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ABSTRACT During the last decade, the number of applications for land transportation that depend on 
systems for accurate positioning has significantly increased. Unfortunately, systems based on low cost 
Global Navigation Satellite System (GNSS) components harshly suffer signal impairments due to the 
environment surrounding the antenna, but new designs based on deeper data fusion and on the combination 
of different signal processing techniques can overcome limitations without the introduction of expensive 
components. Supported by a complete mathematical model, this paper presents the design of a real-time 
positioning system that is based on the tight integration of extremely low-cost sensors and a consumer-
grade GPS receiver. The design has been validated experimentally through a series of tests carried out in 
real scenarios. The performance of the new system is compared against a standalone GNSS receiver and a 
“survey grade” professional equipment. The results show that a carefully designed and constrained 
integration of low-cost sensors can have performance comparable to that of an expensive professional 
equipment. 

INDEX TERMS Global Positioning System (GPS), Inertial Navigation System (INS), position accuracy, 
tight architecture
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I.
 
INTRODUCTION 

HE accurate and reliable estimate of vehicles position is 
at the basis of many applications for land transportation, 

but is becoming an important requirement also in other 
domains, such as in precision farming for the control of 
driverless machineries. As many scientists have pointed out in 
the recent years, there is an increasing demand for sub-meter 
position accuracy in most of operational conditions. 
Developers keep seeking innovative strategies and reliable 
systems at affordable costs [1]-[3]. Although the Global 
Positioning System (GPS) - in general terms, the Global 
Navigation Satellite System (GNSS) - remains the main mean 
for absolute positioning and outdoor navigation, the urban 
environment and specific conditions often pose severe 
challenges to the receivers. In fact, the presence of buildings 
and trees might induce signal reflections and attenuations that, 
in turn, cause corrupted GNSS measurements. Even worse, in 
severe cases, the number of visible satellites can be not 
sufficient, and receivers might be unable to provide Position 
Velocity and Time (PVT) data. 

Apart from the GNSS-evolution (new constellations help to 
increase the satellites visibility and offer signals at different 
frequencies), today is already a common practice the 
integration of satellite navigation receivers with terrestrial 
sensors, namely wheel odometers [4], Inertial Navigation 
Systems (INSs) [5]-[7] and Light Detection and Ranging 
(LIDAR) [8]. Several types of integration approaches can be 
adopted [9], but from a general perspective they can be 
grouped in three main categories: the loosely coupled [10], the 
tightly coupled [11] and the ultra-tight integration [12], [13]. 
In a nutshell, the basic difference between them is the type of 
data shared by the GNSS receiver and the sensors. For 
instance, in INS/GPS loosely coupled architectures, positions 
and velocities estimated by the GNSS receiver are blended 
with the INS navigation solution. Tightly coupled 
architectures perform a deeper data fusion, as the estimated 
GNSS pseudoranges and Doppler shifts are processed through 
a Kalman Filter (KF) along with the INS measurements. 
Compared to the loosely coupled, tight integrations allow for 
providing PVT data even in scenarios with poor signal quality 
and limited satellites coverage, thanks to the prediction of 
pseudoranges and Doppler trends. Ultra-tight integrations, 
which enhance performance of less complex methods in high 
dynamic or weak signal conditions [14] -[16], involve the 
baseband signal processing of GNSS receivers, which is 
typically not accessible when using commercial low-cost 
modules. 

The performance achievable with the aforementioned kinds 
of integration is limited by the approximations of the 
linearization process of the KF and the difficult 
characterization of the sensors errors, which is especially 
critical for low-cost MEMS-based IMUs [17]. In literature 
many solutions have been proposed to overcome such 
problems. KF can be replaced by Unscented Kalman Filters 
(UKF)[18], Particle Filtering (PF) [17], [19], [20] or several 
kinds of Artificial Neural Networks (ANN) [21], [22], [23], 

whereas the introduction of an H∞ filter can keep the KF 

stable regardless of the complexity of the IMU measurements 
noise [24], [25]. All these solutions are characterized by a high 
complexity in the design of the system, which makes them 
unsuitable when the use of low-cost components is addressed. 

This paper starts from a conventional tightly coupled 
architecture and presents the design of add-on algorithms, 
necessary to achieve a real-time implementation based on a 
low-cost Inertial Measurement Unit (IMU), a consumer-grade 
GPS receiver and odometer data available on the car 
Controller Area Network (CAN)-bus. The paper shows the 
results obtained from a set of tests performed in a real 
environment and compares the performance of the positioning 
system under test with commercial products. Although many 
papers describe integrated INS/GPS schemes for automotive 
applications (see for example [26]-[28]), very few works [29], 
[30] focus on the performance achievable by a tightly coupled 
architecture fusing measurements of extremely low-cost 
sensors. 

Section II recalls the theory behind conventional tightly 
coupled architectures, while Section III accurately describes the 
logical controls and constraints designed for the proposed real-
time implementation. These make the system robust to GNSS 
signal impairments and lead to performance comparable to that 
of a professional, dual frequency GPS receiver, combined with 
a tactical-grade IMU. Section IV includes a detailed description 
of the experimental setup, presents the methodology followed 
during the data post-processing and comments the results of the 
tests. 

 
II.
 
BASICS ON INS/GPS TIGHT INTEGRATION 

The INS/GPS data fusion is commonly performed through a 
KF [31]-[33], that can be considered the reference method to 
perform multiple sensors data fusion [3], [11] and [34]. In a 
tight integration, the KF is fed by the measure of pseudoranges 
and pseudorange rates to assist the INS in the estimate of the 
user’s position and velocity. The tight integration is able to aid 
the inertial sensors even during limited GPS satellite 
availability [19]. Many works related to Kalman-based tight 
integrations have been published in the course of the last 
decade, such as [3], [11], [35]-[40]. 

A simple diagram showing the main operations of a tight 
INS/GPS integration is depicted in Fig. 1. 

 
Fig. 1. Block diagram of a conventional INS/GPS tightly coupled 

architecture. 
 

T
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The block labeled as INS algorithm calculates the position, 
velocity and attitude (i.e.: the INS navigation solution) by 
exploiting the accelerometers and gyroscopes measures 
provided by the Inertial Measurement Unit (IMU). See [5], 
[11] for details. 

In parallel, the GPS receiver provides raw measurements 
(i.e. code-based pseudorange, Doppler and carrier-phase 
measures), ephemeris and Position, Velocity and Time (PVT) 
data. The algorithm described hereafter uses GPS code-based 
measurements only.  

Similarly, to the GPS, it is also possible to compute 
pseudoranges and pseudorange rates from the user’s position 
and velocity estimated by the INS algorithm. At time k, the 

misclosure vector ( )kz  can be written as: 

 

( ) ( )
( )

( ) ( )

INS GPS

INS GPS

k k
k

k k

 −
= 

− 

ρ ρ
z

ρ ρɺ ɺ
 (1) 

 
where: 

INSρ , 
GPSρ are the vectors of pseudoranges related to the INS 

and the GPS receiver, respectively; 

INSρɺ , 
GPSρɺ  are the vectors of pseudoranges rates related to 

the INS and the GPS receiver, respectively. 
 

The centralized KF uses as input the misclosure vector, 
when available, otherwise it provides an estimate of its states 

( )kx  by prediction only. 

For the sake of simplicity, from this moment on, the k-th 
discrete time instant is indicated by the subscript k. As far as 
the discrete time states vector of a centralized KF is 
concerned, the non-linear state transition model (system or 
motion model) is given by (2): 

 

1 1 1( , , )k k k kf − − −=x x u w  (2) 

 
where u  is the control input and w  is the process noise. 

The state measurement model is: 
 

( , )k k kh=z x ν  (3) 

 

where 
kν  is the measurement noise, which is independent of 

the past and current states and accounts for errors on GPS 
measurements. Eqs (2) and (3) can be rewritten as:  
 

k k kδ δ= ⋅ + ⋅x F x G Wɺ  (4) 

 
where F  is the whole matrix of the system model and G  is the 

matrix that relates the states with noise sources. 
 

k k kδ= ⋅ +z H x ν  (5) 

 

where H  is the matrix that relates the states with the 
measurements. Eqs (4) and (5) can be tailored for the 
INS/GPS integration and their mathematical expression can be 
found in Appendix I and Appendix II, respectively.  

In integrated INS/GPS systems, the required states to be 
estimated include the navigation parameters (i.e., positions, 
velocities, and attitudes) and the sensor parameters (i.e., biases 
and scale factors) [41]. In particular, the centralized KF is in 
charge of estimating the error (i.e.δ x ) of the navigation 
solution, rather than the states themselves (i.e. x ) [17]. Due to 
the non-linear relationship between the states and the 
measurements the centralized KF is replaced by an Extended 
Kalman Filter (EKF). A typical error states vector used in case 
of an INS/GPS tightly coupled architectures is indicated in (6): 

 

3 1 3 1 3 1 3 1 3 1

T
e e e b b

r rb dδ δ δ δ δ δ δ δ× × × × ×
 =  x r v A f ω  (6) 

 
where 

3 1
eδ ×r  is the position error vector; 

3 1
eδ ×v  is the velocity error vector; 

3 1
eδ ×A  is the attitude error vector; 

3 1
bδ ×f  is the error vector related to the specific forces 

measured by the IMU in the body frame ‘b’; 

3 1
bδ ×ω  is the error vector related to the angular rates 

measured by the IMU in the body frame ‘b’; 

rbδ  is the receiver’s clock bias; 

rdδ  is the receiver’s clock drift. 

 
By applying the perturbation analysis [5], an INS error 

model can be derived to represent the dynamics of the 
navigation error states (i.e. ()f , according to (2)). For ease of 
comprehension, the calculation of such matrix, both in 
continuous and discrete-time, is reported in Appendix I, while 
Appendix II describes the mathematical relationship between 
measurements and states in case of an INS/GPS tightly 
coupled integration. 

III.
 
ADVANCED INS/GPS TIGHT INTEGRATION FOR 

PRACTICAL IMPLEMENTATION 

In the proposed system, the performance of the traditional 
INS/GPS tight integration has been improved through the 
exploitation of additional constraints and ad-hoc strategies, 
inspired by the knowledge of the final application of the 
positioning system. This improvement has been obtained by 
focusing on four main aspects: 
 

A. reduction of the tightly coupled EKF divergence 
during long GPS signal outages; 

B. countermeasures to the initial large heading error 
that can lead to filter instability; 

C. limitation of the INS errors drift within the 
navigation solution; 

D. monitoring of the measurements quality and validity 
of the code-based GPS measurements. 
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Each aspect is discussed in the following subsections. 

A.
 
 Reduction of the tightly coupled EKF divergence 

during long GPS signal outages  

During GPS signal outages, the tight integration calculates 
the position with the IMU data and skips the update phase due 
to the absence of GPS measurements. In such conditions, low-
cost MEMS-based IMUs can lead to a remarkable degradation 
in terms of positioning accuracy even after a short amount of 
time. In order to overcome this problem, the output of an 
odometer and two Non-Holonomic Constraints (NHC) [3] are 
added to the system. Exploiting this information, the update 
phase of the EKF can be performed also during GPS signal 
outages. The block diagram of this enhancement is depicted in 
Fig. 2 with bold lines. 

 

 

Fig. 2. Block diagram of a GPS/INS tightly coupled architecture enhanced by 
NHC constraints and odometer measurements. 

 
The measurements misclosure equation is expressed in (7): 
 

( ), ,3 3 ,3 1

v
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0
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S
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= − ⋅  
    

Z R v  (7) 

 
where: 

S  is the odometer scale factor; 

vODOM
 is the velocity of the odometer computed with respect 

to the vehicle’s frame; 

,3 3
e

b ×R  is the direction cosine matrix from the body frame ‘b’ 

to ECEF frame ‘e’; 

,3 1
e

INS ×v  is the velocity vector of the vehicle computed through 

the INS algorithm in the ECEF frame. 
 

Since the scale factor S  of the odometer is taken into 

account, an additional error state needs to be included in the 

vector δ x  as expressed in (6). Thus, leveraging on (2), the 

INS/GPS system model as described in (4) is augmented as:  
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 (8) 

 

where 
/INS GPSδ x , 

/INS GPSF , 
/INS GPSG , and 

/INS GPSW  are 

the error states vector, the system model matrix, the matrix 
that relates the dynamic model to its noise sources, and the 
noise process vector as expressed in (6) and (4), respectively. 
The discrete-time version of (8) can be obtained by following 
the procedure reported in Appendix I. 

Eventually, the new discrete-time design matrix 

,k OUTAGE
H that relates the measurements with the error states 

of the EKF in case of GPS signal outage is obtained through 

perturbations of (7), both for 

v

0

0

ODOMS

δ

⋅ 
 
 
 
 

 and 

( ),3 3 ,3 1

T
e e

b INS
δ × ×
 ⋅
  

R v , according to [42]. The solution can 

be summarized as: 
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(9) 

where 
 

,vb

y INS , ,vb

z INS are the INS velocities estimation along the Y 

and Z axes, expressed in the body frame. They are 

obtained from ( ),3 3 ,3 1

T
e e

b INS× ×⋅R v product; 

,3 6×HCN  is the non-holonomic matrix, whose definition is 

omitted for sake of simplicity and can be found in [3] 
and [42]; 

,3 1k ×υ  is the noise vector associated to the constraints. Its 

covariance matrix can be described as a 3x3 diagonal 
matrix whose elements on the diagonal can be 
assumed to have a Gaussian distribution 

as ,3 1 3 3,( , )
kk x

N× υ
υ 0 γ∼ . 

 
B.

 
 Countermeasures to the initial large heading error 

As correctly explained in [43], in low-cost INS/GPS 
navigation systems, the poor performance of the gyros makes 
an accurate initialization of the heading angle difficult. 
Different approaches have been proposed to overcome such 
issue, e.g. in [43], [44], and [45], but they imply strong 
modifications of the INS/GPS-integration architecture and an 
increment in the system complexity. 

In order to implement minimum changes in the 
conventional tightly coupled algorithm, we introduced an 
additional constraint based on the Course Over Ground (COG) 
that can be calculated from the GPS receiver estimated 
velocities as: 

 

,1

,

V
tan

V

n

East GPS

GPS n

North GPS

ψ −
 

=   
 

  (10) 

 

where 
GPSψ  is the heading angle derived from the GPS 

velocity and the superscript ‘n’ indicates that such GPS 
velocities are measured with respect to the local frame. The 
transformation of the GPS velocity vector from the ECEF 
frame to the local frame can be obtained as in the following: 
 

n n e

GPS e GPS
= ⋅V R V   (11) 

 

where n

e
R  is the rotation matrix from the ECEF to the local 

frame whose mathematical expression can be found in [5]. 
The use of the COG constraints is limited by the quality of 

the 
GPSψ  estimation, which is reliable only when the vehicle 

is moving. The detection of the vehicle’s dynamic condition is 

obtained by checking the condition 
n

GPS ≥V ℓ , where ℓ  is 

the minimum acceptable velocity. A block diagram that shows 
the COG constraint is illustrated in Fig. 3, with bold lines. 

 

 
Fig. 3. Block diagram of a GPS/INS tightly coupled architecture enhanced by 
Course Over Ground (COG) constraint. 

 
Such constraint does not modify the system model of the 

EKF tightly coupled architecture, described in (8), but only the 
measurements misclosure and the design matrix. The general 
relationship between the measurement and the error states as 
in (3) can be expanded and tailored to the GPS/INS integration 
as in (5) and further augmented to include the COG 
constraints: 
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(12) 

where 

, /k INS GPS
Z , , /k INS GPS

H  are the measurements vector and the 

design matrix of the reference EKF tightly coupled 
algorithm at the k-th time instant as stated in (5); 

,k GPS
ψ  is the heading angle computed through (10); 

,k INS
ψ  is the heading angle computed from the INS 

algorithm; 

ˆ

x
A

δψ

δ
, 

ˆ

y
A

δψ

δ
 ,

ˆ

z
A

δψ

δ
 are the partial derivatives of the heading 

error computed with respect to the attitude along the X, Y, Z 
axes of the ECEF frame. Details on the calculation of these 
derivatives can be found in [3]. 
 
C.

 
 Limitation of the INS errors drift 

The general IMU error model reported in [11] loses validity 
when extremely inexpensive IMUs are used [49]. According 
to [50], a more comprehensive error model includes four error 
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components: a fixed contribution, a temperature-dependent 
variation, a run-to-run variation, and an in-run variation. The 
following subsections present the strategies adopted to 
mitigate the effects of in-run and run-to-run variations, as well 
as the temperature compensation. The fixed contribution (e.g. 
bias) can easily be evaluated and corrected though a proper 
calibration process and it is omitted in this paper. 
 
C1.

  
In-run compensation 

The in-run variation is the component that mostly affects 
the performance of an MEMS IMU and includes the IMU 
errors variation over time: consequently, this kind of errors 
cannot be corrected during the initial calibration or the system 
alignment. 

Since the presented tightly coupled system is targeted to 
land applications, a recalibration can be performed every time 

the vehicle is still and the deterministic gyros bias vector d  

can be updated. The static condition of the user can be 
precisely detected by checking the velocity from the odometer 

or the velocity evaluated by the GPS receiver, 0n

GPSV ∼ . 

The recalibration of gyroscopes reduces the effects of the 
in-run variations of IMU errors. A further reduction can be 
accomplished by adding two additional constraints during the 
static conditions. The Zero Velocity Update (ZUPT) 
measurements [51] limits the effects of the accelerometers 
errors on the velocity estimates and, consequently, on the 
position, while a Zero Integrated Heading Rate (ZIHR) 
approach [52] is adopted to mitigate the growth of the heading 
error due to residual gyroscopes errors. A block diagram that 
depicts the strategies adopted in case of static conditions of the 
vehicle is shown in Fig. 4 and highlighted by bold lines. 

 

 
Fig. 4. Block diagram of a GPS/INS tightly coupled architecture enhanced 
with ZUPT/ZIHR constraints and gyros recalibration during static condition. 

 

In details, the ZUPT constraint can be included within the 
INS/GPS measurements misclosure vector (reported in 5 
according to (3)) as: 
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(13) 

 

where ,
e

k INSV  is the velocity estimated through the INS 

algorithm and expressed in the ECEF frame. 
The ZIHR can be written as: 
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(14) 

where 

,k INS
ψ , 1,k INS

ψ −  are the heading angle computed through the 

INS algorithm as in (1) at the k-th and k-1-th time 
instants, from the INS algorithm; 

,1 3ZIHR ×M  is equal to [ ]0 sec sin sec cosθ ϕ θ ϕ  where 

ϕ , θ , are the roll and pitch angles, respectively. They are 

assumed to be constant during the time interval 
kt∆ . 

 
C2.

  
Run-to-run compensation 

The run-to-run bias (also called turn-on bias) is the bias in 
the inertial sensor output when the sensor is turned on. In most 
of the high-end, navigation-grade, IMUs, the turn-on biases do 
not change in a significant way among different missions and 
it can be considered negligible [3]. However, for low cost 
sensors these errors are quite large, and their repeatability is 
typically poor, asking for frequent calibrations. 

The recalibration procedure, introduced in Section III.C.1, 
is feasible for the gyroscopes but is impractical for the 
accelerometers. The method we used to overcome such issue 
includes extra states in the EKF, which are in charge of 
estimating the turn-on bias components for both the 
gyroscopes and the accelerometers. Therefore, the error states 
vector described in (8) can be further expanded to a 24-
element vector and the new transition matrix can be written in 
continuous-time as:  
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Fig. 5. Block diagram of a GPS/INS tightly coupled architecture enhanced by 
additional error states to comprise INS turn-on biases. 

 

where ,3 1f
δ ×τ and ,3 1ωδ ×τ  are the error states associated to 

the turn-on biases of the accelerometers and gyroscopes, 
respectively. They are expressed as constant terms over time 
and thus their derivatives are equal to zero. A graphical view 
of these changes is reported in Fig. 5 over the block diagram 
of the GPS/INS tightly coupled architecture. 
 
C3.

  
Temperature compensation 

In an IMU where the gyros and accelerometers are not 
temperature compensated (as most of the low-cost consumer-
grade MEMS IMUs), the effects of the temperature variations 
have a remarkable impact on the accuracy of the INS 
navigation solution because such temperature variations make 
the biases of the INS sensors changing over time. Thus, we 
calibrated the INS sensors in a temperature-controlled 
chamber, rotating the IMU in different positions according to 
the characterization tests proposed in [47]. We repeated the 
same procedure for different temperatures in the range from -
20 to 60 Celsius. A similar procedure has been also adopted 
for the gyroscopes and the accelerometers. The collected 
values were included into a look-up table that was used to 
correct the IMU measurements in real-time. The additional 
module in charge of correcting the IMU biases according to 
the current temperature measured by the IMU is shown in Fig. 
6. 

 
Fig. 6. Block diagram of a GPS/INS tightly coupled architecture enhanced 
with an additional module for IMU temperature compensation. 
 
D.

 
 Monitoring of the measurements quality and validity of 

code-based GPS measurements 

In case of harsh environments (e.g. urban, mountain areas), 
signal impairments can affect the quality of GNSS 
measurements and, consequently, the accuracy of the final 
system positioning. The Carrier to Noise density ratio (C/N0) 
[53] and the elevation of satellite allow for assessing the 
quality of the received signal. Indeed, the exclusion of 
satellites with low C/N0 (e.g. C/N0 lower than 30 dB-Hz) and 
those with low elevations (e.g. elevation less than 10 o) can 
reduce the impact of signal degradation on the position 
accuracy. In addition, the selected measurements can be 
further weighted. In details, each element of the diagonal 

covariance matrix 
kν

R  that refers to a code-based GPS 

measurements, is computed as in (16), by following the model 
proposed in [53] and [54]: 

 

( )

0

10

2

10

sin

C

N

a b

Elev
ρσ

− 
 

+ ⋅ 
 
 =  

(16) 

 

where Elev is the satellite elevation and a, b are empirical 

parameters that change according to the environmental 
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scenario [54]. A method to select the scenario can be 
implemented by using an embedded map, or, more easily, by 
evaluating the estimated velocity of the receiver [1]. 

Another problem that sometimes plagues the accuracy of 
the tightly coupled navigation solution is the validity of the 
GPS data. In order to limit such issue, we implemented a 
method to reject the corrupted measurements, similarly to that 
proposed in [55]. The absolute value of a code-based 
pseudorange is compared with the predicted geometrical 
distance. Leveraging on (5), the validity check of the GPS 
measurements at the k-th time instant can be expressed as: 

 

, ,1 3 ,3 1( )i i

k GPS k MAXρ δ λ−
× ×− ⋅ <ρ H x  (17) 

 
where: 

i  is the index related to the satellite under investigation; 

,
i

k GPS
ρ represents the GPS code-based pseudorange associated 

to the i-th satellite; 

,1 3
i

ρ ×H  is the design matrix related to the i-th satellite; 

,3 1k
δ −

×x is the vector of the vehicle position obtained through 

the EKF prediction stage [31]; 

MAXλ is the maximum acceptable pseudorange error. The 

value of the threshold has been set empirically (e.g. 
twice the standard deviation of the User Equivalent 
Range Errors (UERE) [3]). 

 

 
Fig. 7. Block diagram of a GPS/INS tightly coupled architecture enhanced by 
an additional module for GPS data validity and quality monitoring. 

 
When invalid pseudoranges are encountered, all the 

measurements related to the corresponding satellites are not 
included in the computation of states and covariance updates. 
Fig. 7 shows how the conventional architecture changes with 
this additional strategy to check the quality and validity of the 
received GPS data. 

IV.
 
EXPERIMENTAL VALIDATION 

A.
 
 Embedded board used for the implementation 

The designed architecture was implemented on the 
embedded system reported in Fig. 8 that provided real time 
PVT data. 

 

 
Fig. 8. View of the embedded system running the tightly coupled algorithm. 
The main sensors and the microcontroller are highlighted. 

 
In summary, the board is composed of the following major 
components: 

• a consumer-grade MEMS IMU (i.e. the InvenSense 
MPU-9250); 

• a GPS mass-market module (i.e. the NVS NV08C-
CSM); 

• a 200MHz ARM micro-controller manufactured by ST-
MicroElectronics (i.e. the STM32F745IET6), running 
FreeRTOS as the operating system; 

• vehicle odometric readings in form of pulses. 
 
The performance of the system was assessed through several 
tests carried out in real scenarios, following the methodology 
and the set up described in the next sections. 
 
B.

 
 Experimental test setup 

The developed system was mounted on board of a vehicle. 
For the sake of comparison, during the tests, additional 
positioning sensors were used in parallel to have benchmark 
measurements. In details, the following commercial modules 
were installed along with the system under test: 

 
• a standalone, multi-constellations GNSS receiver (i.e.: 

NVS NV08C-CSM), not augmented by INS and 
odometry data. Such a GNSS receiver is commonly 
used in consumer-grade devices for road navigation. It 
was taken as a benchmark to quantify the benefits 
introduced by the INS and the odometer to cope with 
poor GNSS performance (i.e.: few satellites in view, 
degraded GNSS measurements due to the local 
environment). 
 

• a dual-frequency, survey-grade GNSS receiver, 
combined with a tactical-grade inertial sensor (i.e.: 
Novatel SPAN-CPT). This is able to provide sub-
decimeter position accuracy and is generally employed 
in professional applications. It was included in the 
experimental set up because it provided the reference 
trajectory that served to estimate the position errors of 
the developed system. 
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Fig. 9 sketches the block diagram of the whole experimental 

setup, where the RF signal from the antenna was split and sent 
to the developed system and the standalone NVS NV08C-
CSM and the Novatel SPAN-CPT. 
 

 
Fig. 9. Scheme of the experimental setup used to assess the performance of 
the developed system. 

 
The data sets collected during the tests were logged and 

carefully analyzed in post-processing. The results are 
described in the next subsections where the acronym RPU 
(Robust Positioning Unit) is used to indicate the developed 
system running the tightly coupled algorithms. The data sets 
were divided in two main groups: 

 
1. in the first, the odometer was not used and the RPU 

was configured to use the GNSS receiver and the IMU 
only. All the constraints described in Section III were 
enabled. In such tests, the positions and attitudes 
estimated by the Novatel SPAN-CPT were considered 
the reference both for the trajectory and for the system 
orientation. The results of the first group of tests are 
commented in Section IV.C. 
 

2. in the second, the odometer was enabled to have an 
additional source of data to further increase the 
positioning performance. The second group of tests 
was characterized by long GNSS signal outages due to 
the presence of tunnels. Therefore, rather than the 
Novatel SPAN-CPT (that also showed not negligible 
position errors), a digital map was used as reference for 
the assessment of the RPU performance. The results of 
the second group of tests are commented in Section 
IV.D. 

 
C.

 
 RPU performance in urban and open-sky scenarios 

In the first group of tests, the vehicle was driven along areas 
with the following environmental features: 

• urban areas, characterized by narrow streets 
surrounded by buildings and trees, limiting the 
visibility of the satellites and increasing the 
probability of GNSS signal degradation due to 
multipath and shadowing; 

• open-sky areas, where few obstacles rarely impaired 
the visibility of the satellites; 

• short signal outages (caused by underpasses or urban 
bridges) that blocked the reception of the GNSS 
signals. 

 

 
Fig. 10. Map view of the path driven during one test of the first series. 
 

An example of a driven path is reported in Fig. 10, where 
the different environmental conditions are highlighted. In 
details, the cyan indicates the urban environment, the blue is 
the open-sky, while the red color indicates an outage. 

As far as the performance results are concerned, the 
navigation solutions obtained through the RPU were compared 
with those provided by the benchmark standalone GNSS 
receiver. Fig. 11 reports the horizontal position errors over 
time, computed against the Novatel SPAN-CPT, where the 
different colors indicate again the type of environmental 
scenario. 

 
 

 
Fig. 11. Horizontal position error of the RPU (top) and of the standalone 
GNSS NVS receiver (bottom). Data referred to a trajectory selected as 
example from the first group of tests. 
 

A thorough statistical analysis of such horizontal position 
errors was performed in terms of mean value, standard 
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deviation and 95th percentile. These metrics are calculated 
according to the method described in [56]. The results are 
reported in Table I. 

 
TABLE I 

STATISTICAL ANALYSIS OF THE HORIZONTAL POSITIONING ERRORS FOR THE 

NAVIGATION SYSTEMS UNDER INVESTIGATION.  
 

Scenario 

Mean value 

(m) 

Standard 

deviation 

(m) 

95
th

 

percentile 

(m) 

RPU NVS RPU NVS RPU NVS 

Open-Sky 0.6 0.5 1.4 1.4 2.4 2.3 
Urban 1.2 1.6 3.0 6.0 5.9 17.1 
Outage 13.4 N.A. 9.8 N.A. 26.8 N.A. 

Complete 0.9 0.9 2.6 3.9 4.4 5.8 
 

 
From Table I, we can appreciate the benefits of the 

INS/GPS tightly coupled integration, in particular when the 
satellites visibility is poor. In urban environment, even with 
low cost sensors, the RPU shows a remarkable reduced error 
with respect to the standalone GNSS receiver, as underlined 
by the 95th percentile value (i.e.: it passes approximately from 
17 m to 6 m). Moreover, when a signal outage occurs, the 
robustness of the designed architecture is further evident, as 
the stand-alone receiver is not able to provide any valid 
position during that time interval. This induces a higher 
availability of positioning data. As expected, only when the 
number of satellites in view is high, like in open-sky 
condition, the RPU and the standalone GNSS receiver provide 
similar performance (i.e.: the 95th percentile is slightly less 
than 2.5 m in both cases).  

Fig. 12 and Fig. 13 show the two-dimensional distribution 
of the horizontal position error, along the East-North (EN) 
coordinates, for the RPU and the standalone GNSS NVS 
receiver, respectively. 

 

 
Fig. 12. Histogram of the RPU horizontal position errors. Data referred to a 
trajectory selected as example from the first group of tests. 

 
From these figures it is possible to appreciate the clustering 

of the estimated positions errors provided by the two systems 
under investigation (i.e. RPU and NVS).  

 

 

 
Fig. 13. Histogram of the horizontal position errors of the standalone GNSS 
receiver. Data referred to a trajectory selected as example from the first group 
of tests. 

 
The black spots reveal the maximum density of the errors. 

Comparing the two figures, only a slight improvement of the 
RPU with respect to the standalone GNSS receiver can be 
observed. However, it must be noticed that the figures report 
the horizontal position errors computed over the whole path, 
which was characterized by long sections of open-sky 
conditions, where the two systems had similar performance. 

 
For the sake of completeness, also the errors of the yaw 

estimate were calculated against the Novatel SPAN-CPT, for 
the RPU and the standalone GNSS receiver. These are 
reported in Fig. 14. 

 
Fig. 14. Yaw angle errors over time as estimated by the RPU and the 
standalone GNSS receiver. Data referred to a trajectory selected as example 
from the first group of tests. 
 

From Fig. 14, it is possible to observe that with the RPU 
most of the time the error on the yaw angle is lower than 5º. 
Only in the initial part of the data collection the error is high. 
This is due to the time required by the EKF to recover the 
initial large heading angle error that is related to the intrinsic 
features of a consumer-grade MEMS IMU. The developed 
system recovers such a large initial error completely, as soon 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2813000, IEEE
Access

 

VOLUME XX, 2017 1 

11

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only. 
Personal use is also permitted, but republication/redistribution requires IEEE permission. 

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 

as the vehicle moves, with an estimated transient shorter than 
2 minutes. 

The standalone GNSS receiver shows a degraded accuracy 
of the estimated yaw angles that resulted strongly dependent 
on the speed of the vehicle, as stated in Section III.B. The 
higher the vehicle velocity, the more reliable the yaw angle 
estimate. Fig. 14 clearly shows that the trend of the yaw angles 
estimated by the standalone GNSS receiver is much noisier 
with respect to that obtained by the RPU. As done for the 
horizontal position errors, we computed the mean, standard 
deviation and 95th percentile of the errors of the estimated yaw 
angles, in different environmental conditions. Table 2 reports 
the results. 

 
TABLE II 

STATISTICAL ANALYSIS OF THE ERROR OF THE ESTIMATED YAW ANGLE FOR 

THE RPU AND THE STANDALONE GNSS RECEIVER.  
 

Scenario 

Mean value 

(deg) 

Standard 

deviation 

(deg) 

95
th

 percentile 

(deg) 

RPU NVS RPU NVS RPU NVS 

Open-Sky -1.2 -0.2 1.18 5.48 2.95 14.13 
Urban -2.2 -0.1 4.28 11.2 6.36 16.18 
Outage 0.32 N.A. 0.43 N.A. 1.03 N.A. 

Complete -1.5 -0.2 2.80 7.75 5.21 14.5 
 

As expected, in an open-sky scenario, the yaw error is lower 
using the RPU, where the heading information coming from 
the IMU can be frequently constrained with that obtained by 
the GPS COG data. In such a scenario, the error of the heading 
angle is further characterized by a low standard deviation (i.e.: 
approximately 1.2o against 5.5o) and low 95th percentile (i.e.: 
approximately 3o against 14o). On the contrary, in an urban 
environment frequent car stops and low vehicle speeds are 
often experienced. In these cases, the GPS is not able to 
provide reliable COG values. Consequently, the IMU cannot 
leverage on the external COG and the heading angle accuracy 
becomes lower than that achieved in open-sky (i.e.: 2.2o on 
average and 4.3o as standard deviation).  

As far as the yaw angle estimated by the benchmark 
receiver is concerned, higher values of the standard deviation 
and 95th percentile can be observed, either in open-sky and 
urban scenarios. In fact, the standalone GNSS receiver 
provides attitude estimates with a standard deviation that 
ranges from 5.5o in case of good satellites visibility to more 
than 11o in an urban environment. This is almost three times 
bigger than the standard deviation provided by the RPU. 
Similarly, when the standalone GNSS receiver is used, a 95th 
percentile that varies from 14o to more than 16o is obtained in 
case of open-sky and urban scenarios, respectively. If such 
values are compared with those measured by the RPU in the 
same scenarios, an increment of almost 12o and 10o can be 
observed. Moreover, in case of GPS signal outage, the 
standalone GNSS receiver cannot provide any attitude 
information. 
 
D.

 
 RPU performance in case of long GPS outages 

In order to assess the improvements of the tightly coupled 
architecture adding data from an odometer, several tests have 

been carried out in a mountain environment, where the RPU 
had to cope with frequent long outages due to the presence of 
tunnels. This section reports the results obtained from two 
representative paths, which are depicted on the map in Fig. 
15.a and in Fig. 15.b, respectively. 

 

 
(a) 

 
(b) 

Fig. 15. Map of two paths in mountain areas. The parts of the path where GPS 
signals are not available due to tunnels are numbered and colored in red. 

 
In these figures, the part of the path colored in blue 

indicates open-sky conditions, while the part colored in red is 
used to underline the presence of a tunnel. Close mountains 
around the road sometimes limit the visibility of the satellites 
and cause multipath effects on the GNSS signal. Moreover, in 
the figures, the encountered GNSS signal outages have been 
numbered from 1 to 12 and this index is used to refer to a 
specific tunnel. 

The results reported in this section refer to a test performed 
with the experimental set up commented in Section IV.B, 
where we substituted the GNSS standalone receiver with an 
additional RPU. Indeed, two RPUs ran in parallel during the 
tests and their navigation solutions were stored and compared 
in post-processing. In details, the first RPU was equipped only 
with the INS and the GNSS receiver, while the second RPU 
was set to receive data also from the odometer, as described in 
Section III.A. In this way, it was possible to assess the 
advantages brought by the odometer (and the related digital 
processing) within the developed system.  



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2813000, IEEE
Access

 

VOLUME XX, 2017 1 

12

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only. 
Personal use is also permitted, but republication/redistribution requires IEEE permission. 

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 

A zoomed view of the positions stored by the two RPUs 
and the Novatel SPAN-CPT is reported over a map in the 
following figures.  

 

 
Fig. 16.  Comparison of the estimated positions for the tunnel #5. 
 

Fig. 16 reports the positions along the tunnel #5, which is 
approximately 1 km long. The red line indicates the positions 
computed by the Novatel SPAN-CPT, the green is used for the 
first RPU and the blue is for the second RPU processing also 
data from the odometer. Arrows indicate the driving direction. 

 

 
Fig. 17. Comparison of the estimated positions for the tunnel #2. 

 
It can be noticed that the estimated paths are almost 

coincident until half of the tunnel for all the three devices, 
whereas at the end of the tunnel it is possible to observe a 

cross-track horizontal position error of approximately 40 m 
with the first RPU, featuring INS/GPS tight integration only. 

Fig. 17 and Fig. 18 show the positions evaluated during 
longer outages, in bending road tunnels 2.55 km and 5.32 km 
long. At an average speed of 70 km/h, these obscured the 
GNSS signals for more than 2 and 4.5 minutes, respectively. 
In both cases, we can clearly observe how the positions 
provided by both the RPUs and the Novatel SPAN-CPT are 
affected by relevant cross-track errors, when compared with 
the reference map, especially at the end of the tunnel. Indeed, 
out of the tunnel #2 (Fig. 17) the maximum distance estimated 
between the reference point on the map and the position 
provided by the Novatel SPAN-CPT is approximately 40 m. 
The first RPU showed also along track errors, with a 
maximum cross-track error equal to 85 m. The data from the 
odometer helped to have a smoother estimate of the trajectory, 
with negligible along-track errors and a lower maximum 
cross-track error (i.e.: 75 m) with respect to the first RPU. 

 

 
Fig. 18. Comparison of the estimated positions for tunnel #4. 
 

During the test performed in the tunnel #4, the second RPU 
showed a maximum cross-track error of 35 m. When the 
odometer is disabled, the tight integration error increases up to 
100 m, and reaches 130 m even with the Novatel SPAN-CPT. 
Despite it is a “survey-grade” receiver, combined with a 
tactical-grade inertial sensor, it experiences significant 
position errors, caused by some minutes of GPS signal outages 
due to the tunnel. In this harsh environment, the RPU 
outperforms the Novatel SPAN-CPT, especially if odometer 
data is integrated. Such results confirm that tightly coupled 
architectures can provide significant advantages, even using 
low cost sensors and consumer-grade GNSS receivers. This 
provided that additional constraints, logical controls and 
countermeasures to the in-run variations of the IMU noises are 
implemented. Indeed, it is possible to design hybrid 
positioning systems suitable for land navigation at moderated 
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cost, with performance comparable to that of professional 
equipment. 

For the sake of completeness, in order to compare the 
performance of the two RPUs, the maximum cross-track error 
with respect to the reference map has been measured, with a 
resolution of 5 m, for each tunnel highlighted in Fig. 15.a and 
in Fig. 15.b, respectively. Results are reported in Table 3 
where the length of each tunnel is also indicated. 
 

 TABLE III 
MAXIMUM CROSS-TRACK ERROR IN CASE OF LONG GPS OUTAGE.  

 

Tunnel 

index 
Tunnel length 

Cross-Track Error 

[m] 

 [s] [km] 
RPU 1 

(INS/ GPS) 
RPU 2 

(INS/ GPS/ ODOM) 

1 35 1.15 90 40 
2 95 2.55 85 75 
3 65 1.40 25 15 
4 190 5.32 100 35 
5 55 1.60 40 10 
6 95 1.29 15 15 
7 115 2.20 25 20 
8 65 1.34 35 40 
9 50 1.60 10 10 
10 190 5.18 50 35 
11 50 1.40 200 20 
12 90 2.64 50 35 

 
Values in Table 3 further motivate the use of the odometer, 

when this can be integrated in the positioning system of the 
vehicle. The advantage is quite evident in tunnels #4 and #11 
where the error is of only 35 m and 20 m when the odometer 
is used, compared to the 100 m and 200 m when the speed 
sensor is disabled. As a figure of merit, the cross-track 
position error is reduced, on average, of 46% when the 
odometer is enabled in the tight integration algorithm. 
The highest error with the second RPU is of about 75 m and 
was measured at the end of the tunnel #2, even if such tunnel 
was not the longest one in our test campaign. We probed the 
reason of such large position error and we identified the 
origin. It was because the tunnel #2 was encountered only a 
few seconds later the car drive test started, and such short 
amount of time prevented the tight algorithm to fully recover 
the initial heading error of the IMU. 

V.
 
 CONCLUSION 

This paper presented the design of a positioning system 
based on tightly coupled sensors, namely a consumer-grade 
GPS receiver, a low-cost IMU and a car odometer. After 
recalling the mathematical model at the basis of the tight 
integration, the paper described add-on algorithms necessary 
to achieve a real-time implementation on an embedded 
system. These additional algorithms remarkably improve the 
performance of the integrated system with respect to a 
traditional tightly-coupled method. From a computational load 
point of view, these additions do not require high demanding 
computing resources since they only involve the low-rate part 
of the INS tight integration. The paper reported the 

performance of the developed system, which was stressed in 
different environmental conditions and characterized through 
the statistical analysis of the horizontal position errors before 
map-matching. Whereas in open sky conditions, standalone 
multi-constellation GNSS receivers already provide position 
accuracy within the lane width, in urban contexts a multiple 
sensors tightly coupled solution is needed to significantly 
reduce the position errors. According to the analysis reported 
in the paper, mainly the 95th percentile is reduced. In real 
systems, such a reduction allows the map-matching algorithm 
to recover almost completely the final positioning error. 
Furthermore, we observed improved performance in a 
mountain region, with frequent GNSS signal outages due to 
consecutive tunnels. In such a scenario, the positioning system 
under test had performance comparable to the one provided by 
a professional equipment, composed by a survey-grade GPS 
receiver and combined with a tactical-grade IMU. This result 
paves the ways to further developments, as it shows that even 
extremely low-cost sensors can match the requirements of new 
demanding road applications, when they are tightly coupled 
together. Examples include pay-as-you-drive insurances, 
tracking of fleet for winter road maintenance, automated 
systems for advanced driver assistance and autonomous 
vehicles. In the years ahead, the improvement of Micro 
Electrical Mechanical Sensors (MEMS) technology and the 
further evolution of GNSS, with enhanced signal formats, 
different frequency bands and more satellites in view, are 
expected to further increase the positioning performance of 
mass-market devices, enabling a variety of new services for 
road users. The combination of low cost positioning sensors 
will have a key-role also in applications requiring centimeter 
levels accuracy, but where the use of digital maps is not 
possible. Examples include precision farming and systems for 
autonomous machine guidance in agriculture. 
 

APPENDIX I- INS ERROR MODEL AND INS/GPS STATE 
TRANSITION MATRIX 

 
A theoretically rigorous error model for an accelerometer 

and gyroscope can be found in [46]. In order to reduce the 
complexity of such model and guarantee the stability and 
observability of each state in the KF, both sensors’ errors are 
considered composed of a bias term and noise, with some 
temporal variability given to the bias states. The temporal 
variability is used to account for time-varying effects in the 
theoretical models described above, such as temperature 

sensitivity, scale factors, etc. [11]. As a consequence, bδ f  

and 
bδω  can be expressed as in (II.1): 

 
b

f

b

ω

δ δ

δ δ

= +

= +

f k w

ω d w
 (II.1) 

 

where δk , δ d  are the bias drifts of the accelerometers and 

gyroscopes sensors, and 
f

w , 
ωw  are the noise components 

that affect the two types of INS sensors, respectively. The KF 
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is only in charge of estimating the drift components of the 
biases since their deterministic part is typically estimated 
offline in case of accelerometers (one common technique 
suitable for low-cost IMU is described in [47]) or is evaluated 

in real-time for the gyroscopes by keeping the IMU in static 
for a predefined amount of time. 

Thus, equation (2) can be rewritten to comprise a 
continuous-time expression of a system error model suitable 
for an INS/GPS tight integration. According to [11], we have: 
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where 

3 3×I  is the unit matrix; 

3 3
e

×N  is the tensor of gravity gradients expressed in ECEF 

frame according to [11]; 

,3 3
e

ie ×Ω  is the skew-symmetric matrix of the rotation rate 

e
ω of the Earth expressed in ECEF frame; 

3 3
e

×F  is the skew-symmetric matrix of the accelerometers 

forces in ECEF frame; 

,3 3
e

b ×R  is direction cosine matrix from the body frame ‘b’ 

to ECEF frame ‘e’; 

1 3×α  represents the vector of time constants related to the 

Gauss-Markov noises of the triaxial accelerometers; 

1 3×β  represents the diagonal matrix of time constants 

related to the Gauss-Markov noises of the triaxial 
gyroscopes; 

,3 1f ×w is the noise component that affects the 

accelerometers as stated in (II.1); 

,3 1ω ×w  is the noise component that affects the gyroscopes 

as stated in (II.1); 

k,3 1δ ×w  is the Gauss-Markov process driving noise used to 

model the accelerometers bias drift; 

d,3 1δ ×w  is the Gauss-Markov process driving noise used to 

model the gyroscopes bias drift; 

w
rb

 is the noise of the receiver’s clock bias; 

w
rbɺ
 is the noise of the receiver’s clock drift; 

F  is the whole matrix of the system model; 

G  is the matrix that relates the states with noise sources. 

 

For most system models the dynamics matrix F  can be 
considered time invariant for the time interval over which 
the KF prediction is performed [11]. The benefit is that, 

under this assumption, the transition matrix | 1k k −Φ  of a 

discrete-time Kalman filter can be obtained as the solution 
of the system model in the absence of forcing functions, 
given by (II.3) according to [48]: 

 

| 1k k

dt
e−

⋅= F
Φ   (II.3) 

 

where dt  is the time interval over which the prediction is 

performed. 
The exponential function of (II.3) can be linearized in 

case of Extended Kalman Filter (EKF) by using the first 
order terms in the Taylor series: 

 

( )
2

(3)
2

dtdt
e dt

⋅⋅ = + ⋅ + + Ο
FF

I F  (II.4) 

 
where (3)Ο  denotes terms of order 3. The process noise 

matrix of a discrete-time KF, that we indicate with 
k

Q , can 

be calculated through numerical integrations. In [48] one 
possible solution is described, and this method is typically 
adopted for multi sensors fusion applications, as in case of 

INS/GPS integration. According to [48], 
k

Q  can be written 

as: 
 

( )| 1 | 1
2

T T T

k k k k c k k k k c k

dt
− −= +Q Φ G Q G Φ G Q G   (II.5) 

 

where 
cQ  is the continuous-time spectral density matrix of 

the forcing functions and superscript T  is used to specify 
the matrix transpose. 
 

APPENDIX II- INS/GPS TIGHTLY COUPLED DESIGN 
MATRIX COMPUTATION 

As far as the measurements update of the KF is 
concerned, the function of (3) can be tailored for the tightly 
coupled INS/GPS integration as in (III.1): 
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(III.1) 

where , 3N ×ρH is the matrix that relates the measurements 

to the error states and with the subscript N we indicate the 

number of satellites in view at the k-th time instant. Since 

the relationship between 
kZ and δ x  vectors is non-linear, 

a first order Taylor expansion is used in case of EKF and 
(3) can be rewritten as: 
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( )
( )

k k k

k
k k k
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h
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δ

δ
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≈ + +

z x ν

x
x x ν
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 (III.2) 

 

Thus, the Jacobian matrix of , 3N ×ρH  can be computed 

as: 
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where [ x
⌣

, y
⌣

, z
⌣

] is the vector of the estimated user’s 

position coordinates, [
1 Nx ⋯ ,

1 Ny⋯ ,
1 Nz ⋯ ] represents the N 

satellites positions in ECEF frame, and 1, ,Nd …  is the norm 

of the geometric distance between the GPS receiver and N-
th satellite. 

In case of a standalone, single frequency GPS receiver, 

the noise vector 
kν  has a Gaussian distribution as stated in 

(III.4): 
 

( , )
kk N νν 0 R∼  (III.4) 

 

where the covariance matrix 
kν

R is a diagonal one, since 

the noise related to each satellite can be considered 
statistically independent 
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