverse conduction loss (Econ_R) on switch position S2, switching loss (Esw) and forward 

conduction loss (Econ_F) on switch position S3. The same approach can be applied to analyze the 

high current case shown in Fig. 3-3(b). However, the analysis could be more complicated, since 

during P state, both MOSFET and antiparallel diode in S1 are in the ON state.   
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Fig. 3-4 An illustration for the switching transitions when (a) VxM > 0 and Io < 0; (b) VxM > 0 and 

Io > 0; (c) VxM < 0 and Io > 0; and (d) VxM < 0 and Io < 0. 
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Table 3-3 Device power loss distributions 

Time 

interval                             
1 2 3 4 

S1  Err + Econ R 

 

Eon + Eoff + 

Econ_F 

- - 

S2 Econ_R Econ_F Eon + Eoff + Econ_F Err + Econ_R 

S3 Eon + Eoff + Econ_F Err + Econ_R Econ_R Econ_F  

S4 - - Err + Econ_R Eon + Eoff + Econ_F 

 

Table 3-4 Device switching loss distributions 

Switching 

Transition 

Switching Loss (Esw)  

i0 ≥ 0 

Switching Loss (Esw)  

i0  < 0 

P → O Eoff, S1 Err, S1, Eon, S3 

O → P Err, S3, Eon, S1 Eoff, S3 

N → O Err, S4, Eon, S2 Eoff, S4 

O → N Eoff, S2 Err, S2, Eon, S4 

 

The operating modes in all four time intervals are summarized in Fig. 3-4 given low load current. 

The procedure for interval 1 presented earlier can be used for the analysis of other intervals. One 

thing should be noticed that, as shown in Fig. 3-4(a), from O state to P state, when the MOSFET 

is S1 is turning on, due to the freewheeling of D1, the voltage across the MOSFET is close to zero. 

This leads to a turn-on process similar to zero voltage switching. Therefore, the turn-on switching 

loss for S1 can be ignored in this case. Similarly, as shown in Fig. 3-4(b), from P state to O state, 

when the MOSFET in S3 is turning on, due to the freewheeling of the antiparallel diode in S3, the 

switching loss for S3 can be ignored. A summary of the power losses associated with each switch 
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position is presented in Table 3-3, which can provide a detailed power loss distribution and can 

guide the loss modeling and converter efficiency analysis. In addition, the specific switching loss 

during each switching transition are summarized in Table 3-4.     

3.3.2 Semiconductor loss evaluation 

Semiconductor power losses account for a large portion of the overall system loss. Therefore, 

a comprehensive device loss analysis is critical not only for the system efficiency estimation but 

also the thermal design. In this section, the power loss of the proposed T-type inverter is calculated. 

The data of the conduction and switching losses are extracted from datasheet provided by the 

manufacturer. 

The conduction loss of a MOSFET [20] in the 1st quadrant or 3rd quadrant can be expressed 

as (1) and (2), respectively 

2
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where ID and ISC are the MOSFET current and the threshold current, respectively; RDS(on)_F and 

RDS(on)_R are the on-state resistance of the device;  R’
DS(on)_R and VTH  are the equivalent resistance 

and voltage source of the MOSFET and diode parallel circuit, respectively. 

The switching loss can be regarded as proportional to the test voltage of the device [21]. The 

turn-on loss Eon and turn off loss Eoff can be approximated as equation (3-3) and (3-4), respectively. 
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where, 0onE and 
0offE are turn on and turn off losses at the voltage specified in the datasheet, 

respectively; 0DSV is the voltage used in the switching characterization process for the datasheet; 

DS testV − is the actual voltage in the application. 

The diode reverse recovery loss can be expressed as, 

rr0

0

DS test
rr

DS

E V
E

V

−
=                                                       (3-5) 

where
rr0

E is the diode reverse recovery loss at the voltage specified in the datasheet. For SiC diode, 

the reverse recovery loss can be ignored when compared to other losses. 

Reference [22] presented a detailed real-time loss modeling approach for the MOSFET-based 

T-type inverter using Matlab Simulink with case studies showing the power loss and system 

efficiency of a 250 kW T-type traction inverter with 700 V, 800 V, 900 V bus voltage at 20 kHz 

and 40 kHz switching frequency. In this paper, the average power losses of all the switch positions 

in a T-type phase leg over a fundamental cycle is shown in Fig. 3-5, which is simulated based on 

250 kVA output power, 0.8 load power factor, 700 V dc bus, and 20 kHz switching frequency. It 

has been observed that the majority of losses come from conduction loss, and the total loss is not 

evenly distributed among the four switch positions, i.e., HB module has much higher losses than 

the CS module. When determining the flow rate of the cold plate, more attention needs to be paid 

to HB module to ensure its junction temperature can be limited within the safe operating range.  
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Fig. 3-5 The distribution of the average power losses with a 0.8 power factor load. 

 

 

Fig. 3-6 The efficiency map obtained using simulation-based loss model. 
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Figure 3-6 shows the efficiency map of the traction inverter on different operation points. As 

can be seen, higher efficiency is achieved under high output voltage and relatively low phase 

current scenarios, due to the reduction of conduction loss. All the operation points on the efficiency 

map are greater than 98.5%, though considering the losses in other system components, e.g., the 

capacitor bank, gate drivers, filters, etc., the efficiency of the overall traction inverter system will 

be slightly lower. 

3.4 Switching characterization of SiC modules in a T-type configuration 

3.4.1 Clamped inductive load (CIL) test 

To fully understand the switching behavior of modules in a T-type configuration, performing 

CIL tests for all switch positions is the most straightforward approach. In addition, due to the use 

of T-type topology, the loss at each switch position may not be identical to that in the datasheet, 

which is characterized using an individual module. In this work, a CIL test setup for a T-type phase 

leg is developed. Comprehensive CIL tests were performed to evaluate switching characteristics 

and collect loss information.  

The schematics of the CIL tests for different switching positions are shown in Fig. 3-7, in 

which S1 and S4 are the top and bottom switch positions in the HB module, while S2 and S3 are 

switch positions in the CS module. The schematic of the CIL test for HB module is shown in Fig. 

3-7(a) and gate pulses are applied to S4 in the HB module, which is the device under test (DUT), 

and the body diode of S2 in the CS module is the freewheeling diode. In this test, the gate signals 

for S1 and S2 are always low, while the gate signal for S3 is always high. In this way, D2 and S4 

form the standard configuration for a CIL test. The schematic of the CIL tests for CS modules is 

shown in Fig. 3-7(b). Gate pulses are applied to S2 in the CS module, which is the DUT, and the 
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anti-parallel diode of S4 in HB module is the freewheeling diode. In this test, the gate signals for 

S1 and S4 are always low, while the gate signal for S3 is always high.  

The designed printed circuit board (PCB) based CIL test setup is shown in Fig. 3-8. The PCB 

was optimized to minimize the loop parasitic impedances. The load used for CIL test is an air-core 

inductor with an inductance of 40.2 μH. The modules are mounted on the bottom of the PCB. A 

2.5 mΩ bar strap type current viewing resistor (CVR) is chosen for drain-source current 

measurement instead of other measurement methods, e.g., Rogowski coil, current transformer, 

etc., due to its high bandwidth and convenience. Drain-source and gate-source voltage are 

measured by differential probes THDP0200. Since this is a CIL setup for a T-type phase leg, two 

sets of DC-link capacitors are connected in series, and voltage divider resistors are used to provide 

a neutral point. All controls are implemented in a dSPACE MicroLabBox. In this work, the gate 

resistance on the gate driver are different for turn-on and turn-off process, i.e., turn-on gate 

resistance Rgon is 5 Ω while turn-off gate resistance Rgoff  is 2.5 Ω. 
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(a)                                                                                                          

      

(b) 

Fig. 3-7 Schematic of CIL test for (a) HB module and (b) CS module. 
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Fig. 3-8 The CIL test setup for a T-type phase leg. 

To ensure an accurate loss calculation, current and voltage alignment is performed on probe 

channels using the de-skew functions on the oscilloscope. For instance, the 3 ns mismatch is 

compensated on an isolated voltage probe. The CIL test results presented in this work were 

collected at the room temperature, with 700 V dc-link voltage and varying the load currents from 

50 A up to 450 A. One set of typical CIL test results are shown in Fig. 3-9, when the load current 

is 150 A. Fig. 3-10 shows the switching energy Esw and reverse recovery energy ERR calculated 

for the switch positions in both HB and CS modules based on the measured waveforms. As can be 

seen, both turn-on energy Eon and turn-off energy Eoff increase with the load current, and the 

switching loss of the CS module is larger than that of the HB module. It should be noted that 

reverse recovery energy ERR is pretty small for both body diode and the anti-parallel diode. 
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Fig. 3-9 Switching waveforms of the T-type modules at Vdc = 700 V, Ids = 150 A with Rgon = 5 Ω 

and Rgoff = 2.5 Ω: (a) turn-off of S4, (b) turn-on of S4, (c) turn-off of S2, (d) turn-on of S2, (e) 

turn-off of D4, and (f) turn-off of D2. 
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3.4.2 Switching waveform and switching energy analysis 

As the results shown in Fig. 3-9, both vds and ids have much higher oscillations comparing to 

the typical 2-L CIL test results using only one half bridge power module. One of the major reasons 

is the higher loop inductance in the CIL setup for a T-type phase leg. The equivalent circuits for 

the 2-L (Fig. 3-11(a)) and 3-L (Fig. 3-11(b)) double pulse test are shown below. The capacitors 

shown in the figures represent the high-frequency decoupling capacitors, which has negligible 

parasitic inductance. Ldc+, Ldc-, LdcM, Lac, Lmodule represent parasitic inductance on PCB dc+ layer, 

dc- layer, dc middle layer, ac layer and stray inductance from modules, respectively. As can be 

seen from the following figure blue shaded area, the 2-L and 3-L current commutation loops are 

similar to each other. The difference is that the loop inductance in the 3-L double pulse test is 

larger than that for 2-L. The extra inductance mainly comes from the extra module and Lac, which 

is L4 in the Fig. 3-11 (c) and (d). Since v = L·di/dt, when loop inductance L is increased, the 

magnitude of the voltage overshoot and oscillation are increased accordingly. To verify the 

correctness of this hypothesis, a simulation for CIL test is conducted in LTSpice. As shown in Fig. 

3-11 (c) and (d), except the L4 in (d) is 10 nH larger than that in (c), all other parameters are the 

same. Fig. 3-11(e) and (f) are the simulation results obtained using (c) and (d), respectively. 

Obvious oscillation in both vds and ids can be observed in (f), with much higher voltage overshoot 

and longer settling time. 

During turn-off transient, there is a positive di/dt going through the freewheeling diode and a 

negative di/dt at the same value going through the MOSFET, leading to a switching commutation 

loop. The increase of the stray inductance in any part of the switching loop, which consists of the 

freewheeling diode, the MOSFET, dc-link capacitor and PCB traces, will result in an increase in 

the total loop inductance. Because of the large di/dt, a voltage drop will be induced on the loop 
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inductance, which further leads to large voltage overshoot in Vds. The loop inductance also 

resonates with the MOSFET output capacitance, which contributes to the ringing as well. Due to 

the MOSFET output capacitor, current oscillation will be proportional to dv/dt. The same principle 

is also applied to the turn-on transient. In addition, larger loop inductance leads to more energy 

stored during the switching transients, which increases the settling time. Comparing the switching 

waveforms of various switch positions presented in Fig. 3-9, it can be seen that the voltage 

overshoot and oscillation is larger on the switches in the CS module than that on the switches in 

the HB module during turn-off transient. Meanwhile, the current overshoot and oscillation are 

more severe on the switch positions in the HB module than that on the switch positions in the CS 

module during turn-on transient. 

When comparing to the datasheet, the Eoff presented in Fig. 3-10 is larger than the datasheet 

value, while Eon is smaller than the datasheet value. One of the major factors for this phenomenon 

is still the increase of the loop stray inductance. According to [23], for a SiC MOSFET, a larger 

stray inductance will lead to less turn-on loss and larger turn-off loss, which results in a reduced 

overall switching loss. This is actually a trade-off between device voltage stress and switching loss 

due to the loop parasitic inductance.  
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Figure 3-10 Measured switching energy of T-type module at Vdc = 700 V, with Rgon = 5 Ω and 

Rgoff = 2.5 Ω: (a) S4, (b) S2. 
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Figure 3-11 Equivalent circuit of DPT for (a) an HB module and (b) a T-type phase leg, (c) and 

(d) are the corresponding simulation circuit, (e) and (f) are corresponding switching waveforms, 

respectively. 
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3.5 Full power prototype 

3.5.1 SiC modules and gate drivers 

As mentioned in the introduction, all SiC MOSFET power modules are used in this paper. Due 

to the lack of SiC T-type modules, to build a T-type phase leg using commercial off-the-shelf 

(COTS) modules, there are two approaches. One is using three HB modules, as shown in Fig. 3-

12(a). In this configuration, the clamping leg is comprised of two HB modules. The other method 

is using one HB module and one module in CS or the common-drain (CD) configurations, as 

shown in Fig. 3-12(b). Compared to the first approach, using a CS or CD module will significantly 

reduce the hardware cost and increase the power density.   

 

Figure 3-12 T-type configuration built by (a) three HB modules (b) one HB module and one CS 

module. 

In this paper, the CS module is selected as the clamping leg. As discussed in [10], the switch 

position in the HB module needs to withstand the full DC bus voltage, while the switch position 

in the clamping leg only needs to withstand half of the DC bus voltage. The DC bus voltage used 

in this work is 700V. Further considering the voltage overshoot during the switching transient, 

1200 V HB SiC MOSFET module and 900 V CS SiC MOSFET module are chosen. To drive the 

modules, a COTS dual-channel differential isolated gate diver from Wolfspeed is used, which 
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includes two separate channels to drive both switch positions in a module. The configuration of 

the gate driver for CS module is slightly different from that for the HB module, since both switch 

positions may need to be ON at the same time, which should be prohibited in HB module to avoid 

the short through.  

3.5.2 DC-link capacitor 

The volume of the dc-link capacitors usually takes a large portion of the volume of the overall 

inverter system. Therefore the design and selection of proper dc-link capacitor are critical to the 

volumetric power density of the inverter. In this work, two important factors are considered, i.e., 

the minimum capacitance and the rating of root-mean-square (RMS) current. The minimum 

capacitance in the dc-link [24] in a three-phase 3-L converter can be expressed as 

                                                      ,min
2

Max d
d

dc dc

P T
C

V V

 


 
                                                       (3-6) 

where ΔPMax is maximum power variation of the inverter; Td is the response time of the voltage 

control loop (5 to 10 times of a switching period); ∆Vdc is maximum allowable voltage fluctuation. 

In this work, ∆PMax is set to be 30% of the full power, and ∆Vdc is set to be 15% of the dc bus 

voltage. Therefore the minimum dc-link capacitance is  

,min

( 30% 250kW) ( 10 / 20kHz)
255 μF

2 ( 700 ) ( 15% 700 )

Max d
d

dc dc

P T
C

V V V V

 =   =
 =

=   = 
                       (3-7) 

  The DC-link capacitor RMS current is a function of the modulation index, power factor, and 

not only the load current at the fundamental frequency but also current at switching frequency and 

their harmonic contents. According to [25], for a 3-L inverter, it can be derived as follows  
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where IN is the phase peak current. In this work, the calculated RMS current is 173 A, and 225 μF 

capacitance is needed. Since the SiC devices can efficiently operate at a higher switching 

frequency, the capacitance needed for dc-link can be dramatically reduced [1]. This can potentially 

lead to a significant increase in volumetric power density since the capacitors in the dc link usually 

take 1/3 or even more space in a traction inverter. 

3.5.3 Laminated busbar 

To achieve low impedance and high reliability, a laminated bus bar is designed in this work to 

withstand high current. As shown in Fig. 3-13(a), there are four different voltage levels in busbar, 

i.e., DC+, DC-, DC0, and AC. Different from only one current commutation loop in a two-level 

inverter, there are two commutation loops in each T-type phase leg, i.e., green and blue shaded 

paths. To minimize the stray inductance, laminated layers is adopted in the busbar design. 

Meanwhile, since both the modules and dc-link capacitors are supposed to contact with the busbar 

tightly, spacers with different height are inserted to create a flat surface on the bottom of busbar. 

As the spacer brings extra parasitic inductance, a thinner spacer is preferred, and the lower layer 

will have a thinner spacer. The solid blue lines represent the busbars, and the yellow circles show 

the spacers. The exploded view of the laminated bus bar is shown in Fig. 3-13(b). The conductive 

layers, DC+, DC-, DC0, AC, are placed from top to bottom. The HB and CS modules in each 



54 

phase are placed as close as possible to each other, but needs to meet the voltage clearance distance. 

In this way, the total stray inductance of the bus bar can be reduced.   

 

Figure 3-13 T-type phase leg (a) circuit with busbar (b) exploded view. 

The laminated bus bar used copper as a conductive material and the PET material as an 

insulation layer. The insulation layer is 0.5 mm thickness inner and 0.25 mm outer to meet the 
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insulation requirement between different layers. Three sets of terminals, i.e., DC+, DC0 and DC-, 

are used on the DC input side, so DC layer thickness can be reduced to 1.5 mm to handle 300 A 

current. Meanwhile, one AC output is given in each phase, and the AC layer thickness is 3 mm to 

go through 300 A RMS. The stray inductance of the laminated busbar is analyzed using Q3D FEA 

simulations, one commutation loop in each phase of busbar has around 22 nH parasitic inductance, 

which includes the stray inductance from laminated busbar and the spacers. The stray inductances 

of the bus bar extracted using Q3D are presented in Table 3-5.  

Table 3-5 Stray inductance of the bus bar extracted using Q3D 

 

 

 

 

Fig. 3-14 A picture of the traction inverter prototype. 

 
Phase A 

(nH) 

Phase B 

(nH) 

Phase C 

(nH) 

Loop 1 21.76 20.53 22.17 

Loop 2 23.12 22.31 23.57 
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3.6 Experimental studies 

The proposed T-type inverter was prototyped as shown in Fig. 3-14. The CIL tests were also 

performed using the actual prototype to evaluate the switching performance of the SiC modules. 

The test setup is shown in Fig. 3-15. The drain to source voltage is measured by using a differential 

probe THDP0200, while load current is measured by a current probe TRCP0600 since it’s difficult 

to mount CVR on the busbar. DC bus voltage is set at 700V. A typical multiple-pulse CIL test 

result is shown in Fig. 3-16, in which the load current was gradually increased from 0 A up to 400 

A with a step size of 50 A. Although obvious ringing can be observed, both current and voltage 

are within the safe operating region of the module.  

 

Fig. 3-15 The CIL test setup for actual prototype. 
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Fig. 3-16 A typical prototype-based CIL test result. 

The high power testing for the prototype has also been performed to validate the performance 

of the inverter. The test setup is shown in Fig. 3-17(a). The inverter is connected to a high power 

resistive load bank via an LC filter designed to bypass the switching noises. The phase current and 

inverter terminal voltages are captured by using both oscilloscope and sensors, whose outputs are 

captured by a data acquisition system (DAQ). The gate signals are generated using dSPACE 

MicroLabBox. The details of the custom cold plate with mounted modules are shown in Fig. 3-

17(b). Fig. 3-18 shows the experimental waveforms of the inverter stage at full power, when dc 

bus voltage is 700 V and output line-to-line voltage at the inverter terminal is a typical 5 level 

waveform with 400V rms. The filtered output phase current and line-to-line voltage are sinusoidal. 

The test result shows the THD on line voltage is 29.28%, which represents a 47.5% reduction 

compared to the conventional 2-L topology. This is critical for EMI mitigation and passive filter 

volume reduction. At each load power, the inverter was operated for sufficient time, which may 

even longer than an hour, to reach the thermal equilibrium and then the efficiency was measured 
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over the coolant. Fig. 3-19 shows the measured efficiency versus load power. As can be seen, the 

target peak efficiency of 98.5% has been achieved. 

  

(a) 

 

(b) 

Fig. 3-17 (a) The test setup for high power testing and (b) a picture of the cold plate with one 

module removed. 
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Fig. 3-18 Three-phase continuous test result. 

 

Fig. 3-19 Measured efficiency curve. 

3.7 Conclusion 

This paper presents a detailed design procedure of a high power density of 250 kW three-phase 

three-level T-type traction inverter. Comparing with the existing T-type topology work, the power 

rating and power density is much higher. A comprehensive analysis of the operating modes and 

current commutation loops in a T-type phase leg are provided. Moreover, comprehensive CIL tests 



60 

have been conducted to evaluate the switching characteristics. Based on the analysis for the power 

losses and switching performance, major components in the inverter system, such as power 

modules and dc-link capacitors are selected to satisfy the design requirements. In addition, an 

optimized busbar is designed to minimize the stray inductance and satisfy the output power 

requirements. The experimental results of pulse testing and high power testing are presented to 

validate the performance of the inverter prototype.  
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CHAPTER 4 

BUSBAR DESIGN AND OPTIMIZATION FOR VOLTAGE OVERSHOOT 

MITIGATION OF A SILICON CARBIDE HIGH-POWER THREE-PHASE T-TYPE 

INVERTER 

© 2020 IEEE. Reprinted, with permission, from Z. Wang, Y. Wu, M. H. Mahmud, Z. Yuan, 

Y. Zhao and H. A. Mantooth, "Busbar Design and Optimization for Voltage Overshoot Mitigation 

of a Silicon Carbide High-Power Three-Phase T-Type Inverter," in IEEE Transactions on Power 

Electronics, vol. 36, no. 1, pp. 204-214, Jan. 2021. 

4.1 Abstract 

Silicon carbide (SiC) devices have faster switching speed than that of the conventional silicon 

(Si) devices, which however may cause excessive device voltage overshoot. Although larger gate 

resistance can help to restrain the overshoot, it slows down the switching speed and increases 

switching losses [1]. There are other methods that can mitigate the voltage overshoot, e.g., using 

low inductance busbars, adding snubber circuits, and etc. In this work, a 250kW SiC T-type 

inverter is investigated. Current commutation loops (CCLs) are firstly analyzed using a single-

phase equivalent circuit. Then detailed busbar design methods, especially a three-dimensional (3D) 

busbar design concept, are proposed to select the optimal stacking order for the multi-layer 

laminated busbar and to address constraints posed by the physical terminal arrangements of SiC 

modules and dc-link capacitors. The stray inductance in each CCL is extracted via a 3D finite 

element analysis and validated on the actual inverter busbar prototypes using an impedance 

analyzer. To further minimize the busbar stray inductance, a hybrid bus bar structure with buffer 

circuit printed circuit board (PCB) using high-frequency decoupling capacitors is designed and 
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evaluated in this work. Finally, the effectiveness of the designed busbars as well as the buffer 

circuit are validated using experimental studies.  

4.2 Introduction 

The conventional two-level (2-L) inverter still dominates the motor drive market, especially 

for the low voltage applications. However, a significant amount of research effort has gone into 

the development of new inverter topologies to reduce the harmonics in output voltage and improve 

efficiency. Recently, multi-level inverters, which can generate low-harmonic output waveform to 

better resemble sinusoidal references [2], [3], have attracted substantial attention for not only the 

medium voltage drives but also the low voltage applications. Three-level (3-L) inverters, e.g., 

neutral-point-clamped (NPC) inverters, active-NPC (ANPC), and T-type (TNPC) inverter are the 

most commonly used among multi-level inverters [4]-[6]. Compared to the NPC or ANPC, which 

has six switch positions per phase, the T-type topology only has four switch positions per phase, 

although two of these devices need to withstand higher voltage stress. The development of a new 

generation of WBG devices with higher breakdown voltage and lower switching loss could 

potentially remove this limitation. In this work, the design of a T-type traction inverter, which can 

exploit the benefits of 3-L T-type topology and the silicon carbide (SiC) MOSFET modules, is 

presented.  

When using SiC devices, the potential excessive voltage overshoot and ringing need to be 

mitigated. For SiC devices, the overshoot voltage during turn-off transient is a common issue, and 

if not handling properly, it may significantly reduce the device lifetime or even cause device failure 

[30], [31]. The voltage overshoot is mainly related to the fast switching of a SiC device, e.g., high 

di/dt, and the total stray inductance in the current commutation loops (CCLs) [32], [33]. The SiC 

devices can switch ten times faster than their silicon counterparts, which lead to 5~10 times higher 
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di/dt. To retain the merit of fast switching speed, the minimization of total stray inductance 

becomes the most critical path mitigating the voltage overshoot. The stray inductance in a CCL 

may come from 1) the parasitic inductance of the DC link capacitors; 2) the stray inductance of 

the semiconductor devices or power modules; 3) the stray inductance on the bus bars connecting 

the capacitors and the power devices. Hence, it is preferred to use capacitors and power 

devices/modules with low parasitic inductance. In a high-power voltage source inverter, the 

bussing structure needs to be designed and optimized to ensure low inductance connection between 

the DC capacitors and the power modules. The laminated bus bar structure, which consists of 

multiple copper sheets, separated from each other by a dielectric material, is commonly used since 

it can effectively reduce the stray inductance. A properly designed bus bar could potentially reduce 

the voltage overshoot, electromagnetic interference (EMI) emission, switching losses, and thermal 

stress [7]-[10], at the same time enhance the system mechanical strength. 

Generally speaking, the laminated bus bar design is case by case and needs to be optimized 

based on the power module to be used and the potential applications. Different circuits topology 

and power rating also affect the bus bar design. For instance, bus bar design examples for single-

phase H-bridge inverters [11], [12], a three-phase inverter [13], and single-phase T-type phase legs 

[14], [15], [26] can be found in the existing literatures. Usually, the objective of bus bar design 

and optimization is to achieve the lowest impedance of the busbar itself, at the same time, ensure 

system specifications can be met. Multilevel topology has lower dv/dt and EMI, but its bus bar 

design can be complicated. Especially multiple co-existing CCLs will make the bus bar design 

difficult, since low stray inductance and the symmetry of CCLs among different phases need to be 

considered [16]-[18].  
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Fig. 4-1 Comparison of loop inductance for three-phase 3L inverters. 

In this work, the design and optimization process of a multi-layer laminated busbar, which is 

proposed to improve the switching performance and reduce voltage overshoot, for a three-phase 

three-level T-type inverter is presented. This 250-kW all-SiC T-type traction inverter is designed 

for heavy equipment applications [27]. Novel 3-D busbar structure and hybrid bus bar with PCB 

snubber board are proposed which can achieve lower busbar inductance than published three-phase 

3-level inverter literature, as shown in Fig. 4-1 [17], [18], [28], [29]. 

The analysis of CCLs in a three-level T-type inverter is presented in Section 4.3, which leads 

to the bus bar optimization process described in section 4.4. In Section 4.5, the laminated bus bar 

models are evaluated using finite element analysis (FEA) to obtain the stray inductance in each 

CCL, which is further verified using the inductance measurement by the impedance analyzer for 

the bus bar prototypes. Since high-frequency decoupling capacitor can provide the lower 

inductance path during switching transients, it also can restrain voltage overshoot, so a hybrid bus 
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bar structure with snubber PCB board designed for the T-type inverter is also presented in this 

work, which is in Section 4.6. Finally, experiments are conducted to verify the validity of busbar 

design, snubber board design and the veracity of theoretical analysis in Section 4.7.  

4.3 Modeling and analysis of current commutation loops in a T-type inverter 

4.3.1 The effects of parasitic inductance 

To study the voltage overshoot of a power device, the dynamic model for the turn-off transient 

needs to be established. Taken the 2-L double pulse test circuit as an example, its equivalent circuit 

during turn-off is shown in Fig. 4-2(a). There is only one CCL in this configuration, where the R 

and L represent the lumped equivalent series resistance (ESR) and equivalent series inductance 

(ESL) in the conduction path, and C stands for output capacitance of the device, i.e., Coss. Using 

small signal theory, the dynamic model for the turn-off transient can be simplified into a second 

order RLC circuit, as shown in Fig. 4-2(b). The corresponding circuit model and the transfer 

function from the commutation current to the voltage stress with the zero initial conditions could 

be written as (4-1) and (4-2), respectively. 
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According to (4-2), the drain-source voltage can be regarded as the step response of a second 

order RLC circuit. Therefore, the overshoot σ and damping ratio ζ can be expressed as: 
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Fig. 4-2 Dynamic model of a single device turn-off transient: (a) an equivalent circuit and (b) a 

small signal simplified second-order RLC circuit. 

It can be concluded from (4-3) that to reduce the overshoot, the damping ratio needs to be 

increased. According to (4-4), increasing R and/or C or decreasing L can increase the damping 

ratio. R is the parasitic resistance in the CCL, which is related to the heat generation. Increasing R 

could lead to thermal issues, which may be harmful to the components in the CCL. C is the output 

capacitance of the device, which is an intrinsic parameter of the device itself. While for SiC 

devices, the output capacitance is usually much smaller than that of the Si devices, which 

contributes higher overshoot for SiC devices. To sum up, the most efficient approach to mitigating 

voltage overshoot is to keep L, the loop stray inductance, as low as possible.  
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(a)                                                                

          

spacer

 

 (b) 

Fig. 4-3 Pictures of (a) the Wolfspeed SiC module [25] used in this work and (b) a laminated 

busbar with embedded spacers. 

 

Fig. 4-4 A detailed equivalent circuit model of a T-type phase leg.  
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4.3.2 A practical circuit model for a T-type phase leg  

The SiC power modules, both half-bridge (HB) modules and common-source (CS) modules, 

used in this works were prototyped by Wolfspeed. Given the power lead frames shown in Fig. 4-

3(a), to enable a compact integration of the busbar, modules, and dc-link capacitors, cylindrical 

spacers were used to create a flat surface on the bottom of the bus bars, as shown in Fig. 4-3(b). A 

practical circuit model for a T-type phase leg considering the busbar and spacers is shown in Fig. 

4-4. S2 and S3 are the two switch positions in the CS module, which serves as the clamping leg. 

While S1 and S4 are the two switch positions in the HB module. The blue lines are the layers in 

the busbar and the yellow circles represent spacers. As can be seen, for a T-type phase leg, the 

busbar consists of various layers with different voltage levels, i.e., DC+, DC-, DC0, and AC. In 

addition, different from only one CCL in a single phase 2-L inverter, there are two CCLs in each 

phase of a T-type inverter, i.e., green and blue dash lines.  

Table 4-1 Switching states 

State VxO S1 S2 S3 S4 

P +Vdc/2 on on off off 

O 0 off on on off 

N ‒Vdc/2 off off on on 

 

4.3.3 Modeling and analysis of CCLs in a T-type phase leg   

All the CCLs in the circuit and the stray inductance distributions must be thoroughly 

investigated to ensure a low inductance busbar design. Fig. 4-5 illustrates the current commutation 

process in a single-phase T-type inverter. As shown in Fig. 4-5, each CCL consists of dc-link 

capacitors, switch positions, spacers and multiple layers in the busbar. The switching states P, O, 
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N of a T-type converter are defined in Table 4-1 [6]. These three switching states lead to three 

voltage levels of phase-neutral voltage VxO, i.e., +Vdc/2, 0, and ‒Vdc/2, where x = a, b, or c. 

The first type of CCL, i.e., CCL1 occurs during the transition between P state and O state. 

Taking the transition from P state to O state as an example. In the beginning, the circuit is in P 

state, i.e., S1 and S2 are ON, while S3 and S4 are OFF. In the meantime, the load current flows 

through S1, as shown in Fig. 4-5(a). During the turn-off of S1, the load current commutates from 

S1 to the clamping leg, i.e., the current flowing through S1 decreases, and the current flowing 

through the clamping leg increases with the same di/dt. Due to the loop inductance, there is an 

overshoot in the drain-source voltage of S1, when it turns off. In the end, the circuit is in O state, 

i.e., the S1 is OFF and the clamping leg carries the load current, as shown in Fig. 4-5(b). The 

corresponding CCL, which is denoted as CCL1 is shown in Fig. 4-5(c), including top dc-link 

capacitors, S1, S2, and S3 switch positions and the DC+ DC0 and AC layers in the busbar. 

The second type of CCL, i.e., CCL2, occurs during the transition between the N state and the 

O state. Taking the transition from N state to O state as an example. In the beginning, the circuit 

is in N state, i.e., S3, S4 are ON, while and S1 and S2 are OFF. In the meantime, the load current 

flows through S4, as shown in Fig. 4-5(d). During the turn-off of S4, the current commutates from 

S4 to the clamping leg, i.e., the current flowing through S4 decreases, and the current flowing 

through the clamping leg increases at the same di/dt. Due to loop inductance, there is an overshoot 

in the drain-source voltage of S4. In the end, the circuit is in the O state, i.e., S4 is OFF, and the 

clamping leg carries the load current, as shown in Fig. 4-5(e). The corresponding CCL, which is 

denoted as CCL2 is shown in Fig. 4-5(f), including bottom dc-link capacitors, S2, S3, and S4 

switch positions and the DC-, DC0, and AC layers in the busbar. 
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Fig. 4-5 CCLs in a T-type inverter. Note, black solid portion represents conduction paths in (a), 

(b), (d) and (e), and represents the CCLs in (c) and (f). 

To optimize the bussing structure, the CCLs should be designed symmetrically, such that the 

switching performance of S1 and S4 can be close enough to each other. Based on the above 

analysis, both CCLs contain one clamping leg module and part of the bus bars. Given the 

symmetric layout of S1 and S4 in the HB power module, to achieve symmetric design for CCLs, 

the top and bottom DC-link capacitor bank, as well as the bus bars in each loop, should have similar 

stray inductances. 

Each CCL consists of DC-link capacitors, SiC MOSFET switch positions, laminated bus bars, 

connecting screws, and spacers. The loop inductance of the CCLs shown in Fig. 4-4(c) and (f) can 

be expressed as: 

CCL cap module busbarL L L L= + +                                                     (5) 
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1 0 AC

1

2
CCL cap HB CS DC DCL L L L L L L= + + + + ++                                    (6) 

2 DC- 0 AC

1

2
CCL cap HB CS DCL L L L L L L= + + + + +                                     (7) 

Where Lcap is the ESL of dc-link capacitors, Lmodule is the parasitic inductance of SiC MOSFET 

module, Lbusbar is the parasitic inductance of laminated busbar including spacers, LHB is the 

parasitic inductance of HB module, LCS is the parasitic inductance of CS module, LDC+, LDC- and 

LDC0 are the parasitic inductances of DC+ layer, DC- layer and DC0 layer, respectively, LAC is the 

parasitic inductance of AC layer in the busbar. Besides selecting modules, capacitors, and screws 

with lower stray inductance, to further reduce the stray inductance, the design and optimization of 

the busing structure should be the main focus. 

4.4 Multi-layer laminated busbar design process 

4.4.1 The busbar design principles 

The laminated busbar usually consists of multiple conduction layers separated by the thin layer 

of insulation materials. The generic structure of a two-layer laminated busbar is shown in Fig. 4-

6. The length, width, thickness of each layer is represented by l, w, and t, respectively, while d is 

the distance between two layers. The cross-sectional area of each layer, which is the product of the 

conductor’s width and thickness, determines its current carrying capability. The relationship 

between current carrying capability and cross-section area [19] can be expressed as 

( )  6
=400 0.785 1 0.05 1 10  A I N

−
   + −                                     (4-8) 

Where A is the cross-sectional area of the conductor measured in inches2, I is the maximum 

current in amperes, N is the total number of the conductors in the bus assembly. 400 circular mils 
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per ampere is a traditional basis for the design of single conductors. Since bus bars are not round, 

circular mils must be converted to square mils by multiplying 0.785. 

The planar layout of the busbar is usually decided by the footprint of modules and dc-link 

capacitors, as well as how they are placed. To meet the criteria of the maximum allowed current 

density, e.g., 5 A/mm2, the most direct way to adjust the cross-sectional area of the bus bar is to 

vary the thickness. Obviously, the thicker the bus bar, the lower the current density without 

considering the skin effect. However, increasing the thickness will increase the weight of the bus 

bar. Therefore, it is usually required to trade the current density against the weight of the bus bars 

based on the specifications for particular applications. 

 

Fig. 4-6 Model of a generic two-layer laminated busbar. 

 

The self-inductance of a single layer busbar [20], [21] can be expressed as:  

4 2
2 10 ln 0.5 0.2235self

l w t
L l H

w t l


− +
=  + +

+

    
    
    

                              (4-9) 

The l, w, t are measured in mm. The l and w usually depend on the footprint of the modules 

and capacitor, while t is usually decided by the current density requirement. To reduce the self-

inductance, the layout of the busbar needs to be carefully considered. Due to the proximity effect, 

the high-frequency current distribution tends to concentrate on the adjacent surface of the copper 
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bar. Two laminated layers with opposite current directions lead to opposing magnetic flux lines, 

which will weaken the radiated emissions of each other. Thus, mutual inductance exists, which 

has a negative value when two bus bars carrying current in opposite directions. Take the two-layer 

bus bar as an example, the total stray inductance can be expressed as 

1 2 2total self self mutualL L L L= + +                                              (4-10) 

Since the mutual inductance is a negative number when two current directions are opposite, 

and self-inductance is positive, the principle of busbar design optimization becomes reducing the 

self-inductance and increasing the negative mutual inductance, which is related to the overlap area 

and the distance between different layers. To enlarge the mutual inductance, larger overlap area 

and smaller vertical distance between conductive layers are preferred. Furthermore, the strong 

coupling provides good immunity to external magnetic interferences [22]. 

4.4.2 Busbar design process for a three-phase T-type inverter 

A systematic busbar design process for a T-Type inverter is presented in this section. The 

layout of the busbar should be symmetric, and the stray inductance in each CCL should be 

minimized. One possible placement of modules and capacitors of a three-phase T-type inverter is 

shown as Fig. 4-7(a), while the corresponding schematic is shown in Fig. 4-7(b). It is obvious that 

each phase consists of the same components, one HB module, one CS module and two series-

connected capacitors. This placement ensures each phase has almost identical CCLs, and the layout 

of all three phases is highly symmetrical to each other. To fit the way that components placed in 

Fig. 4-7(a), the planar layout of the laminated busbars are shown in Fig. 4-8. Since the CCLs are 

almost the same among the three phases, the details for phase A are illustrated as an example. 

High-frequency current flow paths are presented in Fig. 4-9, along the CCLs. Due to the existence 
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of two CCLs, i.e., CCL1 and CCL2, with two possible current flow directions, four high-frequency 

current flow paths are shown. 

 

(a) 

 

(b) 

Fig. 4-7 (a) A possible placement of the major components in a T-type inverter and (b) it’s 

corresponding schematic. 
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 (a)                                        

 

(b)                                        

Fig. 4-8 The planar layout of the laminated busbar for a three-phase T-type inverter: (a) Design I 

and (b) Design II. 
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(a)                                             (b)                                          

                                         

         (c)                                                   (d) 
Fig. 4-9 High-frequency current flow paths in different CCLs: (a) CCL1 with positive current (b) 

CCL1 with negative current (c) CCL2 with negative current (d) CCL2 with positive current. 

Figure 4-10 shows the relationship between the spacer thickness Δt and the parasitic inductance 

ΔL of each layer. It is obvious to see the spacer thickness has a significant influence on parasitic 

inductance; each millimeter increment will lead to nearly 0.2 nH addition to the parasitic 

inductance, which means the thinner spacer is better. Since the rate of the parasitic inductance 

increase is similar for layers with different voltage levels, to minimize the total loop inductance, 
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the task can be simplified to minimize the total spacer thickness. Due to the existing of multiple 

layers and the bottom layer has the shortest spacer, the stacking order of various layers in a busing 

structure needs to be optimized. 

 

Fig. 4-10 Relationship between spacer thickness Δt and the parasitic inductance ΔL. 

 

The busbar design shown in Fig. 4-8(a) is straightforward, denoted as Design I. Due to the use 

of two modules for one T-type phase leg, part of the AC layer is shared by both CCLs, Therefore, 

the parasitic inductance of the AC layer is very critical. This is the reason why the AC layer is also 

laminated. In Design I, the AC bus bar is placed on the very bottom, such that its spacer can be 

thinnest. DC0 layer is also shared by both CCLs, and it is placed on the second from the bottom, 

then DC+ and DC- layers, respectively. The exploded view of this bus bar design is shown in Fig. 

4-11(a). In the actual laminated bus assembly, copper is used as the conductive material due to its 

good electrical conductivity and mechanical strength. Four conductive layers are laminated with 

the overlap area set to be the largest. The insulation layers used PET material with 0.5 mm thick 

for inner layers and 0.25 mm outer layers to meet the voltage insulation requirement between 
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different voltage levels. High current density is usually concentrated on power terminals. 

Therefore, three sets of terminals are used in DC+, DC0, and DC- input sides to achieve low current 

density and even current distribution. As such, the thickness of dc layers can be reduced to 1.5 mm 

to carry 300 A in total. Meanwhile, one AC output is given in each phase, the AC power terminals 

cannot be split into multiple terminals in this case, so the thickness of the ac layer is set to be 3 

mm to carry 300 A rms current. 

 

(a)                                                                (b) 

Fig. 4-11 Exploded view of two bus bar designs (a) Design I and (b) Design II. 

 

4.4.3 An enhanced bus bar design – a 3D design concept   

The terminal layout of the power module and the gate/signal pins poses significant challenges 

to the busbar optimization. As shown in Fig. 4-4, the AC layer connects the AC output terminal of 

the HB module and one of the power terminals of the CS module. Since the AC layer is shared 

with both CCLs, it is critical to minimize its stray inductance. Therefore, using the shortest path to 
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connect those two terminals is preferred, for instance, as shown in Fig. 4-12(b). However, due to 

the laminate nature of multi-layer bus assembly, if the bus bar shown in Fig. 4-12(b) is placed on 

the bottom, to bolt it down to the DC- terminal of the HB module, screw holes and corresponding 

cut out for voltage insulation need to be made through the top layer of the bus bar to the bottom 

layer. As shown in Fig. 4-12(a), a U-shape AC bus bar is designed to connect the AC terminal of 

the HB module, and a power terminal of the CS module. This will not affect the lamination of the 

top layers, but it will significant elongate the current flow path and increase the parasitic inductance 

of the AC layer.     

 

(a)                                                     (b) 

Fig. 4-12 A diagram showing AC layer connection in the (a) Design I and (b) Design II. 

   To address this issue, a 3-dimension busbar design concept is proposed in this work. The 

main idea is to leverage the thickness of the busbar assembly to resolve the challenges posed by 

the physical terminal layout of the power modules, that is bury part of screws under a separate 

flexible bar. The planar layout of the proposed new busbar is shown in Fig. 4-8(b). The exploded 

view of the enhanced design, i.e., Design II, is shown in Fig. 4-11(b). Compared to the Design I 

shown in Fig. 4-11(a), the stack order of the layers in the enhanced design was changed to AC, 
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DC+, DC0, DC- from top to bottom. To enlarge the laminated area between the AC layer and other 

layers and shorten the current flow path, it is moved to the very top. And it is the mentioned 

separate flexible bar. The cross-sectional views of CCLs in Design I and Design II are illustrated 

in Fig. 4-13. In Design II, to ensure the AC layer is a complete wide copper plate, the DC- layer 

bolt is buried under the new AC bar as shown in Fig. 4-13(c) and (d). In addition, DC+, DC0, and 

DC- layers were laminated into a bus assembly, while the AC layer is built as an individual layer 

to be placed on top of the laminated busbar. Using this approach, screws can be used to bolt bus 

bar down to DC- terminal. Due to the thickness of the laminated bus bar, those screws are buried 

underneath the AC layer without affecting the optimized geometry of the AC layer. Moving the 

AC bus bar to the top using the proposed 3-D bussing structure will significantly reduce the 

parasitic inductance due to the enhance AC layer geometry. In addition, the parasitic inductance 

of total spacers in the new design keeps almost the same as the previous design. Moreover, Design 

II also leads to a 24% weight reduction compared to the Design I.   

4.5 Busbar parasitic inductance extraction 

4.5.1 Simulation studies using finite element analysis 

This section presents the simulation and measurement results to validate the effectiveness of 

the proposed low inductance busbar designs. There are several ways to obtain the parasitic 

inductance of a laminated busbar, such as the finite element analysis (FEA) or partial element 

equivalent circuit (PEEC) using numerical software simulation tools, and directly measured by 

time domain reflectometry (TDR) [22]. The principle of the FEA method is solving Maxwell’s 

equations, while PEEC reduces the computational cost by breaking large size connectors into small 

parts. TDR is relatively complicated and needs special software and hardware. Therefore, FEA 

and PEEC are more commonly used. In this work, ANSOFT Q3D was used for simulation studies, 
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and the results for Design I and II are presented in Tables 4-2 and 4-3, respectively. Simulations 

are carried out at 1 MHz, which emulate the frequency of MOSFET’s switching transients. As can 

be seen, the simulated loop parasitic inductance in the Design II is around 17nH in each CCL, 

which represents over 20% reduction compared to the Design I.  

Table 4-2 FEA simulation results for bus bar Design I 

 Phase A (nH) Phase B (nH) Phase C (nH) 

CCL1 21.76 20.53 22.17 

CCL2 23.12 22.31 23.57 

 

Table 4-3 FEA simulation results for bus bar Design II 

 Phase A (nH) Phase B (nH) Phase C (nH) 

CCL1 17.46 16.68 18.28 

CCL2 17.08 16.14 17.38 

 

Table 4-4 Measured total inductance of busbar Design I with CAP I 

 Phase A (nH) Phase B (nH) Phase C (nH) 

CCL1 30.05 27.91 28.08 

CCL2 28.42 27.22 29.16 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4-13 Cross section views of bus bars for (a) Design I CCL1, (b) Design I CCL2, (b) Design 

II CCL1 and (d) Design II CCL2. 
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Fig. 4-14 Impedance analyzer extraction setup. 

4.5.2 Stay inductance measurement using impedance analyzer 

The ESL in the DC-link capacitors contributes a significant amount to the entire loop parasitic 

inductance. The selection process of the DC-link capacitor was presented in [23]. In this work, two 

kinds of commercial off-the-shelf (COTS) capacitors with similar electrical parameters were 

investigated. The measured ESL for of them, i.e., CAP I, is 20 nH. While the other capacitor, i.e., 

CAP II, has lower ESL, which is around 13.9 nH each. The impedance of bus assembly and 

capacitors are measured by using the Keysight impedance analyzer, and the setup is shown in Fig. 

4-14. Fixture boards are designed to connect the dc-link capacitor/bus bars to the impedance 

analyzer. [34] The DC-link capacitors were bolted on the busbar during the measurement. One 

copper sheet is used to short the CS module. The measurements were taken between two power 

terminal spacers for the HB module, i.e., between DC+ and AC for CCL I and between DC- and 

AC for CCL II. Fig. 4-15(a) shows the measured impedance in each CCL of the busbar Design I 

with CAP I, and the results were summarized in Table 4-4. The frequency responses and measured 

parasitic inductances of all CCLs are very close to each other, which validated the symmetrical 
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bus bar design. Fig. 4-15(b) shows a comparison between Design I with CAP I and Design II with 

CAP II, which clear shows over 20% reduction in total loop parasitic inductance, from 27.218 nH 

to 21.822 nH. 

 

(a) 

 

 

(b) 

Fig. 4-15 (a) measured loop impedance of busbar Design I with CAP I and (b) a loop impedance 

comparison between the busbar Design I with CAP I and busbar Design II with CAP II. 
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4.6 A hybrid bus bar structure with PCB snubber circuit using high-frequency 

capacitors 

In the high-frequency range, the decoupling capacitors Cdec can be regarded as a short circuit, 

which provides a path to the high-frequency current components, which helps to mitigate the 

voltage overshoot. According to [24], the selection of Cdec should meet the following requirement: 

250dec ossC C                                                         (4-11) 

where Coss is the output capacitance of the SiC MOSFET. Multilayer ceramic capacitors (MLCC) 

are utilized in this work for the decoupling capacitor bank Cdec. In this T-type topology, Cdec is 

placed between both DC+, DC0, and DC-, DC0, as shown in Fig. 4-16. To reduce the impact 

brought by ESL of Cdec, eight 0.33 μF MLCCs are paralleled together to form a capacitor bank 

across each switch position. The decoupling capacitors should be placed as close to the modules 

as possible, so the snubber board in this work is directly bolted on top of the busbar, formed a 

hybrid bus bar structure with snubber a PCB board as shown in Fig. 4-18(d).  

 

Fig. 4-16 Schematic of T-type topology with decoupling capacitors. 
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4.7 Experimental studies 

The T-type inverter was prototyped as shown in Fig. 4-17. Table 4-5 shows the inverter system 

specifications that are related to the busbar design. Each phase leg consists of one HB module and 

one CS module. Six 220 μF DC-link capacitors rated at 600 V are used in 2×3 configuration, i.e., 

2 capacitors in series and 3 of them in parallel, to form a capacitor bank, which is 330 μF with 1.2 

kV voltage rating.  

 

Fig. 4-17 A picture of the T-type inverter prototype. 

Table 4-5 Inverter system specifications 

Parameters Value 

Rated power 250 kW 

DC-bus voltage 700 V 

Phase RMS 

current 

300 A 

Switching 

frequency 

20 kHz 
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Double pulse tests (DPTs) were performed using the actual prototype to evaluate the switching 

performance of the modules and the designs of the busbar. The test setup is shown in Fig. 4-18(a). 

Three configurations are tested, including the busbar Design I with CAP I, the busbar Design II 

with CAP II, the busbar Design I with CAP I, and the snubber circuit board. The load used for 

DPT is an air-core inductor with an inductance of 40.2 μH, while turn-off gate resistance Rgoff is 

2.5 Ω. The pulses are generated by dSPACE MicroLabBox. The drain to source voltage is 

measured by using a differential probe THDP0200, and Rogowski coil is used to sense the inductor 

current. The schematic of the DPT test for the HB module is shown in Fig. 4-19. The gate pulses 

are applied to S4 in the HB module, which is the device under test (DUT), and the body diode of 

S2 in the CS module is the freewheeling diode. In this test, the gate signals for S1 and S2 are 

always low, while the gate signal for S3 is always high. In this way, D2 and S4 form the standard 

configuration for a clamped inductive load (CIL) test [27].  

A comparison of all three cases is shown in Fig. 4-20, where the DPT was performed at 700 V 

DC bus voltage and 450 A load current. Fig. 4-20 shows the drain to source voltage, i.e., Vds of 

phase B bottom switch position S4 during the turn-off transient, which reflects the CCL2 

inductance in phase B. It can be concluded that busbar Design II with CAP II has much lower 

voltage overshoot than the Design I with CAP I, where a 74 V voltage overshoot reduction can be 

observed. The design of the snubber board is also effective, which shows over 100 V voltage 

overshoot reduction. Fig. 4-21 compares the magnitude of voltage overshoot for three cases when 

DPT tests were performed at different load current. It can be observed that the mitigation of voltage 

overshoot is consistent from low current to high current. And it is worthwhile noted that voltage 

overshoot in the case using enhanced busbar design is similar to that in the case using a snubber 

circuit.  
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(a) 

       

 (b)                                      (c)                                          (d) 

Fig. 4-18 (a) The CIL test setup and details of (b) busbar Design I, (c) busbar Design II and (d) 

busbar Design I with snubbers.  
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Fig. 4-19 Schematic of CIL test for HB module. 

Additional multiple-pulse tests (MPTs) were performed using different configurations, i.e., 

case I busbar Design I with CAP I, case II busbar Design II with CAP I, and case III busbar Design 

II with CAP II. The purpose of these tests was to validate the impact of stray inductance from 

busbar and dc-link capacitors under variable di/dt. According to [35], di/dt increases with the load 

current. As can be seen in Fig. 4-22, the voltage overshoot with eight load current conditions from 

50 A to 400 A with 50 A interval are measured. Under individual load current, which means 

individual di/dt, it can be seen the voltage overshoot performance comparison like Fig. 4-20 is the 

same. From Fig. 4-22(a) and (b), it can be observed that voltage overshoot is reduced using a 

busbar with lower parasitic inductance, while the comparison between Fig. 4-22(b) and (c) clearly 

shows the voltage overshoot mitigation caused by using DC link capacitors with lower ESL.    
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Fig. 4-20 Comparisons of drain to source voltage with 700V dc bus and 450A load current. 

  

Fig. 4-21 Comparison of voltage overshoot with various load currents. 
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(c) 

Fig. 4-22 The drain to source voltage and load current waveforms during the MPTs for (a) 

busbar Design I + CAP I (b) busbar Design II + CAP I (c) busbar Design II + CAP II. 



95 

4.8 Conclusion 

This paper presented a comprehensive study of the voltage overshoot issues and minimization 

for a three-phase T-type inverter, including busbar design optimization and adding additional the 

decoupling circuit. The analysis of CCLs in a single phase T-type phase leg was presented. Then 

the busbar design and optimization process were described in detail. A novel 3-dimensional bury-

screw busbar is proposed to minimize the bus bar parasitic inductance. Stray inductance in each 

CCL is extracted via FEA simulation and captured using an impedance analyzer. Furthermore, a 

hybrid bus bar structure with PCB snubber circuit was designed and evaluated to reduce voltage 

overshoot. Finally, the experimental results were presented to validate the effectiveness of busbar 

and buffer circuit design. 
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CHAPTER 5 

FIXTURES DESIGN CONSIDERATIONS FOR IMPEDANCE MEASUREMENT 

© 2021 IEEE. Reprinted, with permission, from Z. Wang et al., " Fixtures Design 

Considerations for Impedance Measurement." 2021 IEEE Applied Power Electronics Conference 

and Exposition (APEC), Phenix, AZ, 2021. 

5.1 Abstract 

The parasitic impedance in a current commutation loop (CCL) is a major factor for the 

switching performance of power electronics especially the wide bandgap (WBG) devices, which 

usually generate high di/dt. The terminals of components in a CCL may not always be standard. 

The fixture adapter with clip lead may not be accurate enough for WBG application, while the 

commercial high bandwidth fixture adapters are not always available. Therefore, it is critical to 

design fixture adapter boards to make a better interface and mitigate measurement errors. In this 

work, detailed fixture design procedures are presented. These design methods were validated by 

comparing with the commercial fixture adapters. In addition, various considerations to further 

improve the measurement accuracy are discussed, summarized, and evaluated through tests. The 

dc-link capacitors and the busbar for a half-bridge module are regarded as the device under test, 

whose impedance is extracted using the proposed fixture design. Finally, the experimental results 

from the double pulse test verified the accuracy of the proposed fixture design, with an error of 

less than 1%. 

5.2 Introduction 

The large stray inductance over a current commutation loop (CCL) may lead to switching 

oscillations, voltage overshoot, and additional power losses [1], [2], especially when using silicon 
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carbide (SiC) devices. The stray inductances in a high-power CCL may come from 1) dc-link 

capacitors, 2) the power modules [3], [4], and 3) busbars connecting capacitors to power modules 

[4]-[7]. For dc-link capacitors, their stray inductance information provided by the manufactures is 

usually the reference value instead of the actual value, and it is difficult to obtain through the 

simulation. As a result, it is recommended to measure and compare the stray inductance by using 

an impedance analyzer during the capacitor selection process. In addition, when a busbar is built, 

it is necessary to measure the parasitic inductance before its application to ensure its performance 

can match the finite element analysis (FEA) simulation result [8]-[10] in the early stage. The 

problem is that the most accurate off-the-shelf adapter fixture with high-bandwidth, e.g., greater 

than 10MHz, is designed for surface mount device (SMD) or leaded passive device, as shown in 

Fig. 5-1(a) and (b). When it comes to larger components like dc-link capacitor and custom busbars 

with screw terminals, the only choice for adapter fixture is clip lead, as shown in Fig. 5-1(c), most 

of which designed with low-bandwidth accuracy, e.g., less than 100kHz. Meanwhile, the 

connection between clip leads and device under test (DUT) is not stable, and the measurement 

result will change when the position of clip leads slightly moves. To solve this problem and make 

better interface between the impedance analyzer and DUT with different kinds of terminals, it is 

better to build customized adapter fixtures. 

References [11] and [12] claimed that an impedance analyzer with a custom fixture board was 

used to measure the busbar impedance. However, no details on the fixture board design have been 

presented. In [13], custom fixture boards were designed for impedance measurement of power 

modules, and the results obtained using commercial and custom fixtures were compared with each 

other. However, there are no fixture board design considerations and guidance presented in this 

literature. In this work, a detailed design procedure on the fixture adapters is presented, which has 
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not been discussed in the existing literature. In addition, various fixture designs are compared to 

conclude design guidance. Furthermore, the proposed design approach has been validated by 

experimental studies. 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 5-1 Commercial fixture adapter of impedance analyzer (a) for SMD (b) for leaded passive 

device (c) with clip lead. 

5.3 Measurement by using the commercial fixture adapter 

To validate the accuracy of custom fixture designs, a leaded 800V 30 µF capacitor 

DCP4L053007HD4KSSD from WIMA is selected as a DUT, whose parasitic inductance was 
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measured by using commercial adapters and custom fixture adapters. Two off-the-shelf fixtures 

were used, i.e., a B-WIC (1 Hz - 50 MHz) with Bode 100 (1 Hz - 40 MHz), as shown in Fig. 5-2(a) 

and a 16047E (up to 120 MHz) with impedance analyzer E4990A (20 Hz - 30 MHz), as shown in 

Fig. 5-2(b).  

The measured DUT parasitic inductance, Ls, at 10MHz, using different methods are 

summarized in Table 5-1. It should be noted that before the measurement, standard open/short/load 

and open/short calibrations [8] have been completed for B-WIC and 16047E, respectively. 

Table 5-1 Measurement result by different methods 

Fixture adapter Ls (nH) @ 10MHz 

B-WIC (commercial) 27.006 

16047E(commercial) 28.027 

Method 1 (customized) 29.242 

Method 2 (customized) 25.183 

Method 3 (customized) 28.257 

 

5.4 Design approach for the custom fixture adapter boards 

In this section, three fixture design methods are presented for four-terminal (4T) sensing 

impedance analyzer E4990A. The 4T sensing approach, known as Kelvin sensing [8], uses 

separate pairs of the current-carrying and the voltage-sensing electrodes to enhance the accuracy 

compared to the two-terminal (2T) sensing methods. Therefore, the customized fixtures all have 

four BNC connecters to interface with E4990A, while the inner two ports are for voltage measuring 

named sense, the outer two ports are for current measuring named force. A pair of sense traces are 

independent with force traces, such that they do not induce the voltage drop across the force leads 
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or contacts. Since almost no current flows to the measuring instrument, the voltage drop in the 

sense leads is negligible.  

 

 

(a) 

 

(b) 

Fig. 5-2 Setup for commercial fixture adapters with impedance analyzers (a) B-WIC with Bode 

100 (b) 16047E with E4990A. 
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(a) 

 

 

(b) 

 

 

(c) 

Fig. 5-3 PCB layout for three customized fixture designs (a) Method 1 (b) Method 2 (c) Method 

3. 
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The PCB layouts of three fixture adapters are shown in Fig. 5-3. Since the impedance of DUT 

is very small, the current will be large; all force traces use a large gauge to avoid overheating. The 

traces for the force and sense in Method 2 are the same, while force and sense traces are separated 

from each other in Methods 1 and 3. In Method 3, the copper layer and solder mask layer are 

placed on top, which can help the short/load calibration, while in Method 1, the short calibration 

can be accomplished by using a copper bar, and it is hard to provide load calibration. 

Instead of using the BNC cables to connect the fixture board to the impedance analyzer, four 

L-shape BNC plugs are utilized to mitigate their impact to the measurement. The test setup is 

shown in Fig. 5-4, and the measurement results are summarized as part of the Table 5-1. As shown 

in Fig. 5-4(a), a copper bar is used in Method 1 for the short calibration. It should be noted the 

impedance of the copper bar itself, Z1, should be considered and compensated. For Methods 2 and 

3, 0 Ω and 100 Ω SMD resistors are soldered for short/load calibration, respectively. It should be 

noted that the impedance of the green top traces Z2 and Z3 in these two methods should be 

considered and compensated. 

As can be seen from Table 5-1, the Ls measured using Method 2 is much lower than others, 

due to the force and sense sharing the same traces, which violates the rules for Kelvin sensing. At 

the same time, due to the lack of load calibration, the error of Method 1 is greater than Method 3. 

From the comparisons among these three custom fixture designs, several considerations for the 

fixture adapter design are summarized as follows.  
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(a) 

 

 

(b) 

 

(c) 

Fig. 5-4 Test setups for (a) Method 1with an external copper bar connected for the short 

calibration, (b) Method 2 or 3 and (c) zoomed-in view for Method 3. 
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1) The force and sense traces should be separated, otherwise, its performance would be similar 

to the 2T sensing. 

2) Recommend using a large gauge for force trace and small gauge for sense trace. 

3) Method 1 and Method 3 has higher accuracy with an error less than 5% compared to the 

commercial fixtures. 

4) It is preferred to use Method 3 since it performs all the open/short/load calibrations. 

5.5 Experimental validations 

A single-phase HB inverter is used to verify the accuracy of proposed fixture design Method 

3, which consists of two 1500V 195 µF WIMA dc-link capacitors DCP6S06195E000 in parallel, 

a laminated copper busbar and a 1.2 kV SiC HB power module CAS325M12HM2 from Wolfspeed. 

The schematic of the DPT is shown in Fig. 5-5(a), where the CCL inductance includes the stray 

inductances of dc-link capacitors, HB module, and busbar. The layout of the busbar was originally 

designed to connect two HB modules in series, as shown in Fig. 5-5(b). In the DPT test, only one 

HB is connected to the busbar. The setup for impedance measurement is shown in Fig. 5-5(c), 

where the capacitors and busbar are connected together as the DUT. The fixture adapter was 

designed based on Method 3. All open/short/load calibrations were completed before measurement. 

The result indicates that the summation of Lcap, Ldc+ and Ldc- equal 18.81 nH at 20MHz, where Lcap 

is the parasitic inductance in dc-link capacitors, and Ldc+, Ldc- represent the parasitic inductance in 

dc+ and dc- layers of the bus bar, respectively, as shown in Fig. 5-5(a). 
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(a) 

 

(b) 

 

(c) 

Fig. 5-5  HB inverter (a) schematic of its DPT (b) its bus bar layout (c) setup for its impedance 

measurement (bus bar + dc-link capacitors). 
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DPT is widely used to evaluate the performance of the power device, and the CCL inductance 

can be calculated by the resonant frequency from equation (5-1). 

1

2
resf

LC
=

                                                         (5-1) 

where L is the CCL inductance, as the summation of Lcap, Ldc+, Ldc- and Lmodule; Lmodule is the internal 

parasitic inductance of the HB module. C is the Coss of the switching device and equals 2.578 nF 

within the module used in this work. 

The DPT setup is shown in Fig. 5-6(a). The load used for DPT is two series-connected air-core 

inductors with a total inductance of 171 μH. To drive the module, a dual-channel differential 

isolated gate diver from Wolfspeed is used. DC bus is 800 V. Gate pulses are applied to S2, and the 

anti-parallel diode of S1 is the freewheeling diode. Drain-source and gate-source voltage are 

measured by differential probes THDP0200. Inductor current is measured by PEM 30 MHz 

Rogowski coil. 

From the Vds waveform during the turn-off shown in Fig. 5-6(b), it can be seen that the resonant 

frequency is 20.22 MHz. Then it can be calculated using equation (5-1) and C value from module’s 

datasheet, L equals 24 nH according to the DPT result. Lmodule can be obtained from module’s 

datasheet, which is 5 nH. Then from impedance measurement result, L = 18.81 + 5 = 23.81 nH, 

with only 0.79% difference comparing from the DPT result. Therefore, the accuracy of fixture 

design Method 3 can be verified. 



110 

 

(a) 

 

(b) 

Fig. 5-6 Half-bridge inverter DPT (a) setup (b) turn-off waveforms. 

5.6 Conclusion 

This paper presents the three different fixture adapter design methods for 4T impedance 

analyzers. The measurement results are also compared with the commercial ones. Based on their 

parasitic inductance measurement results, the design considerations and guidance are summarized. 

Finally, the DPT experimental results have verified that the proposed fixture board design Method 

3 is accurate enough. 
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CHAPTER 6 

FIXTURES DESIGN CONSIDERATIONS FOR IMPEDANCE MEASUREMENT 

6.1 Conclusion 

With the increasing application scenarios of high-power inverter, people have much higher 

requirements for the performance of inverters. Higher power density and higher efficiency are 

required. In order to meet these two requirements, the emerging SiC MOSFET power device is 

gradually being applied. At the same time, people also hope to find a new and efficient topology 

to replace the existing traditional 2-L inverter. Three-level T-type inverter has the advantage of 2-

L inverters’ low conduction loss, and also can reduce the switching loss and increase the output 

voltage quality. This dissertation presents a comprehensive design and evaluation methods for 

high-performance traction converters for EV and other heavy-duty equipment. The dissertation 

systematically demonstrates the converter design strategy from paper design which optimize the 

converter regarding optimal topology, DC-link voltage and switching frequency, hardware 

implementation which reveals key design considerations and busbar optimization strategy, and 

hardware evaluation which characterize hardware performance by impedance analyzer, double-

pulse tests, continuous tests, and thermal evaluation. The dissertation starts with the simulation 

built-up on paper-design stage, and determines the DC voltage and switching frequency through 

case studies. At the same time, the CCLs and operation modes of the inverter are analyzed. Then 

the selection of DC-link capacitors and customized bus bar design were carried out. The 

experimental part includes HIL simulation verification of the modulation, CIL test and full-power 

test. The last two chapters of the dissertation also optimized the bus bar design and the impedance 

analyzer fixture design.  
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In detail, Chapter 2 discusses converter-level paper design, which optimize the converter 

configuration based on high-accuracy loss model. This chapter theoretically compared different 

topology candidates to thoroughly understand the advantages and disadvantages of each topology. 

Then the optimization of a given topology is implemented by a real-time simulation model, which 

estimates both switching loss and conduction loss in real time by using switching and conduction 

loss data table, and operation-model judgement unit for power semiconductors. With the model, 

the optimal switching frequency and DC-link voltage are fine tuned in order to derive the optimal 

efficiency design space with satisfaction of load requirements. With DC-link ripple specification, 

the model also guides the DC-link capacitor design by estimating capacitance and root-mean-

squared current. Different modulation strategy can also be verified through the real-time model. 

Chapter 3 moves to hardware design and evaluation of the converter. Choosing three-level T-

type neutral-point-clamped converter as the topology, this chapter provides operation-mode 

analysis to reveal the soft-switching and hard-switching behaviors of the converter which is based 

on SiC-MOSFET. Then the switching loss can be estimated. Using the HIL-based real-time 

simulation platform built by Chapter 2, the conduction loss and loss distribution of each SiC-

MOSFET can be estimated. The loss data can be used to estimated efficiency and determine if 

efficiency target is achieved. The loss is also one of the important parameters in designing thermal 

management system.  Because SiC-MOSFET has less switching loss, the loss model reveals that 

the majority efficiency drop is caused by high conductional loss due to SiC-MOSFET on state 

resistance. The key consideration for selecting gate driver, power module, DC-link capacitors are 

explained. Eventually, the clamped-inductor test is introduced to evaluate switching performance 

of the converter. The principle of switching oscillation issue of three-level t-type neutral-point 

converter is explained. Using clamped-inductor test, switching loss estimation for the designed 
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converter is explained. Eventually, the converter hardware prototype is present with tested 

efficiency over 98.5% 

In Chapter 4, the details of laminated busbar design are focused. The busbar connects key 

components in a converter, such as power modules and capacitors. Because the laminated busbar 

is involved in current communication loop, its stray inductance value should be kept low to limit 

switching overshoots and switching oscillations. The composition of busbar T-type neutral point 

clamped converter is proposed. It considers all current commutation loop in T-type converter, and 

then utilize it as a guidance for busbar design. The influences of self-inductance and mutual 

inductance are carefully discussed. The influence of DC-link capacitor ESL is discussed as well. 

In the end, the converter based on designed busbar is introduced. Experiments are conducted to 

verify the design converter. 

Though low-impedance busbar can be designed, evaluating its inductance value can still be 

difficult.  The major challenge is to figure out a fixture design strategy for impedance analyzer in 

order to characterize non-standard components.  Conventionally, the fixture for impedance 

analyzer is mainly designed for SMD and lead-terminal components. However, accurately 

measuring the parasitic inductance for non-standard components is difficult. For example, different 

kinds of DC-link capacitors and busbars with different geometries. Thus, the design of custom 

fixture board is necessary. In Chapter 5, design of customized fixture board for different kinds of 

DUT are discussed with the focus on improving measurement accuracy. This chapter starts with a 

collection the two measurement results for one film capacitor, which are characterized by two 

commercial fixtures.  Taking the measurement results as references, three independent 

measurements are performed for the same capacitor by using three different customized fixture 

PCBs. The higher-accuracy fixture PCB can be found by comparing the results to the reference. 
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The design principle is then summarized and explained in detail. Based on design principle, new 

fixture PCB is customized for a busbar of 2-level converter. The measurement results show a good 

alignment to double-pule test results. 

6.2 Future work 

This dissertation has presented the topic about traction converter design, optimization, and 

evaluation from the aspect of optimal paper design, hardware design and implementation, 

impedance characterization, testing and evaluation. Busbar, power module and capacitors in this 

dissertation are designed with margins before reaching SOA boundary. As a result of dissertation, 

a high-performance traction motor drive is designed with high efficiency and high-power density.  

In the future, any breakthrough technology in power electronics area can potentially change 

the game and might great improve the performance. For example, the DC-link capacitors take a 

large portions of converter weight and volume. Besides, the large ESL of capacitors limits the 

switching speed of SiC-MOSFET and reduce system efficiency. The improvement of DC-link 

capacitors can be foreseen in the near future, including increased current density, capacitance and 

reduced ESL.  

This dissertation has demonstrated the great potential of three-level t-type neutral-point 

clamped converter in EV applications. However, each single phase of the converter is still built by 

combination of multiple power modules. Such multiple-module configurations lead to more 

complicated busbar structure. And the stray inductance is not the optimal because each power 

module introduces additional terminal inductance. Moreover, the power density could not be 

optimized in such configuration. In the future work, the design of full-SiC-MOSFET based power 

module for three-level t-type neutral-point clamped converter is necessary. The integrated power 
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module has the potential to further improve power density, efficiency, and costs. The system-level 

design can be simplified and straightforward based on the customized power module. 

Improvement of thermal conductivity is one of the most important topics in the future traction 

converters. Because the positive correlation between on-state resistance and junction temperature, 

the conventional thermal management system could cause higher conduction loss due to high 

junction temperature. Besides, the cooling system, such as cold plate dominates the system 

weights. To further improve the thermal conductivity, advanced cooling system should be 

researched and implemented in traction converters.  Recently, it is seen the pin-fin based cold plate 

shows great potential, which significantly reduces thermal resistance of cold plate. However, the 

structure requires advanced metal processing technical. Besides, the baseplate of the power module 

can integrate with cold plate to avoid using of thermal-interfacing material (TIM). 

Busbar is considered for high-power traction converters because of thick copper eliminates 

conductional loss and pathway overheating. Recently, implementation of thick-copper PCB is 

another possible choice. Compared to busbar, the thick-copper PCB offers possibility of 

complicated vias and combination of both signal traces and power plate. However, careful 

estimation on PCB loss and PCB temperature should be performed. 
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