34 research outputs found

    AN EFFICIENT LOW-POWER CONTENT- ADDRESSABLE MEMORY USING COMPRESSOR MEMORY BLOCK

    Get PDF
    In this paper, we proposed a low-power content-addressable memory (CAM) employing a new algorithm for associativity between the input tag and the corresponding address of the output data. The proposed architecture is based on memory block. Given an input data the proposed architecture compares the stored data with input data and send the single matched data address as the output. Therefore, the dynamic energy consumption of the proposed design is significantly lower compared with that of a sparse Clustered network based CAM design. In this project we have shown as the effective error detection and correction in the data set. For detecting and correcting the data this project allows synergetic reuse COMPRESSOR MEMORY BLOCK.   For very high speed searching applications, Bloom filters has been proposed. Associative memory, associative storage and associative array are the synonyms of CAM. For programming in data structures the name associative array is used most. XILINX ISE was used for the simulation process. The search delay of the proposed design is less. So the speed is more as compared to that of SCN CAM design

    Content Addressable Memories and Transformable Logic Circuits Based on Ferroelectric Reconfigurable Transistors for In-Memory Computing

    Full text link
    As a promising alternative to the Von Neumann architecture, in-memory computing holds the promise of delivering high computing capacity while consuming low power. Content addressable memory (CAM) can implement pattern matching and distance measurement in memory with massive parallelism, making them highly desirable for data-intensive applications. In this paper, we propose and demonstrate a novel 1-transistor-per-bit CAM based on the ferroelectric reconfigurable transistor. By exploiting the switchable polarity of the ferroelectric reconfigurable transistor, XOR/XNOR-like matching operation in CAM can be realized in a single transistor. By eliminating the need for the complementary circuit, these non-volatile CAMs based on reconfigurable transistors can offer a significant improvement in area and energy efficiency compared to conventional CAMs. NAND- and NOR-arrays of CAMs are also demonstrated, which enable multi-bit matching in a single reading operation. In addition, the NOR array of CAM cells effectively measures the Hamming distance between the input query and stored entries. Furthermore, utilizing the switchable polarity of these ferroelectric Schottky barrier transistors, we demonstrate reconfigurable logic gates with NAND/NOR dual functions, whose input-output mapping can be transformed in real-time without changing the layout. These reconfigurable circuits will serve as important building blocks for high-density data-stream processors and reconfigurable Application-Specific Integrated Circuits (r-ASICs). The CAMs and transformable logic gates based on ferroelectric reconfigurable transistors will have broad applications in data-intensive applications from image processing to machine learning and artificial intelligence

    Novel low power CAM architecture

    Get PDF
    One special type of memory use for high speed address lookup in router or cache address lookup in a processor is Content Addressable Memory (CAM). CAM can also be used in pattern recognition applications where a unique pattern needs to be determined if a match is found. CAM has an additional comparison circuit in each memory bit compared to Static Random Access Memory. This comparison circuit provides CAM with an additional capability for searching the entire memory in one clock cycle. With its hardware parallel comparison architecture, it makes CAM an ideal candidate for any high speed data lookup or for address processing applications. Because of its high power demand nature, CAM is not often used in a mobile device. To take advantage of CAM on portable devices, it is necessary to reduce its power consumption. It is for this reason that much research has been conducted on investigating different methods and techniques for reducing the overall power. The objective is to incorporate and utilize circuit and power reduction techniques in a new architecture to further reduce CAM’s energy consumption. The new CAM architecture illustrates the reduction of both dynamic and static power dissipation at 65nm sub-micron environment. This thesis will present a novel CAM architecture, which will reduce power consumption significantly compared to traditional CAM architecture, with minimal or no performance losses. Comparisons with other previously proposed architectures will be presented when implementing these designs under 65nm process environment. Results show the novel CAM architecture only consumes 4.021mW of power compared to the traditional CAM architecture of 12.538mW at 800MHz frequency and is more energy efficient over all other previously proposed designs

    On Neural Associative Memory Structures: Storage and Retrieval of Sequences in a Chain of Tournaments

    Get PDF
    Associative memories enjoy many interesting properties in terms of error correction capabilities, robustness to noise, storage capacity, and retrieval performance, and their usage spans over a large set of applications. In this letter, we investigate and extend tournament-based neural networks, originally proposed by Jiang, Gripon, Berrou, and Rabbat (2016), a novel sequence storage associative memory architecture with high memory efficiency and accurate sequence retrieval. We propose a more general method for learning the sequences, which we call feedback tournament-based neural networks. The retrieval process is also extended to both directions: forward and backward—in other words, any large-enough segment of a sequence can produce the whole sequence. Furthermore, two retrieval algorithms, cache-winner and explore-winner, are introduced to increase the retrieval performance. Through simulation results, we shed light on the strengths and weaknesses of each algorithm.publishedVersio

    Editorial

    Get PDF

    The sparse Blume-Emery-Griffiths model of associative memories

    Full text link
    We analyze the Blume-Emery-Griffiths (BEG) associative memory with sparse patterns and at zero temperature. We give bounds on its storage capacity provided that we want the stored patterns to be fixed points of the retrieval dynamics. We compare our results to that of other models of sparse neural networks and show that the BEG model has a superior performance compared to them.Comment: 23 p
    corecore