
Kappala Sravanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.2, February – March 2017, 5615-5620.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 5615

An Efficient Low-Power Content- Addressable

Memory Using Compressor Memory Block
KAPPALA SRAVANTI

Student

Sri Vaishnavi College of Engineering

(Approved by AICTE & Affiliated to JNTU,

Kakinada), Singupuram (Vill & post), Srikakulam

(Rural) Mandal.

GEMBALI KRISHNA RAO

Asst. Professor

Sri Vaishnavi College of Engineering

(Approved by AICTE & Affiliated to JNTU,

Kakinada), Singupuram (Vill & post), Srikakulam

(Rural) Mandal.

Abstract— In this paper, we proposed a low-power content-addressable memory (CAM) employing a new

algorithm for associativity between the input tag and the corresponding address of the output data. The

proposed architecture is based on memory block. Given an input data the proposed architecture

compares the stored data with input data and send the single matched data address as the output.

Therefore, the dynamic energy consumption of the proposed design is significantly lower compared with

that of a sparse Clustered network based CAM design. In this project we have shown as the effective

error detection and correction in the data set. For detecting and correcting the data this project allows

synergetic reuse COMPRESSOR MEMORY BLOCK. For very high speed searching applications,

Bloom filters has been proposed. Associative memory, associative storage and associative array are the

synonyms of CAM. For programming in data structures the name associative array is used most.

XILINX ISE was used for the simulation process. The search delay of the proposed design is less. So the

speed is more as compared to that of SCN CAM design.

Index Terms— Content Addressable Memory; Bloom filters; Compressor memory block;

I. INTRODUCTION

Content Addressable Memory is a special type of

memory used in certain very-high-speed searching

applications. It will shows the address of the

content stored in the memory. The CAM-array is

divided into several equally sized sub-blocks,

which can be activated independently. For a

previously trained network and given an input tag,

the classifier only uses a small portion of the tag

and predicts very few sub-blocks of the CAM

to be activated. Once the sub-blocks are activated,

the tag is compared against the few entries in

them while keeping the rest deactivated and thus

lowers the dynamic energy dissipation.

For memories, permanent errors and defects are

commonly corrected using spare rows and

columns. However, soft errors caused for example

by radiation can affect any memory cell changing

its value during circuit operation. Soft errors do not

produce damage to the memory device that

continues to operate correctly but has the wrong

value in the affected cell. To deal with soft errors,

the use of a per word parity bit or more advanced

error correction codes (ECCs) has been common in

memories for many years .The Bloom Filters have

also been proposed to mitigate errors in electronic

circuits. For example, in a BF is used to identify

the faulty words in a nano memory. In, the use of a

CBF is proposed to detect and correct errors in

content addressable memories (CAMs).In this case,

the CBF is used in parallel with a CAM and the

objective is to detect errors in the CAM entries.

This is done by checking the results of the CAM

and the CBF to ensure that they are consistent.

The rest of this paper is organized as follows.

Section II describes briefly on CAM. In Section

III, overview of BF. In Section IV, the proposed

Scheme is introduced. Section V RTL Schematic

and Simulation results. Finally, conclusions are in

Section VI.

II. CAM REVIEW

In a conventional CAM array, each entry consists

of a tag that, if matched with the input, points to the

location of a data word in a static random access

memory (SRAM) block. The actual data of interest

are stored in the SRAM and a tag is simply a

reference to it. Therefore, when it is required to

search for the data in the SRAM, it suffices to

search for its corresponding tag. Consequently, the

tag may be shorter than the SRAM-data and would

require fewer bit comparisons.

Unlike standard computer memory (random access

memory or RAM) in which the user supplies a

memory address and the RAM returns the data

word stored at that address, a CAM is designed

such that the user supplies a data word and the

CAM searches its entire memory to see if that data

word is stored anywhere in it. If the data word is

found, the CAM returns a list of one or more

storage addresses where the word was found (and

in some architecture, it also returns the contents of

that storage address, or other associated pieces of

data). Thus, a CAM is the hardware embodiment of

what in software terms would be called an

associative array. The data word recognition unit

was proposed by Dudley Allen Buck in 1955.

An example of a typical CAM array, consisting of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228553013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kappala Sravanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.2, February – March 2017, 5615-5620.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 5616

four entries having 4 bits each, is shown in below

Fig. 1. A search data register is used to store the

input bits. The register applies the search data on

the differential SLs, which are shared among the

entries. Then, the search data are compared against

all of the CAM entries. Each CAM-word is

attached to a common match line (ML) among its

constituent bits, which indicates, whether or not,

they match with the input bits. Since the MLs are

highly capacitive, a sense amplifier is typically

considered for each ML to increase the

performance of the search operation.

Fig.1: Simple example of a 4*4 CAM array

consisting of the CAM cells, MLs, Sense

amplifiers, and differential SLs.

A major interface definition for CAMs and other

network search engines (NSEs) was specified in an

interoperability agreement called the Look-Aside

Interface (LA-1 and LA-1B) developed by the

Network Processing Forum, which later merged

with the Optical Internetworking Forum (OIF).

Numerous devices have been produced by

Integrated Device Technology, Cypress

Semiconductor, IBM, Broadcom and others to the

LA interface agreement. On December 11, 2007,

the OIF published the serial look aside (SLA)

interface agreement.

Because a CAM is designed to search its entire

memory in a single operation, it is much faster than

RAM in virtually all search applications. There are

cost disadvantages to CAM however. Unlike a

RAM chip, which has simple storage cells, each

individual memory bit in a fully parallel CAM

must have its own associated comparison circuit to

detect a match between the stored bit and the input

bit. Additionally, match outputs from each cell in

the data word must be combined to yield a

complete data word match signal. The additional

circuitry increases the physical size of the CAM

chip which increases manufacturing cost. The extra

circuitry also increases power dissipation since

every comparison circuit is active on every clock

cycle. Consequently, CAM is only used in

specialized applications where searching speed

cannot be accomplished using a less costly method.

One successful early implementation was a General

Purpose Associative Processor IC and System.

Content-addressable memory is often used in

computer networking devices. For example, when a

network switch receives a data frame from one of

its ports, it updates an internal table with the

frame's source MAC address and the port it was

received on. It then looks up the destination MAC

address in the table to determine what port the

frame needs to be forwarded to, and sends it out on

that port. The MAC address table is usually

implemented with a binary CAM so the destination

port can be found very quickly, reducing the

switch's latency.

Ternary CAMs are often used in network routers,

where each address has two parts: the network

address, which can vary in size depending on the

subnet configuration, and the host address, which

occupies the remaining bits. Each subnet has a

network mask that specifies which bits of the

address are the network address and which bits are

the host address. Routing is done by consulting a

routing table maintained by the router which

contains each known destination network address,

the associated network mask, and the information

needed to route packets to that destination. Without

CAM, the router compares the destination address

of the packet to be routed with each entry in the

routing table, performing a logical AND with the

network mask and comparing it with the network

address. If they are equal, the corresponding

routing information is used to forward the packet.

Using a ternary CAM for the routing table makes

the lookup process very efficient. The addresses are

stored using "don't care" for the host part of the

address, so looking up the destination address in

the CAM immediately retrieves the correct routing

entry; both the masking and comparison are done

by the CAM hardware. This works if (a) the entries

are stored in order of decreasing network mask

length, and (b) the hardware returns only the first

matching entry; thus, the match with the longest

network mask (longest prefix match) is used.

III. OVERVIEW OF BFS

The basic structure of BFs has been extended over

the years. For example, counting BFs (CBFs) were

introduced to allow removal of elements from the

BF. To optimize the transmission over the network,

another extension known as compressed Bloom

filters was proposed. Recently Bloom filter (Biff)

codes that are based on BFs have been proposed to

perform error correction in large data sets.

In most cases, BFs are implemented using

electronic circuits. The contents of a BF are

commonly stored in a high speed memory and

required processing is done in a processor or in

dedicated circuitry. The set used to construct the

BF is commonly stored in a lower speed memory.

Errors caused by interferences, radiation, and other

effects become more common. Therefore,

mitigation techniques are used at different levels to

ensure that the circuits continue to operate reliably.

Kappala Sravanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.2, February – March 2017, 5615-5620.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 5617

For BF implementation, memories are the critical

elements.

A BF is constructed using a set of k hash functions

to access an array of m bits. The hash functions h1,

h2, . . . , hk map an input element x to one of the m

bits. The following two operations are defined in a

BF.

1) Insertion: To insert an element x in the BF,

the bits in the array that correspond to the

positions h1(x), h2(x),…, hk(x) are set to one.

2) Query: To query for an element x in the BF,

the bits in the array that correspond to the

positions h1(x), h2(x),…, hk (x) are read and if

and only if all of them are one, the element is

considered to be in the BF.

IV. PROPOSED SCHEME

The proposed architecture is based on memory

block. Given an input data the proposed

architecture compares the stored data with input

data and send the single matched data address as

the output. For detecting and correcting the data

this project allows synergetic reuse

COMPRESSOR MEMORY BLOCK. This is based

on the observation that a CBF, in addition to a

structure that allows fast membership check to an

element set, is also in a way a redundant

representation of the element set. Therefore, this

redundancy could possibly be used for error

detection and correction.

To explore this idea, a common implementation of

CBFs where the elements of the set are stored in a

slow memory and the CBF is stored in a faster

memory is considered. In particular, it is assumed

that the elements of the set are stored in DRAM

while the CBF is stored in a cache . The reasoning

behind this is that the CBF is accessed frequently

and needs a fast access time to maximize

performance, while the elements of the set are only

accessed when elements are read, added or

removed and therefore the access time is not an

issue. It should also be noted that when the entire

element set is stored in a slow memory, no

incorrect deletions can occur as they would be

detected when removing the element from the slow

memory. Therefore, the false negatives issue in

CBFs discussed in is not a concern in our case.

Fig2: CAM Block Diagram Using Comparator

Typically, memories are protected with a per word

parity bit or With a single bit error correction code .

This is based on the observation that most errors

affect a single bit or even if they affect multiple

bits, the errors can be spread among different

words by the use of interleaving. In addition, soft

errors are rare events so that the time between

errors is typically large. The arrival rate for

terrestrial applications is in the order of at least

days or weeks and therefore, it is commonly

assumed that errors are isolated. That is, by the

time a soft error arrives any previous soft error has

been corrected or detected. This is an assumption

that is needed, for example, when single bit error

correction codes are used.

In the following, one of these two most common

protection options is used. In particular, it is

assumed that both the DRAM and the cache are

protected with a per word parity bit that can detect

single errors. As when using single bit error

correction codes, it is also assumed that errors are

isolate. The goal for this implementation is to

achieve the correction of single bit errors using the

CBF. That is, the CBF would enable single bit error

correction without incurring in the cost of adding

an ECC to the memories.

The first step to achieve error correction is to detect

errors. This is done by checking the parity bit when

accessing either the DRAM or the cache. To ensure

earlier detection of errors, the use of scrubbing to

periodically read the memories could be considered

. Once an error is detected, a correction procedure

is triggered. If the error occurs in the CBF, it can be

corrected by clearing the CBF and reconstructing it

using the element set. If the error occurs in the

element set, the procedure is more complex and can

be divided in two phases that are described in the

following sections. The idea is that the simpler and

faster procedure is used first and only when it is

unable to correct the error, the second more

complex error correction procedure is used

subsequently.

Content-addressable memories (CAMs) are

hardware search engines that are much faster than

algorithmic approaches for search-intensive

applications. CAMs are composed of conventional

semiconductor memory (usually SRAM) with

added comparison circuitry that enable a search

operation to complete in a single clock cycle. The

two most common search-intensive tasks that use

CAMs are packet forwarding and packet

classification in Internet routers. I introduce CAM

architecture and circuits by first describing the

application of address lookup in Internet routers.

Then we describe how to implement this lookup

function with CAM.

The remainder of this introduction assumes you

have some familiarity with the operation of

Kappala Sravanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.2, February – March 2017, 5615-5620.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 5618

transistors and basic ciruit organization of random-

access memory (RAM).

There are two basic forms of CAM: binary and

ternary. Binary CAMs support storage and

searching of binary bits, zero or one (0,1). Ternary

CAMs support storing of zero, one, or don't care bit

(0,1,X). Ternary CAMs are presently the dominant

CAM since longest-prefix routing is the Internet

standard. Figure 2 shows a block diagram of a

simplified 4 x 5 bit ternary CAM with a NOR-

based architecture. The CAM contains the routing

table from Table 1 to illustrate how a CAM

implements address lookup. The CAM core cells

are arranged into four horizontal words, each five

bits long. Core cells contain both storage and

comparison circuitry. The search lines run

vertically in the figure and broadcast the search

data to the CAM cells. The matchlines run

horizontally across the array and indicate whether

the search data matches the row's word. An

activated matchline indicates a match and a

deactivated matchline indicates a non-match, called

a mismatch in the CAM literature. The matchlines

are inputs to an encoder that generates the address

corresponding to the match location.

Fig.2 : simplified 4 x 5 bit ternary CAM with a

NOR-based architecture.

 Read operation in traditional memory:

 Input is address location of the content

that we are interested in it.

 Output is the content of that address.

 In CAM it is the reverse:

 Input is associated with something stored

in the memory.

 Output is location where the associated

content is stored.

Fig.3: Read operations in Traditional Memory

and CAM

CAM can be used as a search engine. We want to

find matching contents in a database or Table. A

CAM search operation begins with precharging all

matchlines high, putting them all temporarily in the

match state. Next, the search line drivers broadcast

the search data, 01101 in the figure, onto the search

lines. Then each CAM core cell compares its stored

bit against the bit on its corresponding search lines.

Cells with matching data do not affect the

matchline but cells with a mismatch pull down the

matchline. Cells storing an X operate as if a match

has occurred. The aggregate result is that

matchlines are pulled down for any word that has at

least one mismatch. All other matchlines remain

activated (precharged high). In the figure, the two

middle matchlines remain activated, indicating a

match, while the other matchlines discharge to

ground, indicating a mismatch. Last, the encoder

generates the search address location of the

matching data. In the example, the encoder selects

numerically the smallest numbered matchline of

the two activated matchlines, generating the match

address 01. This match address is used as the input

address to a RAM that contains a list of output

ports as depicted in Figure 4.

This CAM/RAM system is a complete

implementation of an address lookup engine. The

match address output of the CAM is in fact a

pointer used to retrieve associated data from the

RAM. In this case the associated data is the output

port. The CAM/RAM search can be viewed as a

dictionary lookup where the search data is the word

to be queried and the RAM contains the word

definitions. With this sketch of CAM operation, we

now look at the comparison circuitry in the CAM

core cells. Example of Routing Table is below,

Fig.4: Routing Table for CAM/RAM

 The input to the system is the search word.

 Encoder specifies the match location.

 If multiple matches, a priority encoder selects

the first match.

 Hit signal specifies if there is no match.

Kappala Sravanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.2, February – March 2017, 5615-5620.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 5619

V. RTL SCHEMATIC AND SIMULATION

RESULT

RTL : The RTL SCHEMATIC gives the

information about the user view of the design.The

internal blocks contains the basic gate

representaion of the logic.These basic gate

realization is purely depend upon the

corresponding FPGA selection and the internal

database information.

Fig. 5: RTL Schematic

Internal schematic:

Fig 6: Internal RTL Schematic

SIMULATION:

The simulation shows that, The proposed CAM

compresses the matched data and sent the

mismatched data address as the output. Where as

the SCN CAM sent the input data address as

output with out any compression. So, the

Proposed CAM measuring less energy

consumption and delay, as compared to that of

SCN based CAM

Fig. 7: Simulation results for Comparision of

SCN CAM with Proposed CAM

Device Utilization Summary

Typically, memories are protected with a per word

parity bit or With a single bit error correction code.

This is based on the observation that most errors

affect a single bit or even if they affect multiple

bits, the errors can be spread among different

words by the use of interleaving. In addition, soft

errors are rare events so that the time between

errors is typically large. The goal for this

implementation is to achieve the correction of

single bit errors using the CBF. That is, the CBF

would enable single bit error correction without

incurring in the cost of adding an ECC to the

memories.

VI. CONCLUSION

In this paper, we have introduced an efficient low

power CAM using compressor memory block

which will remove the repeated data stored in the

memory. For this application, BLOOM FILTERFS

has been proposed. The idea is to use the BFs in

existing applications to detect and correct errors in

their associated element set. In particular, it is

shown that CBFs can be used to correct errors in

the associated element set. This enables a cost

efficient solution to mitigate soft errors in

applications which use CBFs. The configuration

considered in this brief is that of a memory

protected with a per word parity bit for which it is

demonstrated that the CBF can be used to achieve

single bit error correction. This shows how existing

CBFs can be used to achieve error correction in

addition to perform their traditional membership

checking function.

VII. REFERENCES

[1] B. Bloom, “Space/time tradeoffs in hash

coding with allowable errors,” Commun.

ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] A. Broder and M. Mitzenmacher, “Network

applications of bloom filters: A survey,” in

Proc. 40th Annu. Allerton Conf., Oct. 2002,

pp. 636–646.

 [3] A. Moshovos, G. Memik, B. Falsafi, and A.

Choudhary, “Jetty: Filtering snoops for

reduced energy consumption in SMP

servers,” in Proc. Annu. Int. Conf. High-

Perform. Comput. Archit., Feb. 2001, pp.

85–96.

Kappala Sravanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.2, February – March 2017, 5615-5620.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 5620

[4] C. Fay et al., “Bigtable: A distributed

storage system for structured data,” ACM

TOCS, vol. 26, no. 2, pp. 1–4, 2008.

[5] F. Bonomi, M. Mitzenmacher, R. Panigrahy,

S. Singh, and G. Varghese, “An improved

construction for counting bloom filters,” in

Proc. 14th Annu. ESA, 2006, pp. 1–12.

 [6] M. Mitzenmacher, “Compressed bloom

filters,” in Proc. 12th Annu. ACM Symp.

PODC, 2001, pp. 144–150.

[7] M. Mitzenmacher and G. Varghese, “Biff

(Bloom Filter) codes: Fast error correction

for large data sets,” in Proc. IEEE ISIT, Jun.

2012, pp. 1–32.

[8] S. Elham, A. Moshovos, and A. Veneris,

“L-CBF: A low-power, fast counting Bloom

filter architecture,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 16, no. 6,

pp. 628–638, Jun. 2008.

[9] T. Kocak and I. Kaya, “Low-power bloom

filter architecture for deep packet

inspection,” IEEE Commun. Lett., vol. 10,

no. 3, pp. 210–212, Mar. 2006.

[10] S. Dharmapurikar, H. Song, J. Turner, and J.

W. Lockwood, “Fast hash table lookup

using extended bloom filter: An aid to

network processing,” in Proc.

ACM/SIGCOMM, 2005, pp. 181–192.

