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Abstract—This paper deals with the switching behavior of
a SiC MOSFET in a TO-247 package. Based on simulations,
critical parasitic inductances in the circuit layout are analyzed
and their effect on the switching losses highlighted. Especially
the common source inductance, a critical parameter in a TO-247
package, has a major influence on the switching energy. Crucial
design guidelines for an improved double pulse test circuit
are introduced which are used for practical investigations on
the switching behavior. Switching energies of a SiC MOSFET
in a TO-247 package is measured depending on varying gate
resistance and loop inductances. With total switching energy of
340.24 µJ, the SiC MOSFET has more than six times lower
switching losses than a regular Si IGBT. Implementing the
SiC switches in a 3 kW T-Type inverter topology, efficiency
improvements of 0.8 % are achieved and maximum efficiency
of 97.7 % is reached.

Keywords—SiC MOSFET, IGBT, multilevel inverter, Switching
Energy

I. INTRODUCTION

Silicon Carbide (SiC) devices have become more and
more attractive in recent years by introducing SiC diodes
which reduce stress on the main switching device due to the
absence of reverse recovery current compared to Si diodes.
One more way to increase efficiency in power converters is to
replace Si switches by SiC switches such as SiC MOSFETs,
SiC JFETs or SiC IGBTs. Their faster switching transitions
compared to their Si counterparts enable possibilities to
operate power converters at a high power density. Previous
research has been done to investigate and utilize such devices
in power converters in various applications [1]–[5]. Having
fast switching transitions, a low parasitic printed circuit
board (PCB) becomes more important. The purpose of this
paper is to investigate the effect of parasitic elements in
the circuit layout. Based on simulations, the influence of
the PCB parasitic inductances on the switching energies is
pointed out. A commonly used switching cell and PCB layout
considerations optimized for fast switching transitions are
introduced in order to limit such parasitic elements. Finally, on
an optimized double pulse test (DPT) circuit, measurements
on a SiC MOSFET in a TO-247 package are conducted
in which switching energies are investigated relative to the
gate resistance, the common source inductance as well as the
junction capacitance of the freewheeling diode. Furthermore,
the switching energies are compared to a Si IGBT. In Section II
critical parasitic elements in a PCB circuit are investigated
followed by a design guideline for PCB layouts with fast
switching devices. The gate driver in the experimental setup

is introduced in Section III. In Section IV, measurements
on Cree’s C2M0080120D SiC MOSFET are done showing
switching behavior under different scenarios, e.g. varying gate
resistance and stray inductance. Efficiency comparison of Si
IGBTs and SiC MOSFETs in a 3 kW T-Type inverter are done
in Section V. The conclusion is given in Section VI.

II. DOUBLE PULSE TESTER

As the devices speed increase due to the reduced die
parasitic capacitances, the circuit and package parasitic become
more crucial in achieving the devices real performance. In
this work, a DPT has been used for dynamic characterization.
The double pulse tester is basically an inductor with a
freewheeling diode that is used to evaluate the device under
test (DUT) switching performance under clamped inductive
load operation. The schematic of this circuit and the operating
principle are shown in Fig. 1. At the instant t1 the DUT is
turned on and the inductor is charged up to the desired current
level. At t2 the DUT is turned off and the inductor current
freewheels in the diode. At t3 the DUT is turned on again
and the turn on energy loss is measured by integrating the
power in the switching interval. Finally the turn off energy
loss is measured at the t4 instant. The pattern is repeated for
different current levels with a very low frequency repetition
interval. In this way no self-heating effects are present
and the characterization can be performed under controlled
junction temperature conditions. The implemented prototype
needs to offer flexibility and a modular design is preferred
where different gate drive circuits can be tested by using
a fast connection. The design is based on the digital signal
processor (DSP) evaluation board C2000 Piccolo Launchpad.
The implemented prototype is designed to accommodate a
TO-247 for the switch and a TO-220 package for the diode.
In order to extract the maximum switching performance of
the evaluated devices, the DPT PCB design needs to be
optimized. A Spice based simulation is used to evaluate the
PCB parasitics impact on the device switching performance.
The simulation circuit is constructed using a 1200 V, 20 A
SiC MOSFET model from Cree Semiconductor CMF20120
in TO-247 package and a 1200 V, 20 A SiC diode model
from Rohm Semiconductor in TO-220 package. The simulation
is implemented adding some PCB parasitics on top of the
parasitics included in the models. The DPT with the circuit
parasitic components is shown in Fig. 2. The simulation
conditions are inductor current IL = 20 A, supply voltage
VDC = 800 V and gate drive voltage Vdrive = −5 V to 20 V.
Several simulations are performed varying the PCB parasitic
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Fig. 1. Double pulse test circuit for evaluating switching performance of
semiconductor power switches

inductances from 0 nH to 40 nH. The simulated turn on and
turn off energy loss as well as the voltage overshoot at the DUT
turn off event versus different parasitic inductances effects
are shown in Fig. 3. According to the simulations, the gate
drive inductance LG does not have a remarkable effect on
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Fig. 2. Double pulse tester with parasitic components
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(a) Simulated turn on energy loss vs. parasitic inductance

0 5 10 15 20 25 30 35 40
40

60

80

100

120

140

160

180

200

220

Stray inductance [nH]

S
w

it
ch

in
g
 e

n
er

g
y
 [

µ
J]

 

 

Energy vs L
G

Energy vs L
DS

Energy vs L
S

Energy vs L
D

Energy vs L
Bus

(b) Simulated turn off energy loss vs. parasitic inductance
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(c) Simulated voltage overshoot vs. parasitic inductance

Fig. 3. Simulated switching energies and overshoot voltage on a non-ideal
DPT

the device switching losses. During the turn on, the effect of
this inductance will depend on the device threshold and the
input gate charge. If these parameters are sufficiently large, the
current through the driver loop parasitic inductance will build
up before reaching the threshold voltage and the effect on the
DUT switching energy will be minimal. The drain to source
LDS and diode LD stray inductances do not increase the turn
on loss and have a very small effect on the turn off energy
loss that corresponds to the amount of stored energy on the
stray fields when the DUT voltage reaches the supply voltage
VDC . In the same way, the supply loop stray inductance LBus



Fig. 4. DPT layout and current paths. Left (top view), right (bottom view)

will slightly reduce the turn on loss because it will create a
voltage drop across the DUT, and will increase the turn off
energy loss in a similar way to the loop inductances LDS

and LD. However, the common source inductance LS affects
considerably the DUT switching energy both at turn on and at
turn off. This parasitic element, shared between the power and
driver loops produces a negative feedback Eq. (1) in the gate
control signal when a high derivative is present in the current
flowing through the switch.

VGS = Vdrive ± LS
dIDS

dt
(1)

The double pulse tester needs to be designed trying to
minimize all the parasitic inductances, paying special attention
to the common source inductance. The gate drive inductance
needs to be minimized too because a low impedance gate
drive circuit helps reducing parasitc gate activation due to
current injection into the gate trough the CGD capacitance
at turn off. The implemented prototype uses a four layer
PCB to increase the degrees of freedom in the design. The
critical loop areas are minimized by implementing the current
return paths (the arrows in Fig. 4 indicate the different current
loops) in a contiguous layer. Capacitive coupling between drain
to gate and gate to source is avoided and the capacitance
of the switching node is minimized to avoid increasing the
dissipated energy at turn on. Finally, the common source
inductance effect due to the PCB is avoided by keeping the
power loop current (green and red arrows) orthogonal to the
driver loop current (orange arrows). The current measurement
method selection is based on a study of state of the art
techniques. Recent research work based on characterization
of fast switching devices use coaxial current shunts [6]. These
devices claim bandwidths up to 2 GHz and are very suitable
for this work due to the fact that they only introduce 2 nH in
the switching loop. In order to further reduce the inserted stray
inductance in the loop, the current measurement proposed in
[7] is implemented in this work. This current measurement
technique has been previously used for characterizing high
switching speed [8] devices and represents a non intrusive
and low cost solution. The current measurement bandwidth is
increased by decoupling the measurement from the inductive
effect of the resistive structure. This is performed by using a
pick up wire placed strategically in a low field intensity region.
Moreover, the inductance of the structure is further reduced
by mounting the resistors upside down in order to place the
resistive element closer to the PCB to minimize the area of
the current loop. The implemented current shunt structure is
shown in Fig. 5.

Fig. 5. Integrated flat current shunt

III. THE GATE DRIVER

The gate driver used in this work comprises of a
commercially available DC/DC converter, a digital isolator and
a gate driver IC with a peak current capability of 9 A. The
output of the DC/DC converter supplies ±15 V with a common
ground on the secondary side. Two zener diodes are used to
create the necessary voltage levels for the digital isolator as
well as a reference voltage connected to the source terminal
of the SiC MOSFET. An overview of the driver is shown
in Fig. 6. With this constellation, the SiC MOSFET can be
switched on with a positive voltage of 20.1 V and switched
off with a negative voltage of −4.7 V.

IV. PRACTICAL RESULTS

A. Low Side Measurements for Different Gate Resistances

Measurements on an optimized low side double pulse
test circuit are conducted in order to investigate switching
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Fig. 6. Gate driver used for SiC MOSFETs

Fig. 7. Lab setup of the low side DPT



(a) Turn on transition

(b) Turn off transition

Fig. 8. Switching transition of a 1200 V SiC MOSFET in a double pulse
test circuit. Gate resistance is 6Ω

performance of SiC MOSFETs compared to varying gate
resistors. The voltage probes in this work are Tektronix P6139
(500 MHz) for the drain current and the gate to source voltage,
and a Tektronix P5100 (250 MHz) for the drain to source
voltage. The DC link voltage is 800 V and the measured current
range is from 5 A to 30 A. The setup can be seen in Fig. 7 and
turn on and turn off transitions for a gate resistance of 6 Ω
are shown in Fig. 8. Large oscillations in the gate to source
voltage, the drain to source voltage as well as the drain current
can be observed mainly due to the common source inductance
of the TO-247 package. The resonance frequencies of the
oscillations during turn on and turn off with SiC MOSFETs
are 166.67 MHz and 125 MHz, respectively. The dv/dt for turn
on and turn off are 84.6 V/ns and 85.88 V/ns. The di/dt is
8 A/ns and 1.33 A/ns for turn on and turn off, respectively. A
common way to reduce and hence control the switching speeds
is to increase the external gate resistance. The downside is
an increase in switching energies due to the slower switching
transitions. The switching energies for 0 Ω, 6 Ω and 12 Ω are
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Fig. 9. Switching energies for different gate resistances

(a) Turn on transition for a gate resistance of 0Ω

(b) Turn on transition for a gate resistance of 12Ω

Fig. 10. Turn on transitions for different gate resistances

TABLE I. SEMICONDUCTOR COMPARISON

IC/ID[A] QGate[nC] tr[ns] tf [ns]

IKW15N120T2 30 93 30 176
C2M0080120D 31.6 49.2 13.6 18.4

presented in Fig. 9. It can be seen that the turn on losses
are mainly affected by an increased gate resistance whereas
the turn off losses only slightly increase. A turn on switching
comparison with 0 Ω and 12 Ω is shown in Fig. 10. Increasing
the gate resistance reduces the peak gate current and hence
the gate capacitance is charged slower such that the parasitics
in the package as well as in the circuit become less critical.
Especially the pointed out common source inductance shown
in Eq. (1) has less influence.

B. Comparison to a Si IGBT

Commercially SiC switches come with a minimum
breakdown voltage of 1200 V for different current ratings.
Hence they are an alternative to replace 1200 V IGBTs in
grid-tie applications, e.g. in photovoltaic systems, or motor
drives. A comparison to a Si IGBT is conducted in order
to see the reduction in switching energies. The chosen Si
IGBT is Infineons IKW15N120T2, a second generation IGBT
designed for frequency converters and uninterruptable power
supplies. The main characteristics based on the semiconductor
datasheets are listed in Table I. The same gate driver circuit as
in Fig. 6 was used with the same voltage levels for turn on and
turn off. Only the gate resistance was changed to 7 Ω in order
to maintain the same peak gate current. The results can be
seen in Fig. 11. Especially the turn off comparison shows the
superior advantages of SiC MOSFETs over Si IGBTs due to
the lack of the tail current. A total switching energy reduction
of 84.2 % can be achieved at a switching current of 20 A.
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Fig. 11. Switching energy comparison between SiC MOSFET and Si IGBT

C. Effect of the lead inductance of the package

In the simulations, it is found out that the common-source
inductance is a crucial aspect when it comes to switching
energies. An increased inductance in the source path results
in a larger switching energy loss. With an optimized PCB
layout, the effect of the inductance of the leads of the TO-247
package is analyzed. A typical 1200 V switch in such package
is shown in Fig. 12a and two kind of measurements were
done. The first measurement represents the TO-247 SiC device

(a) Typical switch in a TO-247 package
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(b) Switching energies for different soldering points of the TO-247 package

Fig. 12. Effect of the leads in a TO-247 package

being soldered to the DPT at the end of the leads (Point B,
blue dotted line) from now on referred to as lifted leads. In
the second measurement, the device is soldered to the DPT
at the beginning of the leads (Point A, red dotted line). The
comparison of these two scenarios with Cree’s C2M0080120D
SiC MOSFET is shown in Fig. 12b. It can be seen that having
the TO-247 package soldered to the main PCB on Point A
reduces the total switching energies by 32 %.

D. Comparison of High Side Body Diode and Discrete SiC
Diode

Until now, the DPT circuit comprised of a low side
switch and a discrete SiC diode for free-wheeling the load
current. A commonly encountered circuit configuration in
power electronics is a phase leg comprising of a DC link
voltage, a low side switch and a high side switch. Unlike Si
IGBTs, SiC MOSFETs contain a parasitic body diode which
can be used as a freewheeling diode. The effect of such body
diode in the high side switch is investigated in this section and
compared to a phase leg with an external SiC diode in parallel
to the high side switch. Turn on and turn off transitions of the
low side MOSFET as well as the gate to source voltage of
the high side MOSFET are shown in Fig. 13. It can be seen
that the gate to source voltage of the low side MOSFET is not
dramatically affected by the switching transition. However, the
gate to source voltage of the high side MOSFET is very much
affected. By looking at the drain current through the low side
MOSFET, it can be seen that no shoot through nor breakdown
of the high side gate occurs. Comparing the switching energies
of the low side MOSFET with a high side body diode and
a discrete SiC diode, it can be seen that main efficiency
improvements are achieved during the turn on process. At low
current levels, the turn on energies using only the body diode
presents the lowest losses because of the reduced parasitic
capacitance. When an external SiC diode is used the increased

(a) Turn on transition

(b) Turn off transition

Fig. 13. Switching transition of a phase leg configuration
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Fig. 14. Switching energies comparison for high side body diode and discrete
SiC diodes

junction capacitance increases the losses at low current levels,
however reduces the losses at high current levels because of
the reduced reverse recovery effect in the body diode of the
MOSFET. The turn off energies are less affected by the choice
of discrete SiC diode or internal body diode as it can be seen
in Fig. 14.

V. EFFICIENCY IMPROVEMENTS USING SIC SWITCHES

The effect of SiC switching devices is demonstrated on a
3 kW T-Type inverter whose schematic is shown in Fig. 15.
It is a three level inverter topology that comprises of both
600 V and 1200 V semiconductor devices. More elaborated,
switches S3 and S4 including their anti parallel diodes are
600 V devices because they have to withstand half the DC link
voltage whereas S1 and S2 including their freewheeling diodes
must be 1200 V devices because they have to block the whole
DC link voltage. Furthermore, S1 and S2 are modulating the
converter output voltage with a chosen switching frequency;
typical values for residential photovoltaic applications are
up to 20 kHz when Si IGBTs are used. The specifications
are shown in Table II. A prototype of the T-Type inverter
is designed according to the results and PCB guidelines in
Section II in order to minimize the common-source inductance.
Also, the switching devices are soldered to the PCB with a

VDC/2

VDC/2 S1

S2

S3 S4 Lout

Cout

M

Vout Load

Si IGBT vs. SiC MOSFET

Si IGBT vs. SiC MOSFET

M
VC

Fig. 15. T-Type inverter topology

TABLE II. SPECIFICATIONS

Symbol Meaning Value

Lout Output filter inductance 3 mH
Cout Output filter capacitance 4.4 µF
VDC DC link voltage 800 V
Vout Filtered output voltage, RMS 230 V
Pout Output power 250 W to 3000 W

(a) 3 kW prototype of T-Type inverter
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(b) Efficiency improvements with SiC MOSFETs

Fig. 16. Prototype in (a) and measured efficiencies in (b)

minimum lead lengths (Point A in Fig. 12). The prototype
as well as the efficiency curves using a N4L PPA5500 power
analyzer for both the Si IGBT (IKW15N120T2) and the SiC
MOSFET (C2M0080120D) version are shown in Fig. 16.
Maximum efficiency improvements of 0.3 % are achieved at
a switching frequency of 16 kHz. However, the benefits of the
SiC switches become more visible as the switching frequency
is increased up to 30 kHz. Maximum efficiency improvements
at that switching frequency is then up to 0.8 %. According
to the measurement results, the SiC based T-Type inverter at
30 kHz achieves similar efficiencies than the Si IGBT based
inverter at 16 kHz.



VI. CONCLUSION

In this paper, switching performance of a commercially
available SiC MOSFET has been investigated on a low
parasitic DPT. Simulations have shown that the common
source inductance has a significant negative impact on the
switching losses. PCB design recommendations have been
pointed out how to minimize such parasitic. In an optimized
DPT circuit, a SiC MOSFET in a TO-247 package was
evaluated based on different gate resistances. Even though the
DPT is optimized for a low common source inductance, large
oscillations are present due to the package parasitics. With
a gate resistance of 6 Ω and a trade off between switching
energy and oscillations, the SiC MOSFET has switching
energies of 84.2 % lower than a Si IGBT. It is furthermore
pointed out that the reverse recovery effect of the body diode
of the high side MOSFET has a strong influence on the
switching energies at higher current levels. Furthermore, it
is recommended to use an external SiC diode with a low
junction capacitance instead of using the body diode of the SiC
MOSFET. Having SiC MOSFETs equipped in a 3 kW T-Type
inverter, efficiencies could be increased by 0.8 % compared to
a Si IGBTs counterpart.
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