3,180 research outputs found

    Adaptive Neural Subtractive Clustering Fuzzy Inference System for the Detection of High Impedance Fault on Distribution Power System

    Get PDF
    High impedance fault (HIF) is abnormal event on electric power distribution feeder which does not draw enough fault current to be detected by conventional protective devices. The algorithm for HIF detection based on the amplitude ratio of second and odd harmonics to fundamental is presented. This paper proposes an intelligent algorithm using an adaptive neural- Takagi Sugeno-Kang (TSK) fuzzy modeling approach based on subtractive clustering to detect high impedance fault. It is integrating the learning capabilities of neural network to the fuzzy logic system robustness in the sense that fuzzy logic concepts are embedded in the network structure. It also provides a natural framework for combining both numerical information in the form of input/output pairs and linguistic information in the form of IF– THEN rules in a uniform fashion. Fast Fourier Transformation (FFT) is used to extract the features of the fault signal and other power system events. The effect of capacitor banks switching, non-linear load current, no-load line switching and other normal event on distribution feeder harmonics is discussed. HIF and other operation event data were obtained by simulation of a 13.8 kV distribution feeder using PSCAD. The results show that the proposed algorithm can distinguish successfully HIFs from other events in distribution power syste

    A survey on tidal analysis and forecasting methods for Tsunami detection

    Get PDF
    Accurate analysis and forecasting of tidal level are very important tasks for human activities in oceanic and coastal areas. They can be crucial in catastrophic situations like occurrences of Tsunamis in order to provide a rapid alerting to the human population involved and to save lives. Conventional tidal forecasting methods are based on harmonic analysis using the least squares method to determine harmonic parameters. However, a large number of parameters and long-term measured data are required for precise tidal level predictions with harmonic analysis. Furthermore, traditional harmonic methods rely on models based on the analysis of astronomical components and they can be inadequate when the contribution of non-astronomical components, such as the weather, is significant. Other alternative approaches have been developed in the literature in order to deal with these situations and provide predictions with the desired accuracy, with respect also to the length of the available tidal record. These methods include standard high or band pass filtering techniques, although the relatively deterministic character and large amplitude of tidal signals make special techniques, like artificial neural networks and wavelets transform analysis methods, more effective. This paper is intended to provide the communities of both researchers and practitioners with a broadly applicable, up to date coverage of tidal analysis and forecasting methodologies that have proven to be successful in a variety of circumstances, and that hold particular promise for success in the future. Classical and novel methods are reviewed in a systematic and consistent way, outlining their main concepts and components, similarities and differences, advantages and disadvantages

    Detecting High Impedance Fault in Power Distribution Feeder with Fuzzy Subtractive Clustering Model

    Get PDF
    An irregular activity on electric power distribution feeder, which does not draw adequate fault current to be detected by general protective devices, is called as High impedance fault (HIF). This paper presents the algorithm for HIF detection based on the amplitude of third and fifth harmonics of current, voltage and power. This paper proposes an intelligent algorithm using the Takagi Sugeno- Kang (TSK) fuzzy modeling approach based on subtractive clustering to detect the high impedance fault. The Fast Fourier Transformation (FFT) is used to extract the feature of the faulted signals and other power system events. The effect of capacitor bank switching, non-linear load current, no-load line switching and other normal event on distribution feeder harmonics is discussed. The HIF and other operation event data were obtained by simulation of a 13.8 kV distribution feeder using PSCAD. It is evident from the outcomes that the proposed algorithm can effectively differentiate the HIFs from other events in power distribution feeder

    Self-adjustable domain adaptation in personalized ECG monitoring integrated with IR-UWB radar

    Get PDF
    To enhance electrocardiogram (ECG) monitoring systems in personalized detections, deep neural networks (DNNs) are applied to overcome individual differences by periodical retraining. As introduced previously [4], DNNs relieve individual differences by fusing ECG with impulse radio ultra-wide band (IR-UWB) radar. However, such DNN-based ECG monitoring system tends to overfit into personal small datasets and is difficult to generalize to newly collected unlabeled data. This paper proposes a self-adjustable domain adaptation (SADA) strategy to prevent from overfitting and exploit unlabeled data. Firstly, this paper enlarges the database of ECG and radar data with actual records acquired from 28 testers and expanded by the data augmentation. Secondly, to utilize unlabeled data, SADA combines self organizing maps with the transfer learning in predicting labels. Thirdly, SADA integrates the one-class classification with domain adaptation algorithms to reduce overfitting. Based on our enlarged database and standard databases, a large dataset of 73200 records and a small one of 1849 records are built up to verify our proposal. Results show SADA\u27s effectiveness in predicting labels and increments in the sensitivity of DNNs by 14.4% compared with existing domain adaptation algorithms
    corecore