870 research outputs found

    The Design and Implementation of a PCIe-based LESS Label Switch

    Get PDF
    With the explosion of the Internet of Things, the number of smart, embedded devices has grown exponentially in the last decade, with growth projected at a commiserate rate. These devices create strain on the existing infrastructure of the Internet, creating challenges with scalability of routing tables and reliability of packet delivery. Various schemes based on Location-Based Forwarding and ID-based routing have been proposed to solve the aforementioned problems, but thus far, no solution has completely been achieved. This thesis seeks to improve current proposed LORIF routers by designing, implementing, and testing and a PCIe-based LESS switch to process unrouteable packets under the current LESS forwarding engine

    Accelerated hardware video object segmentation: From foreground detection to connected components labelling

    Get PDF
    This is the preprint version of the Article - Copyright @ 2010 ElsevierThis paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of foreground pixels with the labelling of objects using a connected components algorithm. The background models are based on 24-bit RGB values and 8-bit gray scale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The real-time connected component labelling algorithm, also designed for FPGA implementation, run-length encodes the output of the background subtraction, and performs connected component analysis on this representation. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels. The two algorithms are pipelined together for maximum efficiency

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    Video Sensor Architecture for Surveillance Applications

    Get PDF
    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. © 2012 by the authors; licensee MDPI, Basel, Switzerland.This work has been partially supported by SENSE project (Specific Targeted Research Project within the thematic priority IST 2.5.3 of the 6th Framework Program of the European Commission: IST Project 033279), and has been also co-funded by the Spanish research projects SIDIRELI: DPI2008-06737-C02-01/02 and COBAMI: DPI2011-28507-C02-02, both partially supported with European FEDER funds.Sánchez Peñarroja, J.; Benet Gilabert, G.; Simó Ten, JE. (2012). Video Sensor Architecture for Surveillance Applications. Sensors. 12(2):1509-1528. https://doi.org/10.3390/s120201509S15091528122Batlle, J. (2002). A New FPGA/DSP-Based Parallel Architecture for Real-Time Image Processing. Real-Time Imaging, 8(5), 345-356. doi:10.1006/rtim.2001.0273Foresti, G. L., Micheloni, C., Piciarelli, C., & Snidaro, L. (2009). Visual Sensor Technology for Advanced Surveillance Systems: Historical View, Technological Aspects and Research Activities in Italy. Sensors, 9(4), 2252-2270. doi:10.3390/s90402252Bramberger, M., Doblander, A., Maier, A., Rinner, B., & Schwabach, H. (2006). Distributed Embedded Smart Cameras for Surveillance Applications. Computer, 39(2), 68-75. doi:10.1109/mc.2006.55Foresti, G. L., Micheloni, C., Snidaro, L., Remagnino, P., & Ellis, T. (2005). Active video-based surveillance system: the low-level image and video processing techniques needed for implementation. IEEE Signal Processing Magazine, 22(2), 25-37. doi:10.1109/msp.2005.1406473Fuentes, L. M., & Velastin, S. A. (2003). Tracking People for Automatic Surveillance Applications. Lecture Notes in Computer Science, 238-245. doi:10.1007/978-3-540-44871-6_28García, J., Pérez, O., Berlanga, A., & Molina, J. M. (2007). Video tracking system optimization using evolution strategies. International Journal of Imaging Systems and Technology, 17(2), 75-90. doi:10.1002/ima.20100Xu, H., Lv, J., Chen, X., Gong, X., & Yang, C. (2007). Design of video processing and testing system based on DSP and FPGA. 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. doi:10.1117/12.783790Sanfeliu, A., Andrade-Cetto, J., Barbosa, M., Bowden, R., Capitán, J., Corominas, A., … Spaan, M. T. J. (2010). Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas. Sensors, 10(3), 2274-2314. doi:10.3390/s100302274http://www.sense-ist.orgXu, H., Lv, J., Chen, X., Gong, X., & Yang, C. (2007). Design of video processing and testing system based on DSP and FPGA. 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. doi:10.1117/12.78379

    Accelerating LSTM-based High-Rate Dynamic System Models

    Full text link
    In this paper, we evaluate the use of a trained Long Short-Term Memory (LSTM) network as a surrogate for a Euler-Bernoulli beam model, and then we describe and characterize an FPGA-based deployment of the model for use in real-time structural health monitoring applications. The focus of our efforts is the DROPBEAR (Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research) dataset, which was generated as a benchmark for the study of real-time structural modeling applications. The purpose of DROPBEAR is to evaluate models that take vibration data as input and give the initial conditions of the cantilever beam on which the measurements were taken as output. DROPBEAR is meant to serve an exemplar for emerging high-rate "active structures" that can be actively controlled with feedback latencies of less than one microsecond. Although the Euler-Bernoulli beam model is a well-known solution to this modeling problem, its computational cost is prohibitive for the time scales of interest. It has been previously shown that a properly structured LSTM network can achieve comparable accuracy with less workload, but achieving sub-microsecond model latency remains a challenge. Our approach is to deploy the LSTM optimized specifically for latency on FPGA. We designed the model using both high-level synthesis (HLS) and hardware description language (HDL). The lowest latency of 1.42 μ\muS and the highest throughput of 7.87 Gops/s were achieved on Alveo U55C platform for HDL design.Comment: Accepted at 33rd International Conference on Field-Programmable Logic and Applications (FPL

    Fast, Accurate Thin-Structure Obstacle Detection for Autonomous Mobile Robots

    Full text link
    Safety is paramount for mobile robotic platforms such as self-driving cars and unmanned aerial vehicles. This work is devoted to a task that is indispensable for safety yet was largely overlooked in the past -- detecting obstacles that are of very thin structures, such as wires, cables and tree branches. This is a challenging problem, as thin objects can be problematic for active sensors such as lidar and sonar and even for stereo cameras. In this work, we propose to use video sequences for thin obstacle detection. We represent obstacles with edges in the video frames, and reconstruct them in 3D using efficient edge-based visual odometry techniques. We provide both a monocular camera solution and a stereo camera solution. The former incorporates Inertial Measurement Unit (IMU) data to solve scale ambiguity, while the latter enjoys a novel, purely vision-based solution. Experiments demonstrated that the proposed methods are fast and able to detect thin obstacles robustly and accurately under various conditions.Comment: Appeared at IEEE CVPR 2017 Workshop on Embedded Visio

    Brain-inspired self-organization with cellular neuromorphic computing for multimodal unsupervised learning

    Full text link
    Cortical plasticity is one of the main features that enable our ability to learn and adapt in our environment. Indeed, the cerebral cortex self-organizes itself through structural and synaptic plasticity mechanisms that are very likely at the basis of an extremely interesting characteristic of the human brain development: the multimodal association. In spite of the diversity of the sensory modalities, like sight, sound and touch, the brain arrives at the same concepts (convergence). Moreover, biological observations show that one modality can activate the internal representation of another modality when both are correlated (divergence). In this work, we propose the Reentrant Self-Organizing Map (ReSOM), a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning. We propose and compare different computational methods for unsupervised learning and inference, then quantify the gain of the ReSOM in a multimodal classification task. The divergence mechanism is used to label one modality based on the other, while the convergence mechanism is used to improve the overall accuracy of the system. We perform our experiments on a constructed written/spoken digits database and a DVS/EMG hand gestures database. The proposed model is implemented on a cellular neuromorphic architecture that enables distributed computing with local connectivity. We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.Comment: Preprin
    corecore