64 research outputs found

    An enhanced error model for EKF-based tightly-coupled integration of GPS and land vehicle’s motion sensors

    Get PDF
    Reduced inertial sensor systems (RISS) have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based on the assumption that the vehicle is mostly moving on a flat horizontal plane. Another limitation is the simplified estimation of the horizontal tilt angles, which is based on simple averaging of the accelerometers’ measurements without modelling their errors or tilt angle errors. In this paper, a new error model is developed for RISS that accounts for the effect of tilt angle errors and the accelerometer’s errors. Additionally, it also includes important terms in the system dynamic error model, which were ignored during the linearization process in earlier works. An augmented extended Kalman filter (EKF) is designed to incorporate tilt angle errors and transversal accelerometer errors. The new error model and the augmented EKF design are developed in a tightly-coupled RISS/GPS integrated navigation system. The proposed system was tested on real trajectories’ data under degraded GPS environments, and the results were compared to earlier works on RISS/GPS systems. The findings demonstrated that the proposed enhanced system introduced significant improvements in navigational performance

    On the Adaptivity of Unscented Particle Filter for GNSS/INS Tightly-Integrated Navigation Unit in Urban Environment

    Get PDF
    Tight integration algorithms fusing Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) have become popular in many high-accuracy positioning and navigation applications. Despite their reliability, common integration architectures can still run into accuracy drops under challenging navigation settings. The growing computational power of low-cost, embedded systems has allowed for the exploitation of several advanced Bayesian state estimation algorithms, such as the Particle Filter (PF) and its hybrid variants, e.g. Unscented Particle Filter (UPF). Although sophisticated, these architectures are not immune from multipath scattering and Non-Line-of-Sight (NLOS) signal receptions, which frequently corrupt satellite measurements and jeopardise GNSS/INS solutions. Hence, a certain level of modelling adaptivity should be granted to avoid severe drifts in the estimated states. Given these premises, the paper presents a novel Adaptive Unscented Particle Filter (AUPF) architecture leveraging two cascading stages to cope with disruptive, biased GNSS input observables in harsh conditions. A INS-based signal processing block is implemented upstream of a Redundant Measurement Noise Covariance Estimation (RMNCE) stage to strengthen the adaptation of observables’ statistics and improve the state estimation. An experimental assessment is provided for the proposed robust AUPF that demonstrates a 10 % average reduction of the horizontal position error above the 75-th percentile. In addition, a comparative analysis both with previous adaptive architectures and a plain UPF is carried out to highlight the improved performance of the proposed methodology

    A Cognitive Particle Filter for Collaborative DGNSS Positioning

    Get PDF
    The advances in low-latency communications networks and the ever-growing amount of devices offering localization and navigation capabilities opened a number of opportunities to develop innovative network-based collaborative solutions to satisfy the increasing demand for positioning accuracy and precision. Recent research works indeed, have fostered the concept of networked Global Navigation Satellite System (GNSS) receivers supporting the sharing of raw measurements with other receivers within the same network. Such measurements (i.e. pseudorange and Doppler) can be processed through Differential GNSS (DGNSS) techniques to retrieve inter-agent distances which can be in turn integrated to improve positioning performance. This article investigates an improved Bayesian estimation algorithm for a sensorless, tight-integration of DGNSS-based collaborative measurements through a modified Particle Filter (PF), namely Cognitive PF. Differently from Extended Kalman Filter and Uscented Kalman Filter indeed, a PF natively support the non-Gaussian noise distribution which characterizes DGNSS-based inter-agent distances. The proposed Cognitive PF is hence designed, implemented and optimized according to the architecture of a proprietary Inertial Navigation System (INS)-free Global Navigation Satellite System (GNSS) software receiver. Experimental tests performed through realistic radio-frequency GNSS signals showed a remarkable improvement in positioning accuracy w.r.t. reference PF and EKF architectures

    Positioning Based on Tightly Coupled Multiple Sensors: A Practical Implementation and Experimental Assessment

    Get PDF
    During the last decade, the number of applications for land transportation that depend on systems for accurate positioning has significantly increased. Unfortunately, systems based on low-cost global navigation satellite system (GNSS) components harshly suffer signal impairments due to the environment surrounding the antenna, but new designs based on deeper data fusion and on the combination of different signal processing techniques can overcome limitations without the introduction of expensive components. Supported by a complete mathematical model, this paper presents the design of a real-time positioning system that is based on the tight integration of extremely low-cost sensors and a consumer-grade global positioning system receiver. The design has been validated experimentally through a series of tests carried out in real scenarios. The performance of the new system is compared against a standalone GNSS receiver and survey-grade professional equipment. The results show that a carefully designed and constrained integration of low-cost sensors can have performance comparable to that of an expensive professional equipment

    Sequential Importance Resampling Particle Filter for Ambiguity Resolution

    Get PDF
    In this thesis the sequential importance resampling particle filter for estimating the full geometry-based float solution state vector for Global Navigation Satellite System (GNSS) ambiguity resolution is implemented. The full geometry-based state vector, consisting on position, velocity, acceleration, and float ambiguities, is estimated using a particle filter in RTK mode. In contrast to utilizing multi-frequency and multi-constellation GNSS measurements, this study employed solely L1 GPS code and carrier phase observations. This approach simulates scenarios wherein the signal reception environment is suboptimal and only a restricted number of satellites are visible. However, it should be noted that the methodology outlined in this thesis can be expanded for cases involving multiple frequencies and constellations. The distribution of particles after the resampling step is used to compute an empirical covariance matrix Pk based on the incorporated observations at each epoch. This covariance matrix is then used to transform the distribution using the decorrelating Z transformation of the LAMBDA method [1]. The performance of a float solution based on point mass representation is compared to the typically used extended Kalman filter (EKF) for searching the integer ambiguities using the three common search methods described in [2]: Integer Rounding, Integer Bootstrapping, and Integer Least Squares with and without the Z transformation. As Bayesian estimators are able to include highly non-linear elements and accurately describe non-Gaussian posterior densities, the particle filter outperforms the EKF when a constraint leading to highly non-Gaussian distributions is added to the estimator. Such is the case of the map-aiding constraint, which integrates digital road maps with GPS observations to compute a more accurate position state. The comparison between the position accuracy of the particle filter solution with and without the map-aiding constraint to the solution estimated with the EKF is made. The algorithm is tested in different segments of data and shows how the position convergence improves when adding digital road map information within the first thirty seconds of initializing the Particle Filter in different scenarios that include driving in a straight line, turning, and changing lanes. The assessment of the effect of the map-aiding algorithm on the ambiguity domain is carried out as well and it is shown how the convergence time of the float ambiguities improves when the position accuracy is improved by the constraint. The particle filter is able to weight the measurements according to any kind of distribution, unlike the EKF which always assumes a Gaussian distribution. The performance of the PF when having non-Gaussian measurements is assessed, such as when the measurements are distorted by multipath. Two additional steps are implemented, an outlier detection technique based on the predicted set of particles, and the use of a mixture of Gaussians to weight the measurements detected as outliers. The implemented outlier detection algorithm is based on the residual (or innovation) testing technique which is commonly applied into the EKF. The innovation and its covariance matrix are estimated from a predicted set of residuals using the transitional prior distribution and the measurement model. Then, the innovation is compared against the critical value of N (0, 1) at a level of significance α. The mixture of Gaussians is the weighted sum of two Gaussians, one from the measurement noise matrix, and the second being a scaled version of the first one describing the multipath error. This procedure de-weights the measurements with multipath, and reduces the bias in the position estimate. The proposed map-aiding algorithm improves the ambiguity convergence time by approximately 80%, while the deweighting process enhances it by around 25% for the segments of the vehicle dataset that were analyzed. This work serves as a demonstration of cases wherein the particle filter addresses the limitations of the EKF in estimating the float solution in ambiguity resolution. Such limitations include constraints that give rise to non-Gaussian probability density functions and the utilization of a distinct likelihood function for outlier measurements, as opposed to the Gaussian assumption made by the EKF. The proposed map-aided particle filter can be implemented in real-time to enhance the float ambiguity during the initial epochs after the filter has been initialized. This implementation proves beneficial in urban environments where there is a loss or complete obstruction of the GNSS signal

    Location-Based Sensor Fusion for UAS Urban Navigation.

    Full text link
    For unmanned aircraft systems (UAS) to effectively conduct missions in urban environments, a multi-sensor navigation scheme must be developed that can operate in areas with degraded Global Positioning System (GPS) signals. This thesis proposes a sensor fusion plug and play capability for UAS navigation in urban environments to test combinations of sensors. Measurements are fused using both the Extended Kalman Filter (EKF) and Ensemble Kalman Filter (EnKF), a type of Particle Filter. A Long Term Evolution (LTE) transceiver and computer vision sensor each augment the traditional GPS receiver, inertial sensors, and air data system. Availability and accuracy information for each sensor is extracted from the literature. LTE positioning is motivated by a perpetually expanding network that can provide persistent measurements in the urban environment. A location-based logic model is proposed to predict sensor availability and accuracy for a given type of urban environment based on a map database as well as real-time sensor inputs and filter outputs. The simulation is executed in MATLAB where the vehicle dynamics, environment, sensors, and filters are user-customizable. Results indicate that UAS horizontal position accuracy is most dependent on availability of high sampling rate position measurements along with GPS measurement availability. Since the simulation is able to accept LTE sensor specifications, it will be able to show how the UAS position accuracy can be improved in the future with this persistent measurement, even though the accuracy is not improved using current LTE state-of-the-art. In the unmatched true propagation and filter dynamics model scenario, filter tuning proves to be difficult as GPS availability varies from urban canyon to urban canyon. The main contribution of this thesis is the generation of accuracy data for different sensor suites in both a homogeneous urban environment (solid walls) using matched dynamics models and a heterogeneous urban environment layout using unmatched models that necessitate filter tuning. Future work should explore the use of downward facing VISION sensors and LiDAR, integrate real-time map information into sensor availability and measurement weighting decisions, including the use of LTE for approximate localization, and more finely represent expected measurement accuracies in the GPS and LTE networks.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110361/1/jrufa_1.pd

    Information Aided Navigation: A Review

    Full text link
    The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.Comment: 8 figures, 3 table

    Comparison between RGB and RGB-D cameras for supporting low-cost GNSS urban navigation

    Get PDF
    A pure GNSS navigation is often unreliable in urban areas because of the presence of obstructions, thus preventing a correct reception of the satellite signal. The bridging between GNSS outages, as well as the vehicle attitude reconstruction, can be recovered by using complementary information, such as visual data acquired by RGB-D or RGB cameras. In this work, the possibility of integrating low-cost GNSS and visual data by means of an extended Kalman filter has been investigated. The focus is on the comparison between the use of RGB-D or RGB cameras. In particular, a Microsoft Kinect device (second generation) and a mirrorless Canon EOS M RGB camera have been compared. The former is an interesting RGB-D camera because of its low-cost, easiness of use and raw data accessibility. The latter has been selected for the high-quality of the acquired images and for the possibility of mounting fixed focal length lenses with a lower weight and cost with respect to a reflex camera. The designed extended Kalman filter takes as input the GNSS-only trajectory and the relative orientation between subsequent pairs of images. Depending on the visual data acquisition system, the filter is different because RGB-D cameras acquire both RGB and depth data, allowing to solve the scale problem, which is instead typical of image-only solutions. The two systems and filtering approaches were assessed by ad-hoc experimental tests, showing that the use of a Kinect device for supporting a u-blox low-cost receiver led to a trajectory with a decimeter accuracy, that is 15% better than the one obtained when using the Canon EOS M camera

    Localization as a Key Enabler of 6G Wireless Systems: A Comprehensive Survey and an Outlook

    Get PDF
    peer reviewedWhen fully implemented, sixth generation (6G) wireless systems will constitute intelligent wireless networks that enable not only ubiquitous communication but also high-Accuracy localization services. They will be the driving force behind this transformation by introducing a new set of characteristics and service capabilities in which location will coexist with communication while sharing available resources. To that purpose, this survey investigates the envisioned applications and use cases of localization in future 6G wireless systems, while analyzing the impact of the major technology enablers. Afterwards, system models for millimeter wave, terahertz and visible light positioning that take into account both line-of-sight (LOS) and non-LOS channels are presented, while localization key performance indicators are revisited alongside mathematical definitions. Moreover, a detailed review of the state of the art conventional and learning-based localization techniques is conducted. Furthermore, the localization problem is formulated, the wireless system design is considered and the optimization of both is investigated. Finally, insights that arise from the presented analysis are summarized and used to highlight the most important future directions for localization in 6G wireless systems
    • …
    corecore