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Abstract— In this paper, we proposed a low-power content-addressable memory (CAM) employing a new 

algorithm for associativity between the input tag and the corresponding address of the output data. The 

proposed architecture is based on memory block. Given an input data the proposed architecture 

compares the stored data with input data and send the single matched data address as the output. 

Therefore, the dynamic energy consumption of the proposed design is significantly lower compared with 

that of a sparse Clustered network based CAM design. In this project we have shown as the effective 

error detection and correction in the data set. For detecting and correcting the data this project allows 

synergetic reuse COMPRESSOR MEMORY BLOCK.   For very high speed searching applications, 

Bloom filters has been proposed. Associative memory, associative storage and associative array are the 

synonyms of CAM. For programming in data structures the name associative array is used most. 

XILINX ISE was used for the simulation process. The search delay of the proposed design is less. So the 

speed is more as compared to that of SCN CAM design. 

Index Terms— Content Addressable Memory; Bloom filters; Compressor memory block; 

I. INTRODUCTION 

Content Addressable Memory is a special type of 

memory used in certain very-high-speed searching 

applications. It will shows the address of the 

content stored in the memory. The CAM-array is 

divided into several equally sized sub-blocks, 

which can be activated independently. For a 

previously trained network and given an  input tag,  

the classifier  only uses a  small portion   of the tag  

and  predicts  very  few  sub-blocks  of  the  CAM 

to be  activated.  Once the sub-blocks are activated, 

the  tag is compared against the  few entries in 

them  while keeping  the rest deactivated and thus 

lowers the dynamic energy dissipation. 

For memories, permanent errors and defects are 

commonly corrected using spare rows and 

columns. However, soft errors caused for example 

by radiation can affect any memory cell changing 

its value during circuit operation. Soft errors do not 

produce damage to the memory device that 

continues to operate correctly but has the wrong 

value in the affected cell. To deal with soft errors, 

the use of a per word parity bit or more advanced 

error correction codes (ECCs) has been common in 

memories for many years .The Bloom Filters have 

also been proposed to mitigate errors in electronic 

circuits. For example, in a BF is used to identify 

the faulty words in a nano memory. In, the use of a 

CBF is proposed to detect and correct errors in 

content addressable memories (CAMs).In this case, 

the CBF is used in parallel with a CAM and the 

objective is to detect errors in the CAM entries. 

This is done by checking the results of the CAM 

and the CBF to ensure that they are consistent.  

The rest of this paper is organized as follows. 

Section II describes briefly on CAM. In  Section 

III, overview of BF. In Section IV, the proposed 

Scheme is introduced. Section V RTL Schematic 

and Simulation results. Finally, conclusions are in 

Section VI. 

II. CAM REVIEW 

In a conventional CAM array, each entry consists 

of a tag that, if matched with the input, points to the 

location of a data word in a static random access 

memory (SRAM) block. The actual data of interest 

are stored in the SRAM and a tag   is simply a 

reference to it. Therefore, when it is required to 

search for the data in the SRAM, it suffices to 

search for its corresponding tag. Consequently, the 

tag may be shorter than the SRAM-data and would 

require fewer bit comparisons. 

Unlike standard computer memory (random access 

memory or RAM) in which the user supplies a 

memory address and the RAM returns the data 

word stored at that address, a CAM is designed 

such that the user supplies a data word and the 

CAM searches its entire memory to see if that data 

word is stored anywhere in it. If the data word is 

found, the CAM returns a list of one or more 

storage addresses where the word was found (and 

in some architecture, it also returns the contents of 

that storage address, or other associated pieces of 

data). Thus, a CAM is the hardware embodiment of 

what in software terms would be called an 

associative array. The data word recognition unit 

was proposed by Dudley Allen Buck in 1955. 

An example of a typical CAM array, consisting of 
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four entries having 4 bits each, is shown in below 

Fig. 1. A search data register is used to store the 

input bits. The register applies    the search data on 

the differential SLs, which are shared among the 

entries. Then, the search data are compared against 

all of the CAM entries. Each CAM-word is 

attached to a common match line (ML) among its 

constituent bits, which indicates, whether or not, 

they match with the input bits. Since the MLs are 

highly capacitive, a sense amplifier is typically 

considered for each ML to increase the 

performance of the search operation. 

 

Fig.1: Simple example of a 4*4 CAM array 

consisting of the CAM cells, MLs, Sense 

amplifiers, and differential SLs. 

A major interface definition for CAMs and other 

network search engines (NSEs) was specified in an 

interoperability agreement called the Look-Aside 

Interface (LA-1 and LA-1B) developed by the 

Network Processing Forum, which later merged 

with the Optical Internetworking Forum (OIF). 

Numerous devices have been produced by 

Integrated Device Technology, Cypress 

Semiconductor, IBM, Broadcom and others to the 

LA interface agreement. On December 11, 2007, 

the OIF published the serial look aside (SLA) 

interface agreement. 

Because a CAM is designed to search its entire 

memory in a single operation, it is much faster than 

RAM in virtually all search applications. There are 

cost disadvantages to CAM however. Unlike a 

RAM chip, which has simple storage cells, each 

individual memory bit in a fully parallel CAM 

must have its own associated comparison circuit to 

detect a match between the stored bit and the input 

bit. Additionally, match outputs from each cell in 

the data word must be combined to yield a 

complete data word match signal. The additional 

circuitry increases the physical size of the CAM 

chip which increases manufacturing cost. The extra 

circuitry also increases power dissipation since 

every comparison circuit is active on every clock 

cycle. Consequently, CAM is only used in 

specialized applications where searching speed 

cannot be accomplished using a less costly method. 

One successful early implementation was a General 

Purpose Associative Processor IC and System. 

Content-addressable memory is often used in 

computer networking devices. For example, when a 

network switch receives a data frame from one of 

its ports, it updates an internal table with the 

frame's source MAC address and the port it was 

received on. It then looks up the destination MAC 

address in the table to determine what port the 

frame needs to be forwarded to, and sends it out on 

that port. The MAC address table is usually 

implemented with a binary CAM so the destination 

port can be found very quickly, reducing the 

switch's latency. 

Ternary CAMs are often used in network routers, 

where each address has two parts: the network 

address, which can vary in size depending on the 

subnet configuration, and the host address, which 

occupies the remaining bits. Each subnet has a 

network mask that specifies which bits of the 

address are the network address and which bits are 

the host address. Routing is done by consulting a 

routing table maintained by the router which 

contains each known destination network address, 

the associated network mask, and the information 

needed to route packets to that destination. Without 

CAM, the router compares the destination address 

of the packet to be routed with each entry in the 

routing table, performing a logical AND with the 

network mask and comparing it with the network 

address. If they are equal, the corresponding 

routing information is used to forward the packet. 

Using a ternary CAM for the routing table makes 

the lookup process very efficient. The addresses are 

stored using "don't care" for the host part of the 

address, so looking up the destination address in 

the CAM immediately retrieves the correct routing 

entry; both the masking and comparison are done 

by the CAM hardware. This works if (a) the entries 

are stored in order of decreasing network mask 

length, and (b) the hardware returns only the first 

matching entry; thus, the match with the longest 

network mask (longest prefix match) is used. 

III. OVERVIEW OF BFS 

The basic structure of BFs has been extended over 

the years. For example, counting BFs (CBFs) were 

introduced to allow removal of elements from the 

BF. To optimize the transmission over the network, 

another extension known as compressed Bloom 

filters was proposed. Recently Bloom filter (Biff) 

codes that are based on BFs have been proposed to 

perform error correction in large data sets. 

In most cases, BFs are implemented using 

electronic circuits. The contents of a BF are 

commonly stored in a high speed memory and 

required processing is done in a processor or in 

dedicated circuitry. The set used to construct the 

BF is commonly stored in a lower speed memory. 

Errors caused by interferences, radiation, and other 

effects become more common. Therefore, 

mitigation techniques are used at different levels to 

ensure that the circuits continue to operate reliably. 
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For BF implementation, memories are the critical 

elements. 

A BF is constructed using a set of k hash functions 

to access an array of m bits. The hash functions h1, 

h2, . . . , hk map an input element x to one of the m 

bits. The following two operations are defined in a 

BF. 

1) Insertion: To insert an element x in the BF, 

the bits in the array that correspond to the 

positions h1(x), h2(x),…, hk(x) are set to one. 

2) Query: To query for an element x in the BF, 

the bits in the array that correspond to the 

positions h1(x), h2(x),…, hk (x) are read and if 

and only if all of them are one, the element is 

considered to be in the BF. 

IV. PROPOSED SCHEME 

The proposed architecture is based on memory 

block. Given an input data the proposed 

architecture compares the stored data with input 

data and send the single matched data address as 

the output. For detecting and correcting the data 

this project allows synergetic reuse 

COMPRESSOR MEMORY BLOCK. This is based 

on the observation that a CBF, in addition to a 

structure that allows fast membership check to an 

element set, is also in a way a redundant 

representation of the element set. Therefore, this 

redundancy could possibly be used for error 

detection and correction. 

To explore this idea, a common implementation of 

CBFs where the elements of the set are stored in a 

slow memory and the CBF is stored in a faster 

memory is considered. In particular, it is assumed 

that the elements of the set are stored in DRAM 

while the CBF is stored in a cache . The reasoning 

behind this is that the CBF is accessed frequently 

and needs a fast access time to maximize 

performance, while the elements of the set are only 

accessed when elements are read, added or 

removed and therefore the access time is not an 

issue. It should also be noted that when the entire 

element set is stored in a slow memory, no 

incorrect deletions can occur as they would be 

detected when removing the element from the slow 

memory. Therefore, the false negatives issue in 

CBFs discussed in  is not a concern in our case.  

 

Fig2: CAM Block Diagram Using Comparator 

Typically, memories are protected with a per word 

parity bit or With a single bit error correction code . 

This is based on the observation that most errors 

affect a single bit or even if they affect multiple 

bits, the errors can be spread among different 

words by the use of interleaving. In addition, soft 

errors are rare events so that the time between 

errors is typically large. The arrival rate for 

terrestrial applications is in the order of at least 

days or weeks and therefore, it is commonly 

assumed that errors are isolated. That is, by the 

time a soft error arrives any previous soft error has 

been corrected or detected. This is an assumption 

that is needed, for example, when single bit error 

correction codes are used. 

In the following, one of these two most common 

protection options is used. In particular, it is 

assumed that both the DRAM and the cache are 

protected with a per word parity bit that can detect 

single errors. As when using single bit error 

correction codes, it is also assumed that errors are 

isolate. The goal for this implementation is to 

achieve the correction of single bit errors using the 

CBF. That is, the CBF would enable single bit error 

correction without incurring in the cost of adding 

an ECC to the memories. 

The first step to achieve error correction is to detect 

errors. This is done by checking the parity bit when 

accessing either the DRAM or the cache. To ensure 

earlier detection of errors, the use of scrubbing to 

periodically read the memories could be considered 

. Once an error is detected, a correction procedure 

is triggered. If the error occurs in the CBF, it can be 

corrected by clearing the CBF and reconstructing it 

using the element set. If the error occurs in the 

element set, the procedure is more complex and can 

be divided in two phases that are described in the 

following sections. The idea is that the simpler and 

faster procedure is used first and only when it is 

unable to correct the error, the second more 

complex error correction procedure is used 

subsequently. 

Content-addressable memories (CAMs) are 

hardware search engines that are much faster than 

algorithmic approaches for search-intensive 

applications. CAMs are composed of conventional 

semiconductor memory (usually SRAM) with 

added comparison circuitry that enable a search 

operation to complete in a single clock cycle. The 

two most common search-intensive tasks that use 

CAMs are packet forwarding and packet 

classification in Internet routers. I introduce CAM 

architecture and circuits by first describing the 

application of address lookup in Internet routers. 

Then we describe how to implement this lookup 

function with CAM. 

The remainder of this introduction assumes you 

have some familiarity with the operation of 
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transistors and basic ciruit organization of random-

access memory (RAM). 

There are two basic forms of CAM: binary and 

ternary. Binary CAMs support storage and 

searching of binary bits, zero or one (0,1). Ternary 

CAMs support storing of zero, one, or don't care bit 

(0,1,X). Ternary CAMs are presently the dominant 

CAM since longest-prefix routing is the Internet 

standard. Figure 2 shows a block diagram of a 

simplified 4 x 5 bit ternary CAM with a NOR-

based architecture. The CAM contains the routing 

table from Table 1 to illustrate how a CAM 

implements address lookup. The CAM core cells 

are arranged into four horizontal words, each five 

bits long. Core cells contain both storage and 

comparison circuitry. The search lines run 

vertically in the figure and broadcast the search 

data to the CAM cells. The matchlines run 

horizontally across the array and indicate whether 

the search data matches the row's word. An 

activated matchline indicates a match and a 

deactivated matchline indicates a non-match, called 

a mismatch in the CAM literature. The matchlines 

are inputs to an encoder that generates the address 

corresponding to the match location.     

 

Fig.2 : simplified 4 x 5 bit ternary CAM with a 

NOR-based architecture. 

 Read operation in traditional memory: 

 Input is address location of the content 

that we are interested in it.  

 Output is the content of that address. 

 In CAM it is the reverse: 

 Input is associated with something stored 

in the memory. 

 Output is location where the associated 

content is stored.  

 

Fig.3: Read operations in Traditional Memory 

and CAM 

CAM can be used as a search engine. We want to 

find matching contents in a database or Table. A 

CAM search operation begins with precharging all 

matchlines high, putting them all temporarily in the 

match state. Next, the search line drivers broadcast 

the search data, 01101 in the figure, onto the search 

lines. Then each CAM core cell compares its stored 

bit against the bit on its corresponding search lines. 

Cells with matching data do not affect the 

matchline but cells with a mismatch pull down the 

matchline. Cells storing an X operate as if a match 

has occurred. The aggregate result is that 

matchlines are pulled down for any word that has at 

least one mismatch. All other matchlines remain 

activated (precharged high). In the figure, the two 

middle matchlines remain activated, indicating a 

match, while the other matchlines discharge to 

ground, indicating a mismatch. Last, the encoder 

generates the search address location of the 

matching data. In the example, the encoder selects 

numerically the smallest numbered matchline of 

the two activated matchlines, generating the match 

address 01. This match address is used as the input 

address to a RAM that contains a list of output 

ports as depicted in Figure 4.  

This CAM/RAM system is a complete 

implementation of an address lookup engine. The 

match address output of the CAM is in fact a 

pointer used to retrieve associated data from the 

RAM. In this case the associated data is the output 

port. The CAM/RAM search can be viewed as a 

dictionary lookup where the search data is the word 

to be queried and the RAM contains the word 

definitions. With this sketch of CAM operation, we 

now look at the comparison circuitry in the CAM 

core cells. Example of Routing Table is below, 

 

Fig.4: Routing Table for CAM/RAM 

 The input to the system is the search word. 

 Encoder specifies the match location. 

 If multiple matches, a priority encoder selects 

the first match. 

 Hit signal specifies if there is no match. 
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V. RTL SCHEMATIC AND SIMULATION 

RESULT 

RTL : The RTL SCHEMATIC gives the 

information about the user view of the design.The 

internal blocks contains the basic gate 

representaion of the logic.These basic gate 

realization is purely depend upon the 

corresponding FPGA selection and the internal 

database information. 

 

Fig. 5: RTL Schematic 

Internal schematic: 

 

Fig 6: Internal RTL Schematic 

SIMULATION: 

The simulation shows that, The proposed CAM 

compresses the matched data and sent the 

mismatched data address as the output. Where as 

the SCN CAM sent the input data address as 

output with out any compression. So, the 

Proposed CAM measuring less energy 

consumption and delay, as compared to that of 

SCN based CAM 

 

Fig. 7: Simulation results for Comparision of 

SCN CAM with Proposed CAM 

 

 

Device Utilization Summary 

 

Typically, memories are protected with a per word 

parity bit or With a single bit error correction code. 

This is based on the observation that most errors 

affect a single bit or even if they affect multiple 

bits, the errors can be spread among different 

words by the use of interleaving. In addition, soft 

errors are rare events so that the time between 

errors is typically large. The goal for this 

implementation is to achieve the correction of 

single bit errors using the CBF. That is, the CBF 

would enable single bit error correction without 

incurring in the cost of adding an ECC to the 

memories. 

VI. CONCLUSION 

In this paper, we have introduced an efficient low 

power CAM using compressor memory block 

which will remove the repeated data stored in the 

memory. For this application,  BLOOM FILTERFS  

has been proposed. The idea is to use the BFs in 

existing applications to detect and correct errors in 

their associated element set. In particular, it is 

shown that CBFs can be used to correct errors in 

the associated element set. This enables a cost 

efficient solution to mitigate soft errors in 

applications which use CBFs. The configuration 

considered in this brief is that of a memory 

protected with a per word parity bit for which it is 

demonstrated that the CBF can be used to achieve 

single bit error correction. This shows how existing 

CBFs can be used to achieve error correction in 

addition to perform their traditional membership 

checking function. 
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