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Abstract

In this thesis the sequential importance resampling particle filter for estimating the full geometry-based float

solution state vector for Global Navigation Satellite System (GNSS) ambiguity resolution is implemented.The

full geometry-based state vector, consisting on position, velocity, acceleration, and float ambiguities, is esti-

mated using a particle filter in RTK mode. In contrast to utilizing multi-frequency and multi-constellation

GNSS measurements, this study employed solely L1 GPS code and carrier phase observations. This ap-

proach simulates scenarios wherein the signal reception environment is suboptimal and only a restricted

number of satellites are visible. However, it should be noted that the methodology outlined in this thesis

can be expanded for cases involving multiple frequencies and constellations. The distribution of particles

after the resampling step is used to compute an empirical covariance matrix Pk based on the incorporated

observations at each epoch. This covariance matrix is then used to transform the distribution using the

decorrelating Z transformation of the LAMBDA method [1]. The performance of a float solution based on

point mass representation is compared to the typically used extended Kalman filter (EKF) for searching

the integer ambiguities using the three common search methods described in [2]: Integer Rounding, Integer

Bootstrapping, and Integer Least Squares with and without the Z transformation. As Bayesian estimators

are able to include highly non-linear elements and accurately describe non-Gaussian posterior densities, the

particle filter outperforms the EKF when a constraint leading to highly non-Gaussian distributions is added

to the estimator. Such is the case of the map-aiding constraint, which integrates digital road maps with GPS

observations to compute a more accurate position state. The comparison between the position accuracy of

the particle filter solution with and without the map-aiding constraint to the solution estimated with the

EKF is made. The algorithm is tested in different segments of data and show how the position convergence

improves when adding digital road map information within the first thirty seconds of initializing the Par-

ticle Filter in different scenarios that include driving in a straight line, turning, and changing lanes. The

assessment of the effect of the map-aiding algorithm on the ambiguity domain is carried out as well and it is

shown how the convergence time of the float ambiguities improves when the position accuracy is improved by

the constraint. The particle filter is able to weight the measurements according to any kind of distribution,

unlike the EKF which always assumes a Gaussian distribution. The performance of the PF when having

non-Gaussian measurements is assessed, such as when the measurements are distorted by multipath. Two

additional steps are implemented, an outlier detection technique based on the predicted set of particles, and

the use of a mixture of Gaussians to weight the measurements detected as outliers. The implemented outlier

detection algorithm is based on the residual (or innovation) testing technique which is commonly applied

into the EKF. The innovation and its covariance matrix are estimated from a predicted set of residuals using
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the transitional prior distribution and the measurement model. Then, the innovation is compared against

the critical value of N (0, 1) at a level of significance α. The mixture of Gaussians is the weighted sum of two

Gaussians, one from the measurement noise matrix, and the second being a scaled version of the first one

describing the multipath error. This procedure de-weights the measurements with multipath, and reduces

the bias in the position estimate. The proposed map-aiding algorithm improves the ambiguity convergence

time by approximately 80%, while the deweighting process enhances it by around 25% for the segments of

the vehicle dataset that were analyzed. This work serves as a demonstration of cases wherein the particle

filter addresses the limitations of the EKF in estimating the float solution in ambiguity resolution. Such lim-

itations include constraints that give rise to non-Gaussian probability density functions and the utilization of

a distinct likelihood function for outlier measurements, as opposed to the Gaussian assumption made by the

EKF. The proposed map-aided particle filter can be implemented in real-time to enhance the float ambiguity

during the initial epochs after the filter has been initialized. This implementation proves beneficial in urban

environments where there is a loss or complete obstruction of the GNSS signal.
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Chapter 1

Introduction

Global Navigation Satellite Systems (GNSS) are a network of satellites that enables positioning, navigation,

and timing services worldwide. It encompasses various satellite constellations, such as GPS, GLONASS,

Galileo and BeiDou. GNSS provides service to an unlimited number of users, providing accurate, continuous,

worlwide, 3-dimensional positioning and veolicty information to users with the receiver equipment [4]. GNSS

uses are varied, ranging from personal navigation devices to commercial transportation, agriculture, surveying

and military purposes. Its importance for society lies in its ability to provide accurate positioning and timing

information, facilitating efficient transportation and logistics. However, GNSS does have some limitations,

including vulnerability to signal interference, limited accuracy in certain environments (dense urban areas),

and susceptibility to atmospheric effects. Ongoing research aims to address these limitations and improve

GNSS performance, focusing on areas such as signal processing, alternative positioning techniques which

may use muti-sensor fusion and the implementation of different estimators.

1.1 Problem statement

In order to achieve centimetre-level precision with Global Navigation Satellite Systems, the integer number

of cycles of the carrier wave needs to be estimated.

Many algorithms have been developed to address the ambiguity resolution problem. In [5], a threefold

classification of different methods is made based on how they make use of the received measurements:

1. The first class uses C/A or P-code pseudoranges directly to determine the ambiguities of the corre-

sponding carrier-phase observations.

2. The second class comprises the first ambiguity resolution method developed, the Ambiguity Function
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Method [6]. This technique uses the fractional value of the instantaneous carrier-phase measurement,

so the ambiguity function values are not affected by cycle slips.

3. The third class comprises a group of techniques that are based on the theory of ILS. Some of these

techniques include the Least Squares Ambiguity Search Technique (LSAST) [7], the Fast Ambiguity

Resolution Approach (FARA) [8], the modified Cholesky decomposition method [9], the null space

method [10], the Fast Ambiguity Search Filter (FASF) [11], and the Optimal Method for Estimating

GPS Ambiguities (OMEGA) [12].

In [13], the main characteristics of ambiguity resolution techniques in the third classification are discussed.

The ambiguity resolution method presented in this thesis is similar to those in the third classification in that

a float solution is estimated as input to the integer ambiguity resolution process. Generally, the ambiguity

resolution process is divided into three main steps [14]:

1. Estimating a real-valued or float solution for the ambiguities, along with its covariance matrix at each

epoch, which will be used for searching the correct integer values.

2. Mapping the ambiguity float parameters to integer values in the integer ambiguity estimation step.

3. Fixing the solution by successfully constraining the ambiguities to integers and adjusting the remaining

unknown parameters based on their correlation with the ambiguities.

Most of the existing algorithms for ambiguity resolution utilize the ILS method [15] to determine the correct

integer value from a set of integer candidates [13]. These algorithms rely on a previously computed float

solution, typically derived through an EKF. However, ambiguity resolution becomes more challenging in

environments with difficult signal reception conditions, such as urban canyons [16]. Consequently, achieving

a faster convergence of float ambiguities is required. Certain ambiguity resolution algorithms leverage addi-

tional constraints or integrate sensor measurements to enhance the float solution [16, 17, 18]. Nevertheless,

the inclusion of constraints or sensor measurements may lead to posterior distributions that are not Gaussian

or require the use of non-linear measurement models. Describing such distributions and deriving such mod-

els becomes complex when considering the framework of the EKF. This estimator has limitations in dealing

with highly nonlinear measurement models and highly non-Gaussian posterior densities (see Appendix E).

This is especially the case when the receiver is in urban environments and multipath signals are a significant

source of error. While typical GNSS observations are easily linearized about a point of expansion, additional

sensor observations and constraints, such as short-range constraints or map-matching techniques, are not

easily integrated using least-squares or EKF approaches. An alternative solution is to use an estimator that
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addresses both non-linear observation models and non-Gaussian errors [19]. Sampling or Bayesian estimators

are able to include highly non-linear elements and accurately describe non-Gaussian distributions. In this

thesis, the Sequential Importance Resampling Particle Filter (SIR PF) is used as an alternative method

to estimate the full geometry-based float solution state vector. The SIR PF is a sequential Monte Carlo

method based on the point mass representation of probability densities [20]. The PF represents the a priori

and posteriori probability density functions with the help of many samples in the state space. Therefore, the

SIR PF outperforms the EKF when the system is highly nonlinear because it makes no assumptions about

the shape of the observation or state probability density functions and does not require a linearization step.

1.1.1 Particle Filter in Ambiguity Resolution

The PF has been previously proposed for satellite navigation and positioning; however, it is not commonly

applied to ambiguity estimation and resolution because one of the purposes of ambiguity resolution is to find

the correct solution in the shortest possible time [1]. The main limitation of the PF is its computational cost,

and therefore, it is generally used to estimate small state vectors or combined with another estimator. In

[21], a Bayesian approach for ambiguity resolution is presented. This approach does not resolve ambiguities

in the traditional way but instead sums over all possible ambiguities with proper weights directly derived

from the likelihood function, considering the confidence region around the float estimates.

A PF-based method for ambiguity resolution is proposed in [22]. In this work, the integer ambiguity

is treated as a random integer vector, and particles are generated according to the initial probability den-

sity of the rover position given the double difference measurement for the pseudorange observable. After

incorporating the measurements and applying Bayes’ rule, the probability mass function (pmf) evolves, and

new particles are generated. However, since the GPS receiver is not considered in the PF, the method itself

cannot be used for real-time applications without complementing it with other algorithms.

An adaptive Kalman filter-based method for ambiguity resolution is proposed in [23]. This work only

focuses on determining the correct sets of possible ambiguities while using all data to improve the overall

position. It consists of a blending of solutions from multiple filters, each of which hypothesizes a different

ambiguity set. This method is divided into three steps: the first one uses an EKF to calculate the user’s po-

sition, velocity, and carrier phase ambiguities estimates. The second step generates the candidate ambiguity

sets using the Z transformation [2] from the Least Squares Ambiguity Decorrelation Adjustment (LAMBDA)

method. The third step provides candidate ambiguity sets to a bank of Kalman filters in the Multiple-Model
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Adaptive Estimation.

In [24], samples are drawn directly from the three-dimensional position space, and then integers consistent

with the particle filter are constructed, allowing the estimates to be insensitive to cycle slips. However, this

method does not follow the traditional steps of first estimating a float solution and then finding an integer one.

In [25], a nonlinear filter is developed to estimate the user position and all unknown parameters, such as

integer ambiguities and ionospheric errors, using multi-frequency and multi-GNSS. This procedure is based

on four steps: 1) computing the float solution at each epoch adaptively to the dynamic environment using

the EKF and the particle filter, 2) using a carrier phase multipath indicator to derive a constraint that rejects

integer candidates affected by multipath errors, 3) applying LAMBDA to search for integer ambiguities, and

4) validating the fixed solution using a statistical test.

A method for ambiguity resolution based on a mixture Kalman filter solution is proposed in [26]. The

optimal proposal density for the ambiguities is leveraged, and the set of ambiguities is marginalized by em-

ploying a particle filter. Then, possible values are bounded to a dense set of integers, allowing the extraction

of the integer solution as a maximum likelihood estimate from a mixture Kalman filter, where each Kalman

filter is conditioned on a fixed ambiguity value for each satellite.

In [27], a PF is implemented to estimate the user position using pseudorange observations only, while

Non-Line-of-Sight multipath signals are determined by a likelihood estimation that compares the position

hypotheses of the receiver computed from the pseudoranges and the particles.

1.1.2 Particle Filter and map-matching constraint in GNSS

The PF is more suitable for incorporating constraints or sensor measurements as these additional observa-

tions may lead to a highly nonlinear measurement model or a highly non-Gaussian posterior distribution [28].

An approach to PF-based map matching is presented in [19]. This solution is given within the framework

of Bayesian theory. The basic principle is to use particles to represent the posterior density of the vehicle

in a dynamic state estimation framework where road map information is integrated. This is a probabilistic

approach to map matching, which calculates the probabilities of the vehicle traveling on different road seg-

ments to select the correct one and then estimates the vehicle’s position on the selected road segment. The
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PF considers multiple candidate roads and is able to adapt if an initial guess at the proper road is found

to be incorrect. The authors demonstrate in this work how map-matching using a nonlinear filter, such as

the PF, can improve the car navigation system’s position accuracy. This becomes very helpful in urban

environments where GPS reception deteriorates due to obstacles and multipath.

As shown in [29], incorporating digital map information within the conventional EKF estimation method

is not easy because this constraint leads to highly non-Gaussian posterior densities. The PF approach is

an excellent option for map constraint since it presents no restrictions regarding non-Gaussian distributions

and the nonlinearity of the system models.

1.1.3 GNSS in urban environments

Location information in urban canyons is needed for many applications such as land navigation, transporta-

tion efficiency, and vehicle or pedestrian localization. The most popular solution is the use of GNSS because

they provide continuous coverage, and all-weather, worldwide information. However, this is still a challenge

because GNSS signals can be easily blocked or disturbed by obstacles such as buildings or dense foliage.

These features introduce multipath errors, which arise from the reception of reflected or diffracted signals

[30]. Hence, standalone GNSS receiver architectures cannot provide suitable accuracy in an urban canyon

scenario. To face this problem, many authors have considered aiding GPS with other sensor data, which

could be Dead Reckoning, Inertial Navigation Systems (INS), and digital map information.

In [31] a PF-based method is proposed to integrate Micro-Electro-Mechanical Systems (MEMS) sensors

with GPS for reliable navigation solutions in urban environments. The authors introduce a Mixture PF

algorithm for integrating the Radio Inertial Satellite System (RISS) with GPS observations and handle non-

Gaussian errors effectively.

In [32], an integration of Wi-Fi and GPS is presented. This solution comprises an integrated system that

mainly depends on GPS positioning improved by a Kalman Filter. If GPS signal reception deteriorates, the

estimation is assisted by Wi-Fi positioning and a PF.

An approach that uses high-sensitivity receivers in order to receive a degraded signal by an urban envi-

ronment is proposed in [33]. However, since measurements with this kind of receiver are not always reliable

and can produce large errors, Dead Reckoning is integrated into this navigation system.
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In [34] a navigation system for precise urban vehicular positioning is presented. This proposed method

is unaided by inertial or electro-optical sensors, instead, it uses an embeddable multi-frequency software-

defined GNSS receiver which draws ephemeris data and GPS data bit estimates from a set of 8 reference

GNSS stations in the city of Austin. This receiver feeds code and carrier observables to an RTK engine

which produces a precise solution and, depending on an integer aperture test, it can be fixed or float.

1.1.4 Limitations of Previous Research

Particle filters have been used for state estimation since the early 1990s, and researchers have since explored

various aspects of this approach. The particle filters are useful for tracking and navigation problems involving

highly non-linear and non-Gaussian distributions. However, their main drawback is their high computational

cost, which increases with the dimensionality of the state vector. Ambiguity resolution methods, on the other

hand, prioritize efficiency and speed in resolving ambiguities, which is a limitation when using particle filters.

As a result, researchers often combine particle filters with other estimators to estimate certain variables only.

There are many unexplored aspects of using particle filters for ambiguity resolution, such as the behavior of

particles in a float solution under different signal reception conditions or the effect of constraints, such as a

map-matching constraint, on the filter.

Recent advances in hardware and software have increased computational capacity, allowing for more

possibilities in the use of particle filters for ambiguity resolution. By computing a float solution with the

SIR PF, many possible solutions or particles can be obtained instead of just one.

1.2 Objectives

An alternative solution was adopted in this research for estimating the float solution with an additonal

map-aiding algorithm and an outlier detection algorithm for deweighting the measurements distorted by

multipath: the Sequential Importance Resampling Particle Filter. This method can handle both non-linear

observation models and non-Gaussian errors.

While the particle filter is not commonly applied to ambiguity resolution in GNSS positioning, as one

purpose of ambiguity resolution is to find the correct solution in the shortest possible time, the main objectives

of this thesis are the following:

1. Assess the performance of the particle filter when estimating the full geometry-based float solution for
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a double-differenced short baseline.

2. Compare the float solution estimated with the PF to the typically used EKF for searching the integer

ambiguities using the three common search methods: Integer Rounding, Bootstrapping, and ILS, with

and without an application of LAMBDA decorrelation. These integer search methods are used to

compare their probabilities of correct fixing and the empirically success rates obtained with the PF.

3. Demonstrate the particle filter’s ability to describe arbitrary posterior distributions, beyond just Gaus-

sian distributions, by implementing a map-matching algorithm. The effect of the map-constraint into

the float solution is assessed in the position and ambiguity domains showing how much the position

accuracy and the convergence of the float ambiguities are improved for faster ambiguity resolution.

4. Assess the performance of the PF for estimating the float solution when dealing with non-Gaussian

errors, such as the case when signals are a significant source of error.

1.3 Contributions

The contributions of this thesis are outlined in the following list:

1. A detailed description of the most common non-linear estimators is provided. The explanation provided

in this thesis follows a sequence where the simplest and most common non-linear estimator, the EKF,

is first introduced, followed by the unscented Kalman filter (UKF) which provides a second-order

Taylor series approximation to non-linear problems. Finally, we explain in detail each step of the

Particle Filter, describing its main advantages and limitations for the state estimation problem and

explicitly demonstrate the necessary conditions for the PF and the EKF to provide equivalent results.

Throughout this explanation, simulated examples are carried out to facilitate the comparison of these

nonlinear estimators, enabling straightforward analysis of the solutions generated by these.

2. A detailed description of the implementation of the SIR PF applied to the estimation of the full

geometry-based float solution is presented. This has never been done before as the PF is commonly

used to estimate small-dimension state vectors or combined with other estimators such as the EKF.

3. A full comparison of the available options for ambiguity resolution when having a float solution based

on mass representation is made. The three integer search methods presented in [35] are compared using

the EKF and the PF. An empirical probability of the correct fix of the three estimators is estimated

as an alternative way to measure its success rate adn is compared with the formally estimated bound

first shown by [36].
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4. The map-matching constraint for improving the accuracy of the position state and the convergence of

the real-valued ambiguities is analyzed. The ability of the PF to capture multi-modal distributions is

shown by adding digital road map information to the estimation.

5. This work shows the ability of the PF to weight the particles according to a non-Gaussian distribution

for the likelihood function. The PF is applied to estimate the float solution under an urban environment,

where there is presence of multipath error and the measurements are not longer Gaussian. A mixture

of Gaussians is used for the likelihood function, on measurements detected as outliers.

1.4 Thesis Outline

The structure of the thesis is as follows:

� Chapter 2 provides an explanation of background information about GNSS differential positioning and

ambiguity resolution. It presents the code and phase measurement models for positioning, which are

the basis for double-difference positioning. A description of the three admissible estimators presented

in [35] (integer rounding, bootstrapping, and ILS) and the LAMBDA method [2] is provided.

� Chapter 3 is a full description of the Particle Filter. Prior to explaining the Particle Filter process

and features, descriptions of the EKF and UKF are conducted. The local linearization and the Rao-

Blackwellization are explained as alternatives to improve the estimation or reduce the number of

particles needed. A simple case of state estimation is presented to show the similarities between the

PF and the EKF.

� Chapter 4 presents the implementation of the SIR PF to estimate the full geometry-based solution using

L1 GPS carrier phase and pseudorange observations. A comparison between the solutions estimated

with the EKF and the PF is conducted using a kinematic land-vehicle data set described in [3].

� Chapter 5 provides the implementation of a map-matching algorithm for the estimation of the float

solution using the SIR PF. This chapter analyzes the effect of implementing digital road map informa-

tion in the position state estimate and in the convergence of the float ambiguities for a faster ambiguity

fix. The algorithm is applied to different driving scenarios of the data set described in Chapter 4.

� Chapter 6 analyzes the effect of weighting the particles according to a distribution other than Gaussian

for the likelihood function. The results were obtained from the estimation of the float solution for the

segments of data where measurements are likely to be distorted by multipath. The outlier detection
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step implemented is described, as well as the mixture of Gaussians distribution used as the likelihood

function.

� Chapter 7 provides a discussion of the conclusions for each chapter of this thesis followed by suggestions

for future work.
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Chapter 2

Ambiguity Resolution

This chapter provides the theoretical background of the ambiguity resolution process, emphasizing the de-

scription of each of the three admissible integer estimators [15]. The chapter begins by introducing the

observation model for code and carrier phase, followed by the single and double difference model. Then,

it describes the ambiguity resolution methods, including Integer Least Squares, Bootstrapping, and Integer

Rounding. Additionally, it introduces the Least Squares Ambiguity Decorrelation Method [1]. Finally, an

explanation about the ratio test for validating the estimated integer ambiguity, as well as the success rate

for bootstrapping and rounding is provided.

2.1 Observation model

In GNSS, the distance between the satellite and the receiver’s antenna is measured by the pseudorange [37].

This refers to the distance between the satellite at the time of signal emission and the receiver at the time

of signal reception. The pseudorange is different from the geometric distance because of the influence of the

signal transmission mediums and the clock errors. The precision of this measurement has been traditionally

about 1% of the chip length, thus, the C/A code has a precision of about 3 m, while the P-code is 30cm. The

carrier phase is a measure of the phase of the received satellite signal relative to the receiver-generated carrier

phase at the reception time [38]. The number of full carrier waves between satellite-receiver is not accounted

for at the initial signal reception, hence, the carrier phase is a measurement of the fractional phase. The

carrier phase is measured with a precision better than 1% of the wavelength, this means millimetre precision.

The ambiguous integer number of cycles in the carrier phase measurement is called ambiguity. Therefore in

order to use the carrier phase for precise positioning, the integer ambiguity must be determined.

10



The GNSS code pseudorange and carrier phase are formulated as:

P i
r = ρir − (δtr − δti)c+ δion + δtrop + εc (2.1)

and

Φi
r = ρir − (δtr − δti)c+ λN i

r − δion + δtrop + εp (2.2)

where P i
r and Φi

r are the observed pseudorange and carrier phase between the satellite i and the receiver

r respectively, δion and δtrop are the ionospheric and tropospheric delays respectively, δtr and δti are the

receiver and satellite clock error terms respectively and N is the ambiguity in cycles. In order to use the

carrier phase for precise positioning, the integer ambiguity N must be determined.

Phase range model

GNSS high precision is possible by using carrier phase measurements from receivers. Pseudoranges can be

obtained from phase measurements by noting that they differ only by the phase ambiguity and the sign of

the ionospheric effect. The mathematical model for these measurements is given by [37]:

Φi
r =

1

λi
ρir +N i

r +
c

λi
∆δtir (2.3)

where ρ is the geometric distance between the observing point r and the satellite i, and can explicitly be

written as:

ρir =
√
(Xi −Xr)2 + (Y i − Yr)2 + (Zi − Zr)2 (2.4)

Φi
r(t) is the measured carrier phase expressed in cycles , λi is the wavelength, c denotes the speed of light

and ∆δtir is the combined receiver and satellite clock bias (δtr − δti ). N i
r is the time-independent phase

ambiguity number. Considering that f i = c/λi, equation (2.4) can be rewritten as:

Φi
r + f iδti =

1

λi
ρir +N i

r + f iδtr (2.5)

2.2 Differential positioning

Differential positioning techniques using GNSS need two or more receivers. One receiver, usually static, is

located at a reference station with known coordinates, and remote receivers, usually are roving and their

coordinates are to be determined [39]. The objective of this technique is to reduce or eliminate spatially
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correlated error sources such as the atmospheric, orbital and clock errors.

The most common difference is the between-receiver, which is obtained when the observations of a set

of satellites are differenced between the rover receiver and the base station. An important feature of this

difference is that the satellite clock error is canceled and atmospheric errors are reduced. This occurs because

the satellite clock is very stable, making the satellite clock errors the same for these near-simultaneous

transmissions. Denoting the receivers by A and B and the satellite by i, and considering equation (2.5) for

each receiver, the single-difference equation using phase measurements is the following:

Φi
AB =

1

λi
ρiAB +N i

AB + f iδtAB (2.6)

If we assume two receivers A, B and two satellites i,j two single differences (equation 2.6) for each satellite

may be formed. In order to obtain a double-difference (DD), these single differences are subtracted. The

receiver clock bias is eliminated using double-differencing. Assuming equal frequencies for the satellites i

and j, the DD equation is:

Φjk
AB =

1

λjk
ρjAB +N jk

AB (2.7)

The use of double-differences in ambiguity resolution is important. The reason is that by doing this, the

clock terms are eliminated and the isolation of the ambiguities is possible.

2.3 Ambiguity Resolution

In order to leverage phase measurements, one has to compute the ambiguous number of cycles between

satellites and receivers. Once this is done, carrier phase measurements act as if they were very precise

pseudorange measurements. Many of the ambiguity resolution methods first estimate a float-valued solution,

which will be the basis for an integer-valued estimation. Then, the integer ambiguity estimates are used to

correct the float estimate values. The integer ambiguity computed from the float ambiguity estimate ǎ [40]

is expressed as follows:

ǎ = S(â) (2.8)

Where S is the mapping from the n-dimensional space of real numbers to the n-dimensional space of integers.

This mapping must be many-to-one, so that real-valued ambiguity vectors a will be mapped to the same

integer vector. Therefore a subset of real values Sz can be assigned to each integer vector z. This is called

the pull-in region of z. Algorithms for ambiguity resolution are based on constructing a search space of

integer ambiguities from integer values near the float solution. Usually, search space is bounded by the
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uncertainty of the estimated float ambiguities, then the most likely correct integer value is selected. In [41],

the conditions for an integer estimator to be admissible are given, which are the following three:

1. All pull-in regions should cover the complete space Rn, so that all real-valued vectors are mapped to

an integer vector

2. There should be no overlap between the pull-in regions so that the float solution is mapped to just one

integer vector.

3. If the float solution is perturbed by an amount, the corresponding integer solution is perturbed by the

same amount.

In literature, we can find several authors who have studied and analyzed different integer estimators or

strategies. The simplest one is to round each entry of the real-valued float solution to its nearest integer.

The pull-in regions SR,z that corresponds to Integer rounding is as follows:

SR,z =

n⋂
i=1

{
x ∈ Rn | |xi − zi| ≤

1

2

}
(2.9)

The two-dimensional case of the integer rounding is visualized in Figure 2.1.

Figure 2.1: Integer rounding two-dimensional pull-in regions.
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2.3.1 Integer bootstrapping

Integer bootstrapping or sequential conditional rounding occurs when the first ambiguity is rounded to its

nearest integer value and then the remaining float ambiguities are corrected subject to the fixing of the first

ambiguity [42]. This estimator makes use of the integer rounding, and also takes the correlation between

the ambiguities into account [43]. It is the result from a sequential conditional least-squares adjustment.

The bootstrapped estimator is described as follows: assume we have n ambiguities available, one starts with

the first real-valued ambiguity â, and rounds it to the nearest integer. Afterwards, having the first integer

ambiguity, the real-valued of the remaining ambiguities are then corrected according to their correlation with

the first ambiguity. Subsequently, the second (now corrected) real-valued ambiguity is rounded to its nearest

integer. Having rounded the second ambiguity, the real-valued estimates of the remaining n-2 ambiguities

are again corrected, but now based on their correlation with the second ambiguity. This process is continued

until all ambiguities are corrected and rounded [44]. The nth component of the bootstrapped estimator ǎB

is as follows:

ǎB,n =
[
ân|N

]
=

[
â−

n−1∑
i=1

σânâi|Iσ
−2
âi|I

(âi|I − ǎB,i)

]
(2.10)

where âi|I stands for the ith least squares ambiguity conditioned on the previous sequentially rounded

ambiguities. Two-dimensional example for bootstrapping is shown in Figure 2.2. This algorithm is closely

related to the LDU triangular decomposition of the variance-covariance matrix of the ambiguities Qâ =

LDLT , with L a unit lower triangular matrix and D a diagonal matrix. Having:

(â− z) = L(a′ − z) (2.11)

with a′ being the conditional least-squares solution obtained from a sequential conditioning on z entries, and

a variance-covariance matrix given by D (σ−2
âi|I

). The pull-in region SB,z is given by:

SB,z =
⋂

ci∈Zn

{
â ∈ Rn |

∣∣cTi D−1L−1(â− z)
∣∣ ≤ 1

2
cTi D

−1ci

}
(2.12)

with ci the ith canonical unit vector, which has 1 as its ith entry and zeros otherwise.
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Figure 2.2: Bootstrapping two-dimensional pull-in regions.

2.3.2 Integer least squares

Least-squares problems that involve some integer parameters are non-standard [44] and are referred to as

integer least squares (ILS). Having:

min ∥â− z∥2Qâ
(2.13)

where z ∈ Zn. Therefore, ǎLSQ is the integer least-squares solution when:

∥â− ǎLSQ∥2Qâ
≤ ∥â− z∥2Qâ

(2.14)

for all z ∈ Zn. Expression 2.14 can be written as:

(z − ǎLSQ)
TQ−1

â (â− ǎLSQ)
T ≤ 1

2
∥z − ǎLSQ∥2Qâ

(2.15)

Hence, the pull-in region SLSQ,z using the LDU decomposition is as follows:

SLSQ,z =
⋂

ci∈L−1(Zn)

{
â ∈ Rn |

∣∣cTi D−1L−1(â− z)
∣∣ ≤ 1

2
cTi D

−1ci

}
(2.16)
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The two-dimensional case is visualized in Figure 2.3. Comparing the two pull-in regions 2.12 and 2.16 shows

that they only differ in their choice of ci vectors. This means that the two pull-in regions are identical when

the matrix entries of L− are all integer, which is the case when L is an admissible ambiguity transformation.

It is also shown that subset 2.2 is reduced to the integer rounding subset 2.1 when L becomes diagonal. This

happens when the variance-covariance is diagonal.

Figure 2.3: ILS two-dimensional pull-in regions.

Figures 2.1, 2.2, 2.3 show the two-dimensional pull-in regions for integer rounding, bootstrapping and ILS.

The geometry of the pull-in regions depends on the nature of the integer estimator. The integer rounding,

being the simplest of these methods, has squared 2D pull-in regions, as all the real valued ambiguities are

mapped to their closest integer value. The bootstrapping pull-in regions are similar to the ones of the

rounding method, with the difference that the slopes of the regions are due to the corrections of the float

ambiguities considering the correlation between them. Finally, the ILS pull-in regions are constructed as

intersecting half spaces, which are bounded by planes orthogonal to â−z [14]. For the 2D case three pairs of

such half spaces are needed, as the integer vectors must be bounded by 2n− 1 adjacent integers. Therefore

the ILS pull-in regions for a 2D case are hexagons.
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2.3.3 LAMBDA

The Least Squares Ambiguity Decorrelation Adjustment (LAMBDA) [1] method solves an integer least

squares problem successfully solving the ambiguity resolution problem. The integer ambiguity solution is

obtained by using one of the three search methods mentioned in the previous section. An integer search

space is defined as [14]:

Ωa = a ∈ Zn|(â− a)TQ−1
â (â− a) ≤ X2 (2.17)

The search space is an n-dimensional ellipsoid with center at â, shaped by the variance-covariance matrix

Q−1
â , and its size is defined by X2. High correlation between the ambiguities result in extremely elongated

search spaces, therefore, the integer search may take very long. The LAMBDA decorrelation method is

necessary for transforming the search space to a more spherical shape. In this method, the ambiguities are

decorrelated prior to integer estimation using the Z-transformation [45]:

z = Z∗a, ẑ = Z∗â, Qẑ = Z∗QâZ (2.18)

This is only admissible if and only if Z∗ is volume preserving and has integer entries only. Hence, the ILS

problem would then transform into the equivalent minimization problem:

min(ẑ − z)∗Q−1
ẑ (ẑ − z) (2.19)

with z ∈ Zn. The decorrelation realizes an ellipsoid that is very much a sphere or circular, therefore, it can

be searched through efficiently. Using the LDLT decomposition of Qẑ the new ambiguity search space is

then given by:
n∑

i=1

(ẑi|I − zi)
2/σ2

i|I ≤ X2 (2.20)

Its size can be controlled through the selection of the positive constant X2, and it gives an indication of

the number of candidates contained in the ellipsoid. A limited number of candidates will be the output of

which one will be the least-square estimation for the vector of ambiguities. Finally, this solution is used to

correct the real estimate of the baseline parameters and is known as the fixed baseline solution. In figures

2.4 and 2.5, it is shown a two-dimensional example of the search space before (2.4) and after (2.5) the

decorrelating Z transformation. As mentioned before, the transformed space is less elongated, however, it

has a volume identical to the volume of the original search space and the same number of candidate grid

points are inside the ellipse in both cases. The difference is the number of candidates in the rectangular
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search region. In this example, the next values were used:

â =

27.6490

10.3038

 and Qâ =

25.04 29

29 36.04


where â are the float values with its respective variance-covariance matrix Qâ. The transformation matrix

Z is:

Z =

 2 1

−1 −1


After transformation, the float estimate and the covariance matrix become:

QẐ = ZTQâZ =

 20.2 −0.88

−0.88 3.08

 and z = ZT â =

44.9942

17.3452



Figure 2.4: Original search space.
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Figure 2.5: Search space after decorrelation.

2.3.4 Ratio test

After the identification of the most likely integer ambiguity combination, a process of validation must be

made. This is a necessary step before fixing or constraining the ambiguities to the computed integers in a

final baseline computation. The ratio test was introduced in order to decide whether the integer ambiguity

solution can be considered sufficiently more likely than any other candidate [46]. Lets consider ǎ as the

integer minimizer of R(a):

R(a) = (â− a)TQ−1
ââ (â− a) (2.21)

Let a′ be the integer that returns the second smallest value of R(a). Then, the ratio test is as follows:

R(a′)

R(a)
> kc (2.22)

where kc is the chosen critical value. Equation (2.22) evaluates how close is the float solution to its nearest

integer vector. This will be the criteria for accepting or rejecting the ILS solution. If it is not close enough,

the test leads to rejection in favor of the float solution [47].
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2.3.5 Success rates

The success rate or probability of correct integer ambiguity estimation describes the frequency with which

one can expect to have a successful ambiguity resolution. The ambiguity success rate depends on the

observation equations, the precision of the observables, and the chosen method of integer estimation. The

integer least-squares estimator is the most effective method used for maximizing the success rate[48]:

P (ǎR = a) ≤ P (ǎB = a) ≤ P (ǎLS = a) (2.23)

where P (ǎ = a) is the probability of correct integer estimation for integer rounding R, bootstrapped B and

integer least-squares LS estimators. Hence, one can use the bootstrapped or the integer rounding success

rates as a lower bound for the integer least-squares success rates. The bootstrapped probability of obtaining

the correct integer ambiguity is [36]:

P (ǎB = a) =

n∏
i=1

(2ϕ

(
1

2σâi|I

)
− 1) (2.24)

where ϕ is the normal distribution described by:

ϕ(x) =

∫ x

−∞

1√
2π

exp(−1

2
z2)dz (2.25)

Note the success rates described by Equation (2.24) depend only on the standard deviation of the float

ambiguities σâi|I and does not consider biases in the float solution, therefore, a high success rate does not

always guarantee a correct integer search. In Chapter 4, the empirical success rates are compared to the

probabilities of correct fixing, providing a more realistic metric for correct integer searching. The three

integer estimators described in this chapter are applied with and without the Z transformation throughout

this research with the objective of assess the performance of each method having the float solution represented

by a set of particles in different cases. Having the original float ambiguities decorrelated through the Z

transformation, enables the analysis of the particle filter solution performance using the empirical covariance

matrix obtained from the cloud of particles as an input for LAMBDAmethod. applying The double-difference

measurements are used to reduce the atmospheric effects and cancel the clock errors in order to estimate

the ambiguities. Finally, the success rates are computed and then compared with the empirical probability

of correct fixing obtained from the PF solution. The methods outlined in this chapter, regarding ambiguity

resolution, require a float solution as an input. Typically, an EKF is employed to obtain this solution.

However, these methods just require an estimation of the float solution along with its covariance matrix. In
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the upcoming chapter, Kalman filtering and alternative approaches will be explored.
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Chapter 3

Nonlinear Filters

In this chapter, a description of the most common non-linear estimator, the Extended Kalman Filter (EKF),

the Unscented Kalman Filter (UKF), and the Particle Filter (PF) is provided. The Sequential Importance

Resampling (SIR) Particle Filter is described in detail as it is the estimator used throughout this thesis.

Afterwards, two methods to improve the accuracy and reduce the computational cost of the SIR particle filter

by selecting a different importance density than the transitional prior are described. The Rao-Blackwellized

PF is described as an alternative method to increase the efficiency and reduce the computational cost by

splitting the state vector into linear and non-linear parts. Finally, a simple example with simulated data is

provided showing the performance of each filter when estimating a one-dimensional state vector.

3.1 Sequential Least-Squares

Suppose we need to adjust a state vector according to a set of measurements observed at two sequential

epochs, the portion of observations yk−1 at a certain epoch k − 1 is used to adjust the state vector x̂ which

will be considered at a later epoch when the next set of measurements yk is available. Instead of adjusting

again the combined observations yk−1 + yk when the second set of measurements is available, yk is used to

provide a correction ∆x to the adjusted state x̂k−1 based on the first batch of measurements [49]. In order

to standardize the notation for the entire explanation of this chapter and make the comparison between the

estimators, I will follow the Kalman filter notation used by most authors ([50], [51], [52]). Any special

notation or exception will be pointed out. The adjusted observations in a parametric model of both epochs

are given by:

ŷk−1 = f(x̂k−1) (3.1)
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ŷk = f(x̂k) (3.2)

The main idea of doing the sequential least-squares is to add the effects of the second set of observations,

without having to readjust again both sets together as one. Considering vk−1 and vk as the vectors of

residuals of the observations, Equations (3.1) and (3.2) can be described as follows:

ŷk−1 + vk−1 = f(x̂k−1) (3.3)

ŷk + vk = f(x̂k) (3.4)

Linearizing these equations by a first-order Taylor series expansion and taking into account the least-squares

criterion, the variation function is:

ϕ = vTk−1R
−1
k−1vk−1+vTk R

−1
k vk−2K̄T

k (Hk−1x̂k−1+wk−1−vk−1)−2K̄T
k (Hkx̂k+wk−vk) = minimum (3.5)

where R is the covariance matrix of the measurements noise for each set (inverse of the measurements

weights), K̄ is an undetermined constant called the Lagrange multiplier, Hk is the Jacobian matrix of

partial derivatives of the function f with respect to x Hk = ∂fk
∂x and wk = f(x−) − yk the innovation.

Solving the set of normal equations derived from the variation function 3.5, the solution for the sequential

least-squares is obtained, and can be summarized as follows [53]:

1. Compute the state x̂k−1 with:

x̂k−1 = −(HT
k−1R

−1
k−1Hk−1)

−1HT
k−1R

−1
k−1wk−1 (3.6)

2. Compute the residual vector to be applied to measurements yk−1:

v′k−1 = Hk−1x̂k−1 + wk−1 (3.7)

3. Compute the covariance matrix of the adjusted parameters:

P̂k−1 = (HT
k−1R

−1
k−1Hk−1)

−1 (3.8)

4. When the second set of measurements is available, compute the final state vector:

x̂k = x̂k−1 +∆x̂ (3.9)
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where ∆ x̂ are the changes in corrections due to adjustments of measurements yk:

∆x̂ = −(HT
k−1R

−1
k−1Hk−1)

−1HT
k (Rk +Hk(H

T
k−1R

−1
k−1Kk−1)

−1HT
k )

−1(Hkx̂k−1 + wk) (3.10)

5. Compute the residual vectors vk−1 and vk as:

vk−1 = v′k−1 +H1∆x̂

vk = RkM(Hkx̂k−1 + wk)

(3.11)

with:

M = (Rk +Hk(H
T
k−1R

−1
k−1Hk−1)

−1HT
k )

−1 (3.12)

6. Compute the final covariance matrix:

P̂k = P̂k−1 + (−((HT
k−1R

−1
k−1H1)

−1)HT
k MHk(H

T
k−1R

−1
k−1Hk−1)

−1) (3.13)

which considering Equation 3.8, can be rewritten as follows:

P̂k = P̂k−1 − (P̂k−1)H
T
k MHk(P̂k−1) (3.14)

Substitution of Equation 3.8 in Equation 3.10 yields:

∆x̂ = Kk(Hkx̂k−1 + wk) (3.15)

where K, known as Kalman gain is:

Kk = P̂k−1H
T
k (Rk +HkP̂k−1H

T
k )

−1 (3.16)

then Equation 3.9 can be rewritten as:

x̂k = x̂k−1 +Kk(yk − ŷk) (3.17)

where ŷk = Hkx̂k−1. Equations (3.17) and (3.14) are equivalent to the Kalman Filter update equation for

the state vector and its covariance matrix. Therefore, the SLS constitutes a filtering form solution in a static

mode which minimizes the squared error σ by the factor K in Equation (3.16). This means that the SLS is
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considered a special case of filtering which does not considers a dynamic model as the EKF does.

3.2 Extended Kalman Filter

For estimating the state of a system changing over time described by state dynamics and observation models,

the use of a recursive filter is a convenient solution and consists of essentially two stages, prediction, and

update. In the prediction stage, the state pdf is predicted for the subsequent epoch using the state dynamics

model. The update stage uses the incoming measurements at each epoch to modify the predicted pdf.

Consider a discrete dynamical system defined by the following state dynamics:

xk = Φkxk−1 + wk (3.18)

and the observation model is as follows:

yk = H(xk) + nk (3.19)

where Φ is the transition matrix of the dynamics model, H(xk) is the matrix giving the connection between

the measurement with noise nk and the state vector at time k, which for the nonlinear case will be the

Jacobian matrix of partial derivatives of the measurement model just as in the sequential least-squares. The

process state and measurement vectors at time k are denoted as xk and yk respectively. Having a prior

estimate of the state x̂−
k (the super minus − indicates the prior estimation while the hat denotes estimation

only), the Kalman filter seeks to use the measurement yk to improve the prior estimate. This is the update

step of the filter and it is as follows:

x̂k = x̂−
k +Kk(yk −Hkx̂

−
k ) (3.20)

where Kk is known as the Kalman gain, it minimizes the mean-square estimation error and follows the next

equation:

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (3.21)

where Rkk is the covariance matrix of the measurement noise and P̂ k is the covariance matrix associated

with the optimal estimate and is described by the next equation:

Pk = (I −KkHk)P
−
k (3.22)
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We need now the best prior estimate for the state vector x̂−
k and its covariance matrix P−

k , which are

computed in the prediction step of the filter. The prediction of the state is projected using the transition

matrix Φ:

x̂−
k+1 = Φx̂k (3.23)

The expression for P̂−
k+1 is as follows:

P̂−
k+1 = ΦkPkΦ

T
k +Qk (3.24)

where Qk is the variance of the process noise (assumed Gaussian).

In most of the applications of the Kalman filter, the dynamics are nonlinear, therefore the extended

Kalman filter utilizes a first-order Taylor series approximation to the nonlinear function. Considering a

nonlinear dynamic system, the process to be estimated and the observation model are described by the

following equations [54]:

xk+1 = f(x) + wk (3.25)

and

y = h(x) + nk (3.26)

where f and h are known nonlinear functions. The system is linearized by approximating f and h with the

first-order terms of Taylor’s series expansions and then evaluating the partial derivative matrices at point x,

which are the equivalent matrices of the linear case Φ and H:

Φ =
∂f(x,w)

∂x

∣∣∣∣
x,w

(3.27)

H =
∂h(x)

∂x

∣∣∣∣
x

(3.28)

The EKF updates the state estimates resulting from the measurements as:

yk − h(x̂−
k ) (3.29)

Then the update step in the EKF is as follows:

x̂k = x̂−
k +Kk(yk − h(x̂−

k )) (3.30)

The recursive process of estimating the state of a system using the Kalman Filter is described in the next

algorithm:
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Algorithm 1 Extended Kalman Filter

Require: Initial state estimate x̂0, initial state error covariance matrix P0, process noise covariance matrix

Q, measurement noise covariance matrix R, measurement function h(·), state transition function f(·),

and Jacobian matrices Fk and Hk

1: for k = 1, 2, . . . do

2: x̂−
k = f(x̂k−1) ▷ Predicted state estimate

3: P−
k = FkPk−1F

T
k +Q ▷ Predicted state error covariance

4: Hk = ∂h
∂x

∣∣∣∣
x̂−
k

▷ Linearize measurement function around predicted state

5: Kk = P−
k HT

k (HkP
−
k HT

k +R)−1 ▷ Calculate Kalman gain

6: ẑk = h(x̂−
k ) ▷ Predicted measurement

7: x̂k = x̂−
k +Kk(yk − ẑk) ▷ Updated state estimate

8: Pk = (I −KkHk)P
−
k ▷ Updated state error covariance

9: end for

10: return Filtered state estimates x̂k with its covariance Pxk

3.3 Unscented Kalman Filter

As the EKF only provides a first-order Taylor series approximation to the recursive nonlinear estimation, it

provides a limited performance when dealing with high nonlinearity [55]. Another drawback of the EKF is

that differentiating complex models for generating the Jacobian matrices is not trivial in most cases. These

limitations can introduce large errors in the estimation and sometimes the filter can diverge. The unscented

Kalman filter (UKF) addresses nonlinearity using a deterministic sampling approach. This method provides

estimates of the mean and its covariance based on a set of discrete samples projected exactly through

the associated nonlinear transformation, hence, this estimator is derivative-free. The chosen set of points

completely captures the true mean and covariance of the state, and the estimation results in approximations

accurate to the third-order for Gaussian inputs, and at least second-order for non-Gaussian [56]. The UKF

differs from the Monte Carlo methods (such as the Particle Filter) which require a large set of random samples

with associated weights to describe the posterior density function, while UKF draws samples according to a

specific deterministic algorithm.

The UKF is named after the Unscented Transform (UT), a method for computing the statistics of a

random variable that undergoes a nonlinear transformation [57]. Lets consider that the random variable x

of dimension n with mean x̄ and covariance Px can be approximated by 2n+1 weighted samples (commonly
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named sigma points χi)[58]:

χ0 = x̄

χi = x̄+ (
√
(n+ λ))i i = 1, ..., n

χi = x̄− (
√
(n+ λ))i−n i = n+ 1, ..., 2n (3.31)

where:

λ = α(n+ κ)− n (3.32)

is a scaling parameter. The constant α determines the spread of the points around the mean and is usually

set to a small positive value. The parameter κ is usually set to 0 [55]. (
√

(n+ λ))i is the ith column of the

matrix square root using the Cholesky factorization. Each point is then propagated through the nonlinear

process model f(x):

Y = f(χ) (3.33)

The mean and covariance of the propagated points with associated weights Wi are computed through the

Unscented Transform as follows:

ȳ ≈
2n∑
i=0

W
(m)
i Yi (3.34)

Py ≈
2n∑
i=0

W
(c)
i {Yi − ȳ}{Yi − ȳ}T (3.35)

where the weights are given by the next equations:

W
(m)
0 = λ/(n+ λ)

W
(c)
0 = λ/(n+ λ) + (1 + α2 + β)

W
(m)
i = W

(c)
i = 1/{2(n+ λ)} i = 1, ..., 2n

and β is set to 2 for Gaussian Distributions. At this step of the filter, we have a set of points that have been

selected through equations (3.31) and have been propagated using the nonlinear function f(x,w). The mean

and its covariance of this cloud of particles are computed afterward using their associated weights and the

UT (equations (3.34) and (3.35)). This step is analogous to the predict step in the EKF. As the Kalman

Filter performs the update step in measurement space, we need to propagate the samples using the nonlinear
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measurement model h(x),

Z = f(Y) (3.36)

Having the sigma points transformed into measurements, we can compute their mean z̄ and its covariance

Pz through the UT (equations (3.34) and (3.35)). With the incoming measurements y we compute the

innovation r and then the Kalman gain,

r = y − z̄ (3.37)

K = PxzP
−1
z (3.38)

where Pxz is the cross-covariance matrix of the state and measurements, which is computed as follows:

Pxz =

2n∑
i=0

W
(c)
i {Yi − x̄}{Zi − z̄}T +R (3.39)

Finally, we update the state and its covariance matrix:

x̂k = x̂−
k +Kr (3.40)

Px = P−
x −KPzK

T (3.41)

As the EKF assumes the state distribution to be Gaussian which is propagated through the first-order

linearization of the nonlinear system, it can introduce large errors in the true posterior mean and covariance

of the transformed state, which may lead to sub-optimal performance of the filter. The UKF addresses this

limitation by representing the state again by a Gaussian, but through a minimal set of deterministically

chosen sample points which are propagated through the true nonlinear system, capturing the posterior mean

and covariance accurately to the 3rd order Taylor series expansion, for any nonlinear model [55]. The UKF

is an alternative solution when the measurement model is highly nonlinear and the EKF does not longer

perform efficiently. The algorithm for estimating a dynamic state using the UKF is the following:
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Algorithm 2 Unscented Kalman Filter

Require: Initial state estimate x̂0, initial state error covariance matrix P0, process noise covariance matrix

Q, measurement noise covariance matrix R, measurement function h(·), state transition function f(·),

and scaling parameters α, β, and κ

1: λ = α(n+ κ)− n ▷ Calculate scaling parameter

2: Wm = [ λ
n+λ ,

1
2(n+λ) , . . . ,

1
2(n+λ) ] ▷ Calculate weight vector for mean

3: W c = [ λ
n+λ + (1− α2 + β), 1

2(n+λ) , . . . ,
1

2(n+λ) ] ▷ Calculate weight vector for covariance

4: χ0 = x̂0 ▷ Initialize sigma point matrix

5: P0 = P0 +Q ▷ Add process noise to initial state error covariance

6: for k = 1, 2, . . . do

7: χk−1 = sigma points around x̂k−1

8: Y−
k = f(Yk−1) ▷ Predicted sigma points

9: x̂−
k =

∑
i Wm(i)Y−

k,i ▷ Predicted state estimate

10: P−
k =

∑
i W c(i)(Y−

k,i − x̂−
k )(Y

−
k,i − x̂−

k )
T ▷ Predicted state error covariance

11: Z−
k = h(Y−

k ) ▷ Predicted measurement sigma points

12: ẑ−k =
∑

i Wm(i)Z−
k,i ▷ Predicted measurement mean

13: Pxz,k =
∑

i W c(i)(Y−
k,i − x̂−

k )(Z
−
k,i − ẑ−k )T +R ▷ Cross-covariance

14: Kk = Pxy,kP
−
k ▷ Calculate Kalman gain

15: rk = yk − z̄ ▷ Innovation

16: x̂k = x̂−
k +Kr ▷ Update state

17: Px,k = P−
x −KPzK

T ▷ Update state covariance

18: end for

19: return Filtered state estimates x̂k with its covariance Pxkk

3.4 Sequential Importance Resampling Particle Filter

3.4.1 Estimation problem in Bayesian framework

From a Bayesian perspective, the state estimation problem of a dynamic system described by dynamics and

measurement models (3.18 and 3.19) seeks to construct the posterior density function of the state p(xk|Yk),

where Yk are all measurements {y1, y2, ..., yk} up to time k [20]. Assuming the prior pdf at time k − 1 is

known, the prediction step consists in using the dynamics model 3.18 to obtain a predicted density, described
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as follows:

p(xk|Yk−1) =

∫
p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (3.42)

where p(xk|xk−1) is known as transitional density and is defined by the dynamics model 3.18. Equation 3.42

is known as the Chapman-Kolmogorov equation and relates the joint probability distributions of different sets

of coordinates. In the update stage, taking into account the measurement yk, the predicted pdf p(xk|Yk−1)

is updated through the Bayes’ theorem:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
(3.43)

where the normalizing term p(yk|Yk−1) depends on the likelihood function p(yk|xk) defined by the measure-

ment model 3.19:

p(yk|Yk−1) =

∫
p(yk|xk)p(xk|Yk−1)dxk (3.44)

therefore:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)∫
p(yk|xk)p(xk|Yk−1)dxk

(3.45)

Equations (3.42) and (3.45) are the predict and update step in the state estimation problem of a dynamic

system within the Bayes framework.

3.4.2 Minimum mean-square error estimate

Having the posterior pdf p(xk|Yk) we can compute the minimum mean-square error (MMSE) estimate

through the conditional mean [59]. In probability and statistics, the expected value of a variable is its mean

(first moment) [60]:

E[x] =
∫ ∞

−∞
xp(x)dx =∆ x̄ (3.46)

where p(x) is the probability of random variable x happening. This means that the expected value can be

computed by summing the product of each value x by its own likelihood to occur p(x). An MMSE estimator

seeks to minimize the mean-square error:

x̂MMSE =argmin E[(x̂− x)2|Y ] (3.47)

where (x̂− x)2 is the loss function from the sum of squares of the errors of the estimate x̂ and the unknown

parameters x. This loss function leads to the least-squares method [61]. Deriving E[(x̂−x)2|Y ] from Equation
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3.47 from respect to x̂ and setting to zero in order to find the minimum:

E[2(x̂− x)|Y ] = 0

E[x|Y ] = x̂

(3.48)

Applying the definition of expected value (Equation 3.46) of a random variable with pdf p(xk|Yk) at time k,

it is shown that the MMSE is the mean of xk given the measurements Yk (conditional mean):

x̂MMSE
k =∆ E[xk|Yk] =

∫ ∞

−∞
xkp(xk|Yk)dx (3.49)

Equation 3.49 shows that the expected value E[xk|Yk] is computed according to 3.46, using the posterior

density function p(xk|Yk) for xk given the values of Yk. In the following subsection, it is demonstrated that

the posterior can be described as a sum of random samples with associated normalized weights drawn from

a similar density function called importance density.

3.4.3 Importance Sampling

The cumulative distribution function (cdf) gives the probability of a random variable X taking a value less

than or equal to a given value x [62]. The cdf of a random variable X is defined by its relation to the pdf

p(x) for a variable value x as follows:

F (x) = P (X ≤ x) =

∫ x

−∞
p(x)dx

p(x) =
dF (x)

dx

(3.50)

If the state space is discrete and consists of a finite number of values for x with range x1, x2, ..., xn with

associated probabilities P (xi) to occur, the cdf of x is then as follows:

F (x) =

n∑
i=1

P (xi)U(x− xi) (3.51)

where U(x) is the unitary step function also known as the Heaviside step function, defined as

H(x) =


0 if x < 0

1 if x ≥ 0
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According to Equations (3.50), deriving Equation 3.51 to get the generalized pdf of x as follows [63]:

p(x) =

n∑
i=1

P (xi)δ(x− xi) (3.52)

where δ(x− xi) is the Dirac delta function shifted by xi.

Considering Equation 3.52 and a discrete state space of xi
k−1, i = 1, ..., N at time k, the posterior density

3.42 steps can be written as [64]:

p(xk|Yk) =

N∑
i=1

P (xi
k|Yk)δ(xk − xi

k) (3.53)

where the P (xi
k|Yk) is the conditional probability of xk given the observations Yk. Equation 3.53 describes

the posterior p(xk|Yk) as the sum of N points or samples from the state space at time k with associated

probabilities conditioned to measurements Yk. The Monte Carlo (MC) methods associate normalized weights

(proportional to P (xi
k|Yk)) to these samples, which are drawn from an importance density as it is not possible

to sample effectively from the posterior distribution.

The basis of the Sequential Monte Carlo method is the Monte Carlo integration method, which states that

in order to numerically evaluate a multidimensional integral of the form:

I =

∫
g(x)dx (3.54)

we can factorize it as:

I =

∫
f(x)

π(x)

q(x)
q(x)dx (3.55)

considering that g(x) = f(x) · π(x), where π(x) is a probability density which satisfies π(x) ≥ 0 and∫
π(x)dx = 1, and in a Bayesian context, it is the posterior density. As it is not possible to generate samples

from the posterior π(x), the most reliable option is to generate the particles from the importance density

q(x). Assuming that it is possible to generate N ≫ 1 samples from q(x), then I in 3.54 is estimated by the

following weighted sum:

I =
1

N

N∑
i=1

f(xi)w̃(xi) (3.56)

where w̃(xi) are the importance weights equal to:

w̃(xi) =
π(xi)

q(xi)
(3.57)
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After normalizing the importance weights in equation 3.56, I is described by:

I =

N∑
i=1

f(xi)w(xi) (3.58)

where w(xi) are the normalized importance weights equal to w̃(xi)/
∑N

j=1 w̃(x
j).

The particle filter as a realization of a Bayesian Filter is a Monte Carlo method whose main objective is

to represent the required posterior density function p(xk|Yk) at time k with a set of random samples with

associated weights and estimate the state vector x based on these samples and weights [65]. The weighted

approximation of the posterior density at time k described in equation 3.53 is as follows [20]:

p(xk|Yk) ≈
Np∑
i=1

wi
kδ(xk − xi

k) (3.59)

where w̄i
k is the normalized weight of the ith particle drawn from the importance density q(xk|Yk):

wi
k ∝ p(xk|Yk)

q(xk|Yk)
(3.60)

where q(xk|Yk) is chosen (for convenience) to be an augmentation of the prior density with the new state xi
k

and the incoming measurement yk [66] :

q(xk|Yk) =
∆ q(xk|Xk−1Yk)q(Xk−1|Yk−1) (3.61)

Moreover, considering the Bayes Theorem 3.43, the posterior p(xk|Yk) in 3.60 is as follows:

p(xk|Yk) ∝ p(yk|xk)p(xk|xk−1)p(xk−1|Yk−1) (3.62)

Substituting 3.62 and 3.61 into 3.60:

wi
k ∝ wi

k−1

p(yk|xi
k)p(x

i
k|xi

k−1)

q(xi
k|xi

k−1, yk)
(3.63)

Equation 3.59 is known as Sequential Importance Sampling (SIS) and forms the basis of most of the MC

methods nowadays [67], including the particle filters. It consists in propagating the importance weights

3.63 recursively, drawing the samples xi
k from the importance density q(xk|Yk) and using the incoming

measurements at each epoch k.
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3.4.4 Degeneracy Problem

In [68] it is shown that after a few iterations of the Sequential Importance Sampling Filter (SIS) Filter,

only a few particles or one particle will have an associated wi
k ̸= 0. This is analogous to the convergence

of the covariance estimate in an EKF and means that only a few samples will gain weight, therefore a

lot of computing effort will be wasted updating the weights of the remaining particles. This is called the

degeneracy problem and is addressed by resampling the particles after computing the associated weights. In

[69] a suitable measure of degeneracy is presented, called effective sample size:

N̂eff =
1∑Ns

i=1(w̄
i
k)

2
(3.64)

It is noted that the effective sample size takes a value between 1 < N̂eff < N , being N in the case that all the

weights are uniform, meaning that all particles are contributing to the estimate (low degeneracy), and 1 in

the case there are many particles with weight one and the rest with zero weight (high degeneracy). The idea

is to perform a resampling algorithm when N̂eff is below a certain threshold NT = Ns/2. Many resampling

algorithms have been introduced [70], the systematic resampling algorithm (often called minimum variance

sampling) is one of the most efficient and popular resampling algorithms as it is simple to implement and

its computational complexity is O(N) [71]. This method treats the weights as continuous random variables

in the interval (0,1), which are randomly ordered. The spacing interval (0,1) is divided into N divisions,

then the number of samples is counted in each division using the weight’s cumulative sum of the particles.

In this way, large-weight particles are likely to be counted many times, and therefore replicated more. This

process is schematically shown in Figure 3.1. The particles with large weights have a good chance of being

selected and resampled, particles 3 and 7 (blue bars) have significantly larger weights than the rest, having

more chance to be multiplied.
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Figure 3.1: Schematic description of the resampling process. Blue bars represent the particles with signifi-
cantly larger weights than the rest, increasing their chance to be multiplied.

3.4.5 Choice of importance density

For simplicity, the choice of importance density q(xi
k|xi

k−1, yk) is the transitional prior given by the dynamic

system model 3.18 and the associated process noise Q [64]:

q(xi
k|xi

k−1, yk) = p(xi
k|xi

k−1) (3.65)

Considering this choice of importance density, the normalized importance weights in (3.63) are as follows:

wi
k ∝ wi

k−1p(yk|xi
k) (3.66)

The main limitation of the transitional prior as importance density is that the filter would not work if this

distribution is much broader than the likelihood p(yk|xi
k), resulting in rapid degeneration of the particles.

The optimal choice of importance density was introduced in [72] and [73], it minimizes the variance of the

importance weights conditional upon xi
k−1 and yk:

q(xi
k|xi

k−1, yk) = p(xi
k|xi

k−1, zk) (3.67)

Applying the Bayes’ theorem (3.43) to the optimal choice for importance density:

p(xi
k|xi

k−1, zk) =
p(yik|xk, x

i
k−1)p(xk|xi

k−1)

p(yk|xi
k−1)

(3.68)
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then the importance weights are as follows:

wi
k ∝ wi

k−1p(yk|xi
k−1) (3.69)

This means that the importance weights can be computed before the particles are propagated through the

system model (3.18), however, it has to be possible to draw samples from p(xi
k|xi

k−1, zk) which is not a

straightforward task. If we consider a linear measurement model, non-linear dynamics model, and Gaussian

pdfs for all the elements in the model, then the use of the optimal choice for the importance density as

p(xi
k|xi

k−1, zk) is possible and would be Gaussian [74]. Applying the Bayes’ rule to the optimal choice for

importance density:

p(xi
k|xi

k−1, yk) =
p(yk|xk)p(xk|xk−1)

p(yk|xk−1)
(3.70)

Considering Gaussian distributions and dynamics 3.18 and measurement 3.19 models, the transitional density

and the measurements likelihood are as follows:

p(xk|xk−1) = N (xk; f(xk−1), Pk−1)) (3.71)

p(yk|xk) = N (yk;Hkxk,Rk−1)) (3.72)

Replacing equation (3.71) and (3.72) into equation (3.70), the numerator of the right side of the equation is:

1√
2πRk−1Pk−1

exp

(
(yk −Hkxk)

TR−1
k−1(yk −Hkxk)

2
−

(xk − f(xk−1))
TP−1

k−1(xk − f(xk−1))

2

)
(3.73)

Expanding the terms in the exponent, we have:

(yk −Hkxk)
TR−1

k−1(yk −Hkxk) + (xk − f(xk−1))
TP−1

k−1(xk − f(xk−1)) (3.74)

yTk R
−1
k−1yk − xT

kH
T
k R

−1
k−1yk − yTk R

−1
k−1Hkxk + xT

kH
T
k R

−1
k−1Hkxk + xT

k P
−1
k−1xk

−f(xk−1)
TP−1

k−1xk − xT
k P

−1
k−1f(xk−1) + f(xk−1)

TP−1
k−1f(xk−1)

(3.75)

Factorizing :

xT
k (H

T
k R

−1
k−1Hk + P−1

k−1)xk − xT
k (H

T
k R

−1
k−1yk + P−1

k−1f(xk−1))

−(yTk R
−1
k−1Hk + f(xk−1)

TP−1
k−1)xk + yTk R

−1
k−1yk + f(xk−1)

TP−1
k−1f(xk−1)

(3.76)
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Making the following replacements into Equation (3.76) :

A−1
k = HT

k R
−1
k−1Hk + P−1

k−1

yk = yk −Hkf(xk−1) = yk − bk

ak = f(xk−1) +AkH
T
k R

−1
k−1(yk −Hkf(xk−1))

(3.77)

we have:

xT
k (A

−1
k )xk − xT

kA
−1
k ak + yTk R

−1
k−1yk + f(xk−1)

TP−1
k−1f(xk−1) (3.78)

completing the squared binomial by adding the term aTkA
−1ak:

(xk − ak)
TA−1

k (xk − ak) +mk (3.79)

where mk:

mk = −aTkA
−1
k ak + yTk R

−1
k−1yk + f(xk−1)

TP−1
k−1f(xk−1) (3.80)

considering (3.77) and expanding, mk is as follows:

−(yk −Hkf(xk−1))
TR−1

k−1HkA
−1HT

k R
−1
k−1(yk −Hkf(xk−1))− f(xk−1)

THT
k R

−1
k−1yk

+f(xk−1)
THT

k R
−1
k−1Hkf(xk−1)− yTk Hkf(xk−1) + f(xk−1)

THT
k R

−1
k−1Hkf(xk−1)

−f(xk−1)
T (HT

k R
−1
k−1Hk + P−1

k−1)f(xk−1) + yTk R
−1
k−1yk + f(xk−1)

TP−1
k−1f(xk−1)

(3.81)

substituting the squared binomial (yk −Hkf(xk−1))
TR−1(yk −Hkf(xk−1)):

−(yk −Hkf(xk−1))
TR−1

k−1HkA
−1
k HT

k R
−1
k−1(yk −Hkf(xk−1)) + (yk −Hkf(xk−1))

TR−1
k−1(yk −Hkf(xk−1))

+
(((((((((((((
f(xk−1)

THT
k R

−1
k−1Hkf(xk−1) −

((((((((((((((((((

f(xk−1)
T (HT

k R
−1
k−1Hk + P−1

k−1)f(xk−1) +((((((((((
f(xk−1)

TP−1
k−1f(xk−1)

(3.82)

factorizing:

= (yk −Hkf(xk−1))
T [R−1

k−1 −R−1
k−1HkA

−1
k HT

k R
−1
k−1](yk −Hkf(xk−1))

= (yk −Hkf(xk−1))
T [R−1

k−1 −R−1
k−1Hk(H

T
k R

−1
k−1Hk + P−1

k−1)H
T
k R

−1
k−1](yk −Hkf(xk−1))

(3.83)

According to the Woodbury matrix identity (or matrix inversion lemma [75] , [76]):

R−1
k−1 −R−1

k−1Hk(H
T
k R

−1
k−1Hk + P−1

k−1)H
T
k R

−1
k−1 = HkP

−1
k−1H

T
k +Rk−1 = B−1

k (3.84)
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then

mk = (yk −Hkf(xk−1))
TB−1

k (yk −Hkf(xk−1)) (3.85)

replacing mk (3.85) in Equation (3.79):

(xk − ak)
TA−1

k (xk − ak) + (yk −Hkf(xk−1))
TB−1

k (yk −Hkf(xk−1)) (3.86)

Therefore, the exponential term (3.74) is equal to (3.86):

(yk −Hkxk)
TR−1

k−1(yk −Hkxk) + (xk − f(xk−1))
TP−1

k−1(xk − f(xk−1))

= (xk − ak)
TA−1

k (xk − ak) + (yk −Hkf(xk−1))
TB−1

k (yk −Hkf(xk−1))

(3.87)

Which is Bayes’ rule from 3.68:

p(yk|xk)p(xk|xk−1) = p(yk|xk−1)p(x
i
k|xi

k−1, yk) (3.88)

Equation (3.88) shows that the optimal importance density and p(yk|xk−1) are Gaussian under the assump-

tions mentioned before [64]:

p(xi
k|xi

k−1, yk) = N (xk; ak, Ak)) (3.89)

p(yk|xk−1) = N (yk; bk, Bk)) (3.90)

where, according to Equations (3.77) and (3.84), ak,Ak, bk and Bk are:

ak = f(xk−1) +AkH
T
k R

−1
k−1(yk − bk)

Ak = Pk−1 − Pk−1H
T
k B

−1
k HkPk−1

bk = Hkf(xk−1)

Bk = HkP
−1
k−1H

T
k +Rk−1

(3.91)

These expressions are the update recursions for the Kalman Filter. The analytic solution above is only

possible under the assumptions of having Gaussian distributions and a linear observation model. For the

rest of the cases, an analytic solution is not possible, nevertheless is possible to approximate the transitional

prior (suboptimal choice) (3.66) to the optimal importance density using local linearization [56]. The local

linearization encourages the particles to be in the regions of high likelihood by incorporating the observations

at time k through a bank of EKFs or UKFs [66].
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3.4.6 SIR Particle Filter with Local Linearization

Choosing the optimal importance density is only possible for linear measurement models and Gaussian

distributions, and the solution under these assumptions turns out to be the Kalman Filter update step.

As mentioned in section 3.2, the EKF approximates the nonlinear case through a first-order Taylor series

expansion and computes the mean and the covariance of the state. Within the particle filter framework, the

EKF propagates each particle according to its Gaussian solution resulting in a better importance density

function, with particles closer to regions of high likelihood [59].

q(xi
k|xi

k−1, yk) = N (x̂k
i, P̂

i

k) (3.92)

Although this additional step incorporates the observations at time k and computes the EKF solution to

each sample, this process is not equivalent to performing the update of the particles, it only approximates

the importance density function to the optimal choice. It is important to note that performing the local

linearization on the transitional prior density p(xi
k|xi

k−1) introduces a different importance density rather

than the prior, therefore the weights have to be computed through Equation (3.63) instead of (3.66). Under

Gaussian assumptions and a linear measurement model case, the local linearization step will propagate the

particles to describe accurately the posterior distribution. In this case, performing the weighting/resampling

step afterward will result in the same distribution of particles, as the local linearization step propagates the

particles to the solution. The proof of the fact that performing this additional step does not update the

particles twice after weighting the particles is explained by replacing the importance density as the posterior

in Equation 3.60:

wi
k =

p(xk|Yk)

q(xk|Yk)
≈ p(xk|Yk)

p(xk|Yk)
≈ 1ik (3.93)

As the EKF is only a first-order Taylor series approximation to the posterior, it introduces inaccuracies

due to linearization and Gaussian assumptions of the posterior. Due to this, applying the local linearization

using the EKF in highly non-Gaussian cases and highly non-linear measurements may not be advantageous

and the filter can lose performance. The UKF is a third-order approximation of the posterior and addresses

the limitations of the EKF, therefore, the UKF is a better option to approximate the particles to the

optimal choice of importance density. The particle filter that uses the UKF or the EKF to perform the local

linearization is called the Unscented Particle Filter (UPF) or Extended Kalman Particle Filter (EKPF)[59].
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3.4.7 Unscented Based Particle Filter

As mentioned in the previous Subsection 3.4.6, applying the local linearization propagates the particles

towards the likelihood function p(yk|xi
k), improving the performance of the SIR Particle Filter and allowing

to reduce the number of particles used for the estimation. The additional computational of performing

local linearization to the prior is often more than offset by the reduction in the number of particles [64].

Nevertheless, the local linearization focuses on improving the accuracy of the estimation of the particle filter

by improving the importance density and not reducing the computational cost, i.e. the EKF or the UKF is

performed for each particle. In [77], an alternative method is presented based on the same concept as Local

Linearization, which significantly improves both the computational cost and the accuracy of the estimation.

Suppose the distribution of particles at time k − 1 is available from p(xk−1|Yk−1), therefore is possible to

compute the estimate x̂k−1 and its empirical covariance matrix P̂k−1 through:

x̂k−1 =

Np∑
i=1

wi
k−1x

i
k−1

P̂k−1 =

∑Np

i=1(x
i
k−1 − x̂k−1)⊗ (xi

k−1 − x̂k−1)

Np − 1

(3.94)

The idea is the same as the local linearization step, to move the particles towards the likelihood function,

but the UKF (or EKF) is performed only once to the prior x̂k−1 and P̂k−1 to compute the Kalman gain.

The Kalman gain times the innovation Kk(yk − ŷ−
k ) is then used as a correction term to the transition prior

density to move the particles towards the likelihood. The new set of particles is the importance density

q(xi
k|xi

k−1, yk) and the associated weights for the particles are computed through Equation 3.63. This

method incorporates the measurements yk performing the UKF once instead of Np times and approximates

the importance density to the optimal choice. This method is more computationally efficient than the UPF

or the EKPF and more accurate than the SIR Particle Filter. This estimator is known as the Unscented

Based Particle Filter (UBPF) in the case the UKF is applied to compute the Kalman gain [77]. The SIR

particle filter steps are shown in the following diagram: The complete process of estimating a dynamic state

using the UKF is described as follows:
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Algorithm 3 Particle Filter Algorithm

Require: Initial particles S0 = {x(i)
0 , w

(i)
0 }Ni=1, process model f , choice of importance density q, measurement

yk, systematic resampling method

1: for k = 1, 2, ... do

2: for i = 1, 2, ..., N do

3: Sample particle x
(i)
k ∼ f(x

(i)
k−1)

4: Calculate importance weight wi
k ∝ wi

k−1

p(yk|xi
k)p(x

i
k|x

i
k−1)

q(xi
k|x

i
k−1,yk)

5: end for

6: Normalize weights ŵ
(i)
k =

w
(i)
k∑N

j=1 w
(j)
k

7: Resample particles Sk = {x(i)
k , ŵ

(i)
k }Ni=1 using resampling method

8: Calculate estimated state x̂k =
∑N

i=1 ŵ
(i)
k x

(i)
k

9: Calculate estimated state covariance Pk =
∑N

i=1 ŵ
(i)
k (x

(i)
k − x̂k)(x

(i)
k − x̂k)

T

10: end for

11: return estimated state x̂k and estimated state covariance Pk

This algorithm describes the Sequential Importance Resampling Particle Filter, with the prior distribution

as choice for the importance density. The prediction step is not included as it will be discussed in the next

chapter.

3.5 Comparison between non-linear filters

In order to compare the output between the filters, I implemented them in a simple simulated case. This

simple case is shown in Figure 3.2 and consists of the following:

� Is a static position estimation problem in one dimension. The state only consists of position in the x

axis.

� The transition matrix is Φ = 1, the initial position is x̂−
0 = 10,

� The measurement model is linear, the posterior of the state, and the measurement errors are Gaussian

with measurement noise Rk = 4

� The observations are simulated ranges between a source and the stationary vehicle.

� All filters are initialized with the same values for the position state and its initial covariance matrix

P̂−
0 = 4.

42



Figure 3.2: One-dimension estimation case. The vehicle (red triangle) is static, and the observations are
ranges from the source (black circle) to the vehicle.

The measurements consist of simulated ranges from the Source (black dot) to the vehicle (red triangle),

20 metres at every epoch since the vehicle is not moving. In the particle filter case, the initial values are

represented with a set of particles randomly sampled from a Gaussian distribution N (x̂−
0 = 10, P̂−

0 = 4).

Showing the prior and the update step at the first epoch demonstrates the equivalence between the particle

filter and the UKF to the Kalman filter under the simplest conditions mentioned above.

In Figure 3.3, the comparison between the UKF and the EKF is shown. The apriori of the state is shown

in red, in the UKF case it can be noted that the mean and variance are described by a minimal set of

deterministically chosen sample points. After the update step, both filters have the same output, the EKF

solution is plotted in green and the UKF one in black. The UKF efficiently captures the prior and posterior

distributions as the state is still represented as a Gaussian variable specified by the sigma points [59]. Both

filters are equivalent under the conditions mentioned above.
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Figure 3.3: Comparison between the KF and UKF solutions at the first epoch of a one-dimension example.

Figures 3.4 and 3.5 show the comparison between the KF and particle filter solutions. In both plots, the

histograms of the particle distributions are shown, the red histogram is the distribution before the update

step, and the black histograms are for the particles after being weighted and resampled. Figure 3.4 shows the

particle filter running with 50 particles, while the second figure 3.5 shows a 5000-samples particle filter. It

can be noted that for this one-dimensional example, 50 samples are not enough amount to properly describe

the pdf. Only a small number of particles are being resampled, which are the ones close to the likelihood area.

For the second PF, the particles approximate better the posterior, therefore the estimation is equivalent to

the KF solution. However, it can be noted on the left side of the distribution the lack of samples to describe

perfectly the posterior. The performance of the particle filter is highly dependent on the number of particles.

The Monte Carlo estimate of the integral described by equation 3.55, is the sample mean [64]:

IN =
1

N

N∑
i=1

f(xi) (3.95)

if the variance of f(x) is finite, the following central limit theorem holds:

lim
N→∞

√
N(IN − I) ∼ N (0, σ2) (3.96)

Central limit theorem 3.96 states that the error of the Monte-Carlo estimate of the integral 3.54 is of order

N−1/2, therefore the rate of convergence of the MC integration decreases as the number of samples N
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increases

Figure 3.4: Comparison between the KF and Particle filter solutions at the first epoch of a one-dimension
example. 50 particles are used in this PF. The black line fits the updated particle histogram for the com-
parison between both solutions.

Figure 3.5: Comparison between the KF and Particle filter solutions at the first epoch of a one-dimension
example. 5000 particles are used in this PF. The black line fits the updated particle histogram for the
comparison between both solutions.

Figure 3.5 is a clear example of the main limitation of using the transitional prior as the importance
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density, the lack of samples in the likelihood area, even when a large number of particles is used. In Fig-

ures 3.6 and 3.7, improved importance densities are used by performing local linearization and applying the

Kalman gain as a correction term to the transitional prior respectively as mentioned in subsections 3.4.6

and 3.4.7. In both figures, the red histograms are the prior densities, the blue histograms are the improved

importance densities, and the black ones are after the update step (weighting and resampling). In Figure

3.6 the importance density is approximate to the optimal choice by using local linearization applying the

EKF to each particle. The resulting importance density is a set of particles already positioned around the

solution, although it can be noted that the variance is larger than the posterior. By weighting this set of

particles using Equation (3.63), we get the same solution as the Kalman filter, both Gaussians are overlapped.

In Figure 3.7, the UBPF is shown. The Kalman gain was computed once and used to move the particles

from the prior density. It can be noted that the shapes of the blue and red histograms are the same, as the

entire prior distribution was moved by Kk(yk − ŷ−
k ). The blue set is now the importance density which is

the likelihood function area, resulting in a perfect fitting to the posterior after weighting and resampling the

particles.

Figure 3.6: Comparison between the solutions estimated with the KF and Particle filter with local lineariza-
tion using EKF at the first epoch of a one-dimension example. 500 particles are used in this filter.
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Figure 3.7: Comparison between the solutions estimated with the KF and the Particle filter with the im-
portance density as the transitional prior moved to the likelihood function using the Kalman gain from the
UKF. 500 particles are used in this PF.

In these comparisons, I have shown the performance of the SIR Particle Filter when using a few particles

against a large number and the transitional prior as importance density for simplicity. As the PF is highly

dependent on the number of particles to properly describe the posterior, the 5000-sample PF is significantly

more accurate than the 50-sample one, although it is still limited when the likelihood function is far from the

mean of the prior density. The solution is to improve the importance density by moving the prior towards

the likelihood, two ways are explained and demonstrated to do so, local linearization and correcting the prior

using the Kalman gain. The local linearization improves the accuracy of the estimation and allows for a

reduction in the number of particles, although it is needed to perform N times either the EKF or the UKF.

The UBPF improves the accuracy and the computational cost as well, as it performs the UKF (or EKF)

only once on the estimate at time k − 1, and uses the Kalman gain to move the entire set of particles from

the transitional prior towards the likelihood function.

3.6 Rao-blackwellization

Local linearization improves estimation accuracy by moving the prior distribution towards the likelihood,

resulting in a reduction of particles required for effective estimation. However, computing the Kalman gain

for each particle and moving the particles based on it may cause a loss of the non-Gaussian distribution, which

is one of the key advantages of particle filters. Another common approach is to use Rao-Blackwellization,
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which involves reducing the size of the state space being computed by the particle filter and estimating

the remaining states analytically or using other methods such as the Kalman Filter [70]. By reducing the

dimension of the state space, fewer particles are needed and the computational cost decreases significantly.

The first step is to make a partition of the state vector as follows:

xk =

xl
k

xnl
k

 (3.97)

where xl
k and xnl

k are the linear and nonlinear parts of the state respectively [78]. The partition considers

that some of the states are linear and Gaussian distributed. In some satellite navigation applications, the

nonlinear part of the state is the position state, and the rest are linear and Gaussian distributed [79].

Considering the partition 3.97, the state system and observation models can be reorganized as [80]:

xnl
k+1 = fnl

k (xnl
k ) +Anl

k (xnl
k )xl

k + wnl
k

xl
k+1 = f l

k(x
nl
k ) +Al

k(x
nl
k )xl

k + wnl
k

yk = h(xnl
k ) + Ck(x

nl
k )xl

k + nk

(3.98)

where the state noise wk for both linear and nonlinear parts is Gaussian distributed N (0, Qk) as:

Qk =

 Ql
k Qlnl

k

(Qlnl
k )T Qnl

k

 (3.99)

The linear part of the state, described by the probability density function p(xl
k|xnl

k , Yk) = N (x̂l
k, Pk+1) (mea-

surement update) is the solution to the Bayes rule under Gaussian assumptions described by the recursive

set of Kalman Filter equations 3.91:

x̂l
k = x̂l

k−1 +Kk(yk − hk − Ckx̂
l
k)

Pk = Pk−1 −Kk(CkPk−1C
T
k +Rk)K

T
t

Kk = Pk−1C
T
k (CkPk−1C

T
k +Rk)

−1

(3.100)
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The prediction (time update) of the linear state described by the p(xl
k+1|xnl

k+1, Yk) = N (x̂l
k+1, Pk+1) pdf is

as follows:

x̂l
k+1 = Āl

kx̂
l
k−1 + (Qlnl

k )T (Qnl
k )−1 + Lk(x

nl
k+1 − x̂nl

k −Anl
k x̂l

k)

Pk+1 = Āl
kPk(Ā

l
k)

T + Q̄l
k − LkNkL

T
k

Lk = Āl
kPk(A

nl
k )TN−1

k

Nk = Anl
k Pk(A

nl
k )T +Qnl

k

(3.101)

where:

Āl
k = Al

k − (Qlnl
k )T (Qnl

k )−1Anl
k ,

Q̄l
k = Ql

k − (Qlnl
k )T (Qnl

k )−1Qlnl
k

(3.102)

In the case where the measurement equation does not include any state from the linear partition, the Kalman

Filter can not be used to update according to the received observation at the current epoch, this means that

the Kalman measurement update step can be left out. However, all the observation information gets to

the linear partition through the time update step, using the estimated states from the nonlinear part x̂nl
k

and their prediction x̂nl
k+1 as measurements. It can be noted from equations (3.101) and (3.102) that the

correlation between the nonlinear and linear partitions are considered through the Qlnl
k and Qnl

k matrices.

Both additional steps, measurement and time updates are applied after having the particles resampled

(measurement update for the nonlinear part of the state) using Equations (3.59) and (3.63).

3.6.1 Rao-Blackwellized PF example

A simple 2-dimensional example is carried out to compare the performance of the SIR-PF and the Rao-

Blackwellized Particle Filter (RBPF). The example consists of a 4-state estimation, 2 states for Px and Py

positions, and 2 states for their corresponding velocities Vx and Vy. The measurements consist of ranges

generated from three different locations as it is shown in Figure 3.8.

49



Figure 3.8: 2-Dimension positioning example.

The system model can be written as follows:

xk+1 =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


xk + wk (3.103)

and the measurement model as:

yk = h(xk) + nk (3.104)

As the measurement model is nonlinear and only includes the position states, the velocity states are linear
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and assumed Gaussian and can be estimated using the KF, therefore the state can be split as follows:

xnl
k+1 = xnl

k +Anl
k (∆t) + wnl

k

xnl
k+1 = xl

k + wl
k

yk = hk(x
nl
k ) + nk

(3.105)

where the nonlinear part of the state xnl
k are the positions Px and Py and the linear part xl

k the velocity

states Vx and Vy. The nonlinear states are being updated using the SIR PF, while the linear part is being

estimated with the KF. As the measurement model does not involve any state from the linear partition, these

states are being updated recursively by the prediction step (time update step) using Kalman filter Equations

(3.102). In Equation 3.102, it can be observed that the predicted states for the nonlinear part x̂nlk + 1, are

treated as ”measurements”. As a result, the time update of the linear partition is performed subsequent to

the prediction step of the particle filter. Additionally, since Anlk and Alk are not dependent on xnlk, it is

sufficient to compute the covariance matrix of the linear part of the states Pk only once, instead of computing

it for each particle. In Figure 3.9 the differences between the states estimated using both filters and the

true values are shown with their respective standard deviation 2σ ”envelope”. This example is intended to

compare the SIR PF and the RBPF algorithms. As such, a small number of particles were used to estimate

the results, in order to highlight the difference in performance between the two methods. As illustrated in

Figure 3.9, when using the same number of particles, the RBPF provides more accurate estimates for the

position and velocity states compared to the SIR PF. This is primarily due to the RBPF’s ability to occupy

a lower dimensional space and utilize the Kalman Filter for optimal estimation of linear and Gaussian states.

The main purpose of the RBPF is to decrease the computational load (number of particles) that the PF has

when estimating a large dimension state vector. It has been shown that the SIR PF represents accurately

any distribution as long as sufficient number of particles are involved in the process, this means that it

provides the same result as the RBPF if enough particles are being used. In [81], a comparison of multiple

tests of the RBPF is carried out by varying the number of particles and using different partitions of the

state. The author employed range and azimuth measurements from a radar system to estimate the position,

velocity, and acceleration states in an aircraft navigation scenario. The assessment involved calculating the

root mean square error (RMSE) while varying both the number of particles and the number of states within

the nonlinear partition. For a complete state estimation utilizing the particle filter with 2393 particles, the

RMSE for the position state is 7.07. Conversely, in situations where the particle filter is used to estimate the

position state, while the Kalman filter estimates the remaining states with a mere 264 particles, the RMSE

increases to 7.27. It’s noteworthy that a comparable RMSE is achieved even with significantly fewer particles
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when marginalizing the velocity and acceleration states. This observation underscores the effectiveness of

Rao-Blackwellization.

(a) Position states estimates using the SIR PF. (b) Position states estimates using the marginalized PF.

(c) Velocity states estimates using the SIR PF (d) Velocity states estimates using the marginalized PF.

Figure 3.9: Comparison between the position and velocity states estimated with the SIR PF and the RBPF

The most common non-linear estimators are explained in this chapter. The PF is described in detail,

providing mathematical concepts and proofs to show its equivalence to a Minimum Mean-Square Error esti-

mator. It has been shown that the optimal solution to the estimation problem, under a Bayesian framework

and Gaussian assumptions, are the measurement update and predict steps of the Kalman Filter. By provid-

ing a mathematical description of the PF in a Bayesian context, the similarities to other estimators become

easily appreciated. The SIR PF with the transitional prior as the importance density is used for Chapters 4

and 5. However, in Chapter 6, the Rao-Blackwellized particle filter is used due to the outlier detection step

implemented, which generates a predicted distribution of measurements and increases the computational

load.
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Chapter 4

SIR Particle Filter in float solution

for ambiguity resolution

Chapter 3 is a detailed description of the SIR particle filter, its features, and 3 available techniques in order to

increase its efficiency; 2 based on choosing a better importance density, and the other method splits the state

vector into linear and nonlinear parts, and estimates the linear part with the KF (Rao-Blackwellization).

This chapter shows the implementation of the SIR PF to the estimation of the full geometry-based float

solution. Firstly, the filter implementation details are explained in section 4.1 followed by a comparison of

the results obtained with this filter and the ones estimated with the EKF. Then, in section 4.3, an assessment

of the performance of the float solution estimated with each filter for searching the integer ambiguities is

made by applying the three integer search methods described in Chapter 2. This thesis exclusively employs

L1 code and carrier GPS measurements. This choice is driven by the objective of maintaining a minimized

dimension for the float solution while also reducing computational load. The occurrence of a limited number

of satellites in view primarily arises in challenging environments with poor signal reception. Consequently,

the analysis conducted within this study simulate scenarios resembling such challenging conditions.

4.1 SIR PF implementation details

Recursive filters for state estimation consist of two stages: prediction and update. In the prediction stage,

the state probability density function is forecasted for the subsequent epoch using the state dynamics model

described by the dynamics model. The update stage then uses the observations at each epoch to correct

the predicted pdf. According to Bayesian theory, the pdf of the state is constructed based on all available
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information, including the set of received measurements [64]. The particle filter (PF) is a sequential Monte

Carlo approach that represents the posterior density of the state with a set of random samples with associated

weights, rather than assuming that the posterior density is Gaussian and parametrized by mean and variance-

covariance matrix. For a discrete dynamical system defined by Equations 3.18 and 3.19, the Sequential

Importance Sampling (SIS) PF recursively estimates the state xk at time k by constructing the pdf p(xk|Yk)

using Bayes’ rule [65]:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
(4.1)

where p(yk|Yk−1) is the normalizing constant depending on the likelihood function p(yk|xk) defined by

the observations model. The SIS recursive estimation propagates the importance weights wi
k (Equation

3.63) associated with each particle as each measurement is received sequentially. The sample points xi
k are

then updated accordingly. To simplify computation of the weights, the importance density q(xi
k|xi

k−1, yk) is

chosen to be the transitional prior p(xi
k|xi

k−1), as demonstrated in the previous chapter.

To avoid the degeneracy problem, a systematic resampling algorithm is implemented at each epoch, and

a large number of samples are used. This choice of importance density and the resampling algorithm derive

the SIR PF from the SIS filter. In contrast, the extended Kalman filter (EKF) utilizes a first-order Taylor

series approximation of the nonlinear function and approximates p(xk|Yk) to be Gaussian. However, when

the true density is highly non-Gaussian, the EKF may not describe it accurately.

In this Chapter, the SIR PF is used to estimate the full geometry-based float solution and evaluate and

compare its performance with the commonly used EKF under different conditions. The full geometry-based

state vector is defined as follows

x = (ri, vi, ai, NL1) (4.2)

where ri, vi, ai are the rover station position, velocity, and acceleration respectively and NL1 are the

between receiver single difference (SD) ambiguities. SD ambiguities are used to simplify the base-satellite

book-keeping as well as the observation covariance matrix. However, the double difference (DD) equations

(??) and (??) to weigh the particles and eliminate atmospheric effects and the clock biases [82]. Prior to the

ambiguity resolution step, the between-satellite difference operator (see Appendix D) to transform the SD

ambiguities into DD ambiguites is used. For this thesis, only GPS L1 was used in order to keep as small as

possible the state vector, but this approach is easily generalized to multiple frequencies and constellations.
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4.1.1 Filter initialization

The initial set of particles is sampled from a Gaussian distribution N (0, Qk). The position and velocity

of the receiver are computed from a single-point positioning using pseudorange and Doppler observations

through a least-squares estimator as follows:

x̂0 = (HTWH)−1HTW (y − h(x)) (4.3)

where W is a diagonal matrix containing the standard deviations of the measurements errors, H is a partial

derivatives matrix of the measurement vector function h(x) with respect to x:

H =
∂h(x)

∂x
|x (4.4)

The initial real-valued ambiguities are computed by subtracting the carrier-phase observations minus the

pseudoranges λN̂ = P − Φ.

4.1.2 Prediction

A constant acceleration dynamics model augmented by random walk ambiguity states is adopted to match

the dynamics model used in [82]:

Φk+1 =



I3x3 I3x3∆T I3x3
∆T 2

2 0

0 I3x3 I3x3∆T 0

0 0 I3x3 0

0 0 0 Imxm


(4.5)

where ∆T is the receiver sampling interval in seconds, I is an identity matrix and m is the number of SD

observations.

We consider the covariance matrix of the process noise Qk as:

Qk =

Q(p,v,a)9x9

Q(N)mxm

 (4.6)

where Q(p,v,a)9x9 is the covariance matrix of the position, velocity and acceleration of the state defined
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as:

Q(p,v,a)9x9 = G ·GT · σ2
a (4.7)

with G = [∆T 2

2 1x3
,∆T 2

1x3, I1x3]
T , σ2

a as the acceleration process noise and Q(N)mxm as a diagonal matrix of

process noise σ2
N . For each epoch, the particles are updated according to the dynamics described by equation

(4.5), and then random noise is added to the states of each particle according to the matrix Lk after applying

the Cholesky decomposition to Qk (see Appendix C):

Qk = Lk · LT
k (4.8)

The predicted state is then:

xk+1 = Φk+1xk + Lk · N (0, Qk) (4.9)

where N (0, Qk) are random-generated values using the diagonal of Qk.

This step ensures that the particles have correlated process noise added to them, rather than just adding

uncorrelated variances of the diagonal values of the matrix Qk.

It’s important to note that this step is essentially the same as the prediction step in a Kalman Filter. In this

step, the state for each particle is predicted using a dynamics model, and process noise is added to represent

the error in the prediction.

4.1.3 Weighting

The GNSS code pseudorange and carrier phase are formulated as [38]:

P i
r = ρir − (δtr − δti)c+ δion + δtrop + εc (4.10)

and

Φi
r = ρir − (δtr − δti)c+ λN i

r − δion + δtrop + εp (4.11)

where ρ is the geometric distance between the satellite i and receiver r, δion and δtrop are the ionospheric and

tropospheric delays respectively, δtr and δti are the receiver and satellite clock error terms respectively and

N is the ambiguity in cycles. In order to use the carrier phase for precise positioning, the integer ambiguity

N must be determined.

For short baselines, the Double Difference (DD) method can be applied between receivers and satellites.

This significantly reduces δion and δtrop and eliminates δtr − δti from equations (4.10) and (4.11), resulting
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in DD code and phase measurements as follows:

∆∇P = ∆∇ρ+ ε∆∇P (4.12)

and

∆∇Φ = ∆∇ρ+ λ∆∇N + ε∆∇Φ (4.13)

where the operator ∆∇ is ∆∇ = {(·)i − (·)j}r −{(·)i − (·)j}b, i and j are the indices for the receivers and r

and b are indices for the satellites.

As stated in the previous section, we estimate SD ambiguities to simplify the base-satellite book-keeping,

however, the observation models are defined with DD code and phase measurements as the atmosphere

effects are significantly reduced and clock error terms are eliminated.

In the SIR PF, the measurement update step is accomplished by weighting each particle based on its agree-

ment with the new observations. The misclosures of each particle given the code and phase observations at

time k from equations (4.12) and (4.13) are:

ε∆∇P = ∆∇ρ−∆∇P (4.14)

and:

ε∆∇Φ = ∆∇ρ+ λ∆∇N −∆∇Φ (4.15)

are evaluated for each particle. The weight of the particle is computed using the product of the probability

of each observation’s misclosure, based on the prior distribution of the observation errors. In this case, we

have no particular prior distribution and assume Gaussian weights, however, other prior distributions of the

observations could be used. Each observation’s individual weight is computed as :

wi
k,P,Φ =

1√
2πσ2

P,Φ(k+1)
exp

(
−

ε2∆∇P,Φ

2σ2
P,Φ(k+1)

)
(4.16)

and then the particle’s total weight is computed from the product of the weights for each observation:

wi
k =

Nobs∏
P,Φ=1

wi
k,P,Φ (4.17)
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The weights are normalized such that
∑Np

i=1 w
i
k = 1 as:

w̄i
k =

wi
k∑Np

i=1 w
i
k

(4.18)

This step is analogous to the measurement update step in an EKF but does not require linearization of the

measurement model and is capable of using an arbitrary prior distribution of the measurement errors if one

is available.

4.1.4 Resampling

Resampling the particles is suggested once the filter starts to high weigh just a few particles. We use the

effective sample size Neff as a suitable measure of degeneracy [69]. Neff is estimated as follows:

ˆNeff =
1∑Ns

i=1(w̄
i
k)

2
(4.19)

where ˆNeff ≤ Ns, and a small ˆNeff indicates severe degeneracy. The resampling algorithm is performed

when ˆNeff is below a certain threshold NT = Ns/2. Many resampling algorithms have been introduced

[70], in this research, the systematic resampling (also called minimum variance sampling) is employed. This

method treats the weights as continuous random variables in the interval (0,1), which are randomly ordered.

The space interval (0,1) is divided into Ns divisions, then the number of samples is counted in each division

using the weight’s cumulative sum of the particles. In this way, large-weight particles are likely to be counted

many times, and therefore replicated more.

4.1.5 Empirical variance-covariance matrix

The EKF describes the posterior distribution with a mean and its covariance matrix, which is the input

for the LAMBDA method to obtain the integer decorrelating matrix ZT . While the SIR PF describes the

posterior distribution of the particles, the mean and the covariance matrix can be easily obtained. The

geometry-based float solution state vector xk is estimated through the weighted mean of the particles as

follows:

xk =

i=Np∑
i=1

w̄i
kx

i
k (4.20)
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The variance-covariance matrix Pk of the state vector xk is estimated based on the current distribution of

the particles after the resampling step:

P̂k =

∑i=Np

i=0 (xi
k − xk)⊗ (xi

k − xk)

Np − 1
(4.21)

4.2 Data and Software

4.2.1 Driving Dataset

The data set used in this thesis consists of just over one hour of driving in a mix of urban and suburban

areas near the University of Calgary collected by C. Huang [3]. Although most of the route is suburban,

there are some segments of data where the vehicle navigated through urban canyon environments. Although

the same data set is utilized throughout this study, different segments of data were selected for analysis in

each chapter. In Chapter 5, the focus is on evaluating the performance of a map-aided SIR PF in segments

of data that represent various driving scenarios. In Chapter 6, the analyzed segments of data contain GPS

observations which are likely to be distorted by multipath.

A data collection platform was built which consists of the following sensors (Table 4.1):

� CAN-BUS wheel odometer data logger with the output resolution of 1 km/h.

� Vision system originally developed by Bernhard Aumayer [83] consisting of two RGB cameras and a

U-blox 6 receiver. The GPS receiver is used to ensure the shutter synchronization between the two

cameras and provide time-tagged images [84].

� A reference trajectory consisting of a tightly-coupled Novatel SPAN-LCI RTK GNSS/INS forward and

backward differential carrier-phase post-processing.

Table 4.1: Sensor Specification of the Data Collection Platform [3].

Sensor Manufacturer/Model Accuracy

Stereo RGB Cameras PointGray / Blackfly-S GigE

IMU Xsens / MTi-600 12°/h

GPS/INS Novatel / SPAN-LCI 0.06m +<1°/h

GPS Ublox 6 2m

Wheel Odometer Sparkfun - CAN-BUS Shield 1 km/h resolution

In Figure 4.1 a close-up look of the sensors used for collecting the data is shown.
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(a) XSENS MTi-600 IMU. (b) Novatel SPAN-LCI IMU.

(c) Novatel 702-gg Antenna. (d) Sparkfun CANBUS Shield.

Figure 4.1: Senors used in the data set collection. Photos from [3]

The complete drive trajectory is shown in Figure 4.2.
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Figure 4.2: Drive trajectory of C. Huang dataset

4.2.2 Software for data processing

In order to process the GPS data and provide a RTK positioning solution, RTKLIB 2.4.2p (see Appendix A)

was used. The application in its CUI version for performing post-processing analysis is RNX2RTKP. The SIR

PF for computing the full geometry-based solution was programmed from scratch in Python programming

language. As RTKLIB is developed in C, a script for integrating Python into a C program was written.

Once the Python code is embedded in RNX2RTKP, the float solution can be estimated using the default

EKF written in RTKLIB or the SIR PF developed for this thesis. The RTKLIB settings used in this thesis

are displayed in Table 4.2.
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Table 4.2: RTKLIB input settings used in this work.

Setting Value

Positioning mode RTK

Frequencies / Filter type L1 / Forward

Elevation mask 15

SNR Mask 35 dBHz

Satelllite ephemeris clock Broadcast

Constellations GPS

Integer Ambiguity Resolution Continuous

Reject treshold of GDOP 30

Reject treshold of innovation 1000

4.3 Results

The SIR particle filter described in the previous section was used to compute the full geometry-based float

solution of the land-vehicle data collected by C. Huang [3].The data used for the estimation is logged from the

U-BLOX 6 rover receiver, and the base station at the rooftop of Calgary Center for Innovation Technology

(CCIT) building. The reference trajectory was obtained using the Novatel SPAN-LCI tightly coupled RTK

GNSS/INS solution generated by the Inertial Explorer software. The main objective of this section is to

compare the estimations obtained with the SIR PF and the EKF under the same optimal conditions for

signal reception. In this way, equivalence between both filters is demonstrated, and further analysis of the

particle filter performance in different scenarios or integration with other constraints is carried out in the

subsequent chapters. In Figure 4.3 the 15 minutes analyzed segment of data is highlighted in red.
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Figure 4.3: Analyzed trajectory (red line).

In order to show the position convergence through time, the differences between the reference trajectory

and the float solutions estimated with the EKF and the PF are plotted in Figures 4.4 and 4.5 respectively

in ENU directions (see Appendix B for coordinates transformation). The blue shaded areas wrapping the

differences are the 2σ standard deviations of the computed solution.
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Figure 4.4: Position state errors in ENU directions computed with EKF.

Figure 4.5: Position state errors in ENU directions computed with SIR particle filter.
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In Figures 4.6 and 4.7 the Double-Difference float ambiguities estimated with the EKF and the PF

respectively are shown. The plotted ambiguities are the difference between the real-valued ambiguities and

their respective final integer values computed with LAMBDA using integer least-squares on the final epoch

of the EKF float solution. It can be noted that the float ambiguities estimated with both filters are almost

the same, however slight differences between their standard deviations can be noticed as these values, in the

PF case, are estimated empirically using the particle distribution at each epoch using Equation (4.21). For

both estimators, the float values do not converge to their respective integer values due to correlation and

biases of the estimated float ambiguities.

Figure 4.6: Float-valued ambiguities differences with respect their integer values using the EKF. The shaded
areas are the 2σ standard deviation of the DD float ambiguities.
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Figure 4.7: Float-valued ambiguities differences with respect their integer values using the particle filter.
The shaded areas are the 2σ standard deviation of the DD float ambiguities.

4.3.1 Probability of correct fix

The probability of correct fixing for bootstrapping and rounding using the EKF and PF covariance matrices

before and after decorrelating them using the LAMBDA transformation ZT was computed to make a com-

parison between the levels of confidence of these two integer search methods. The probability of rounding

P (ŇR = N) and bootstrapping P (ŇB = N) to the correct integer value is computed as follows [36]:

P (ŇR = N) =

n∏
i=1

2Φ

(
1

2σŇ

)
− 1 (4.22)

and

P (ŇB = N) =

n∏
i=1

2Φ

(
1

2σŇ |I

)
− 1 (4.23)

where

Φ(x) =

∫ x

−∞

1√
2π

exp(−1

2
z2)dz (4.24)

From equations (4.22) and (4.23) can be noted that the success rate of both searching methods increases

as the standard deviations σŇ and the sequential conditional standard deviations σŇ |I of the ambiguities

become smaller. The computation of the success rates of the three ambiguity search methods using the SIR

PF was carried out empirically by counting the success or failure of the method applied directly to each of

the particles. This procedure can not be executed for the EKF as this filter provides only one solution along
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with its covariance matrix, however, is possible to track the correct fix of the solution at each epoch using

the three search methods (1 in case of correct fixing, 0 otherwise). In Figures 4.8 and 4.9, the success rates

and the covariance based probability of correct fix of the three integer search methods using both filters are

plotted. The probability of correct fixing for rounding and bootstrapping was computed through equations

(4.22) and (4.23). As the probability of correct fix equation does not consider biases in the float solution, it

will be greater than the success rate always assuming unbiased float estimates [85].

Figure 4.8: Probability of correct integer estimation of rounding (red) bootstrapping (blue) using the EKF.
The correct fixing for ILS (green), bootstrapping (light blue) and rounding (orange), 1 in case of correct
fixing and 0 otherwise.
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Figure 4.9: Probability of correct integer estimation of rounding (red) bootstrapping (blue) using the SIR
Particle Filter. Success rates of rounding (orange), bootstrapping (light blue) and ILS (green).

In Figures 4.10 and 4.11 the success rates and probabilities of correct fixing for both filters after decor-

relation are shown. The performance of both rounding and bootstrapping improves considerably for both

filters after decorrelation, however both are still impacted by biased ambiguity states. The ILS results are the

same as those obtained without decorrelation, since the Z transformation does not change the ILS search

criterion. However, the decorrelation significantly reduce the search space which is even more significant

when using the SIR PF since each particle must be individually searched.
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Figure 4.10: Probability of correct integer estimation of rounding (red) bootstrapping (blue) using the EKF
after LAMBDA decorrelation. The correct fixing for ILS (green), bootstrapping (light blue) and rounding
(orange), 1 in case of correct fixing and 0 otherwise.

Figure 4.11: Probability of correct integer estimation of rounding (red) bootstrapping (blue) using the SIR
particle filter after LAMBDA decorrelation. Success rates of rounding (orange), bootstrapping (light blue)
and ILS (green).
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4.3.2 Computation load

As described in Chapter 3, the particle filter estimates the state vector by representing the posterior density

function through a set of weighted samples. As the pdf is characterized by a large number of samples, it is

an equivalent representation to the usual functional description of the posterior pdf, and the particle filter

will approach to the optimal Bayesian estimate [20]. For this comparison, 60,000 particles were used as

the full geometry-based state vector estimated has a dimension of 9+ SD ambiguities. The particle filter

implementation was written in Python code and embedded in the RTKLIB program A. The processing time

in ambiguity resolution is of critical concern, being the most important limitation of a sample-based filter.

In Figure 4.12, an estimation of he computational time when applying the ILS search method with and

without the LAMBDA decorrelation is shown. The ILS was applied to a subset of 2,000 particles randomly

selected from the 60,000 set of particles. This plot shows how the LAMBDA decorrelating transformation

reduces considerably the computation time by reducing the search space, generally completing the process

in .3 seconds while without the transformation takes up to 20 seconds at early epochs.

Figure 4.12: Processing time of Integer Least Squares applied to a set of particles before (red) and after
(blue) decorrelation.

In this chapter, the implementation of the SIR PF for estimating the float solution is described. The

results obtained are then compared to the ones obtained with the EKF. The three integer search methods

were performed to both solutions and the success rates and an empirical probability of correct fixing were

estimated. The success rates for the Bootstrapping and Integer rounding are computed using expressions

4.22 and 4.23, while the probability of correct fix is an actual count of the particles fixing to the correct
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integer using the three integer search methods. It has been showed that the PF and the EKF obtain similar

results under optimal conditions for signal reception. In Chapter 5, the SIR PF will be aided by a map-aiding

algorithm using digital maps from the Open Street Map repository. This constraint leads no a non-Gaussian

posterior distribution which is not possible to describe using the EKF. In Chapter 6 the performance of the

PF in presence of non-Gaussian measurements is assessed. Such is the case when the GPS pseudoranges are

distorted by multipath. The EKF assumes the measurements are Gaussian distributed, while the PF is able

to weight the particles according to a any distribution.
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Chapter 5

Map-aided Particle Filter for

ambiguity resolution

In Chapter 3 an explanation of the most common nonlinear recursive filters for the state estimation problem

is provided. Emphasis is placed on providing a detailed description of the Particle Filter with the resampling

step implemented at each update and the transitional prior as the importance density (SIR Particle Filter).

The previous chapter describes the implementation of the SIR PF for the estimation of the full geometry-

based solution, followed by a comparison of the estimations obtained with the PF and the EKF. Both filters

yield similar float solutions when the receiver is under optimal conditions for signal reception. However, the

PF solution provides more information when resolving the ambiguities and offers an empirical probability

of a correct fix. By using the PF as the float solution estimator, it becomes possible to empirically compute

success rates by simply counting the success or failure of each particle. This also allows for the computation of

a success rate for the ILS method. This chapter showcases the implementation of a map-aiding algorithm to

improve the accuracy of the position state vector and the convergence rate of the float ambiguities within the

PF. Section 5.2 provides a description of the digital road map information used in this thesis, specifically the

Open Street Map (OSM) database and Java OSM, which is used for editing, creating road maps, and adding

them to the OSM database. In Section 5.3, the implementation of the map-aiding algorithm is explained,

followed by experimental results demonstrating its effect in both the position and ambiguity domains.
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5.1 Map-matching

Map-matching is a process that improves navigation accuracy by integrating road maps with GNSS measure-

ments to compute a more precise position state. In [19], a threefold classification of different map-matching

algorithms is presented. They are categorized as semi-deterministic approaches [86], probabilistic approaches

[87], and fuzzy-logic and belief theory-based approaches [88]. In this thesis, the map constraint falls into the

probabilistic techniques group. Methods in this group calculate the probabilities of the vehicle traveling on

different road segments and select the segment with the highest probability. By incorporating digital map

information to enhance the navigation solution, highly non-Gaussian posterior densities are obtained, which

can be accurately represented by the particle filter. The particle filter outperforms the EKF under such

conditions [19].

One of the main advantages of using a sequential Monte Carlo-based estimator, such as the particle filter,

with a map-matching constraint is its ability to capture multi-modal distributions. A multi-modal distri-

bution occurs when there are multiple probable candidates for the road segments or lanes along which the

vehicle is traveling. In Section 5.2, a description of the implemented multiple-lane road map, which provides

an across-track position constraint, is provided. Once the across-track constraint is applied, the particles

cluster around each candidate lane. The particle filter can quickly adapt if an initial prediction of the correct

lane is found to be incorrect. However, it relies on the assumption that the vehicle is predominantly driven

along the center of a lane.

5.2 Digital Maps

A digital road network is a representation of a set of nodes and edges organized into a directed graph [89].

Nodes in the graph correspond to intersections or dead-ends of road segments, while edges represent directed

road segments connecting a starting node to a target node. These digital road maps are typically based

on a two-dimensional geographical coordinate system, using latitude and longitude coordinates. In [90], the

characteristics of a road network are further elaborated, involving nodes, edges, and shape points. Shape

points are a sequence of nodes that approximate a curved road segment by representing it as a series of

consecutive straight lines.

5.2.1 Open Street Map

In this thesis, we utilize the digital road maps available in Open Street Map (OSM) [91], which are stored

in geographical coordinates. However, the navigable road segments in these maps do not include explicit
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representations of multiple lanes as separate sets of edges or nodes. Instead, in OSM, roads with multiple

lanes are typically represented by a single vector mapped along the center lane. Figure 5.1 illustrates

an example of a T-intersection between divided suburban roads. In this example, the original OSM map

describes multiple lanes within a road segment using a single vector. The intersection itself is modeled as a

rectangle, with additional segments representing right-turning lanes.

Although the OSM database includes a field specifying the number of lanes, spatially it is represented

by a single vector. When estimating the full geometry-based solution using carrier-phase and pseudorange

observations, a more detailed road map is necessary. Utilizing the original map as a constraint to the solution

can introduce bias compared to not using the map-aiding algorithm, particularly when the vehicle deviates

from the edge representing the road. Digital road maps from OSM contain various topology features and

rules (such as the representation of T-intersections or one vector representing multiple lanes within a road

segment), which are useful for route finding or vehicle navigation when position accuracy is not critical.

However, they may not accurately represent the actual paths taken by vehicles. For example, in the turning

scenario depicted in Figure 5.1, a vehicle turning from Westbound to Southbound would follow a curved

path, but the original OSM map represents the turn as a right-angle turn at the intersection of the road

segments.

To address these limitations, a more detailed version of the map, as shown in Figure 5.2, is utilized in the

estimation process. This enhanced map includes corresponding lanes added to the road segments where the

estimation is performed, while the turning segments at the intersection are removed. Removing the turning

segments improves the map-aiding algorithm described in Section 5.3, enabling the filter to select the most

probable lane from accurately located candidates. However, this removal of turning segments eliminates the

topology required for route finding.
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Figure 5.1: OSM original road map.

Figure 5.2: Example of a segment of digital road map modified for the purposes of this thesis.

5.2.2 Software

To modify, create, or delete digital maps in the OSM repository, the Java OSM (JOSM) software is required.

JOSM is an extensible editor specifically designed for OSM, utilizing Java 8. It is an open-source software

that supports various functionalities, including the loading of GPX tracks, background imagery, and OSM

data from local or online sources. JOSM serves as the official software for editing digital maps in the OSM

repository, allowing users to edit nodes, ways, relations, topology, and metadata information. It can be
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compared to Geographic Information System (GIS) software, as both work with referenced geographic infor-

mation layers and utilize basic geometry features such as points (nodes), vectors, and shapes, as illustrated

in Figure 5.3. JOSM is a multiplatform software, and its installation requirements mainly depend on having

an up-to-date version of Java. For detailed information about the functions and tools provided by JOSM,

refer to the comprehensive documentation available in [92].

Figure 5.3: Java OSM software interface.

The map-aiding algorithm was implemented in the same Python particle filter routine used for the

purposes of Chapter 4, which can be replaced for the standard EKF used in the rnx2rtkp module from

RTKLIB.

5.3 Map-aiding Algorithm

The main objective of the PF is to approximate the posterior density of the state at each time step by

using a set of random samples with associated weights, incorporating all available information, including the

received measurements [64]. By applying Bayes’ rule, the posterior can be recursively estimated using the

likelihood function p(yk|xk), which is defined by the observation model, the predicted probability density

function p(xk|Yk−1), and a normalizing term p(yk|Yk−1) (Equation (3.43)). The posterior density at time k,

represented by a set of random samples with associated weights, can be approximated using Equation (3.59),

which is repeated here for convenience. Therefore, the posterior density is approximated by the following
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expression:

p(xk|Yk) ≈
Np∑
i=1

wi
kδ(xk − xi

k) (5.1)

where the normalized weights are:

wi
k ∝ p(xk|Yk)

q(xk|Yk)

where q(xk|Yk) is the convenient but suboptimal choice q(xk|Xk−1Yk)q(Xk−1|Yk−1), which is an augmenta-

tion of the prior density with the new state xk. Therefore, considering this choice for importance density,

the normalized importance weights are as follows:

wi
k ∝ wi

k−1p(yk|xi
k) (5.2)

where p(yk|xi
k) is the likelihood function which will depend on GPS observations and digital map information.

The implemented map-aiding algorithm is designed to assign weights to the particles based on the most

probable lane of the road segment on which the vehicle is traveling. This probability takes into account both

the Euclidean distance between the vehicle and its nearest lane, as well as the difference in direction between

the lane and the vehicle’s trajectory. By weighting the particles according to their distance and direction

difference from the lanes, the algorithm ensures that particles positioned on the most probable lane with the

correct direction are assigned higher weights.

In Figure 5.1, the digital map does not explicitly describe the permitted turns at the intersection of two roads

through a set of edges or nodes. Therefore, when the vehicle is making a turn, the map-aiding algorithm is

not applied, and the particles are weighted solely based on the GPS observation misclosure using Equation

(4.16):

wi
k,P,Φ =

1√
2πσ2

P,Φ(k+1)
exp

(
−

ε2∆∇P,Φ

2σ2
P,Φ(k+1)

)
(5.3)

To compute the Euclidean distances between the vehicle and its closest edge, the particles (estimated in earth-

centered Cartesian coordinates) and the digital map (represented in curvilinear geodetic coordinates) were

transformed into a local geodetic East-North-Up (ENU) frame. This transformation was performed using

the nearby reference station as the center of the ENU frame. The details of this coordinate transformation

can be found in Appendix B. The heading angle of the vehicle was obtained from its velocity vector and

compared with the bearing of the nearest road segment. The bearing represents the direction of the road

segment. Each particle weight considering the nearest lane and the correct direction of the edge according
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to the vehicle’s velocity is computed as follows:

wi
k,∆x,∆α =

1√
2πσ2

∆x,∆α(k+1)
exp

(
−

∆2
x,α

2σ2
∆x,∆α(k+1)

)
(5.4)

where ∆x and ∆α are the distance between each particle to its closest lane and the difference between the

directions of the lane and the particle. The particle’s total weight considers both GPS measurements and

the digital road map and is computed from the product of each GPS observation 4.16 and the map-aid 5.4:

wi
k = wi

k,∆x,∆α

 Nobs∏
P,Φ=1

wi
k,P,Φ

 (5.5)

The weights of the particles are then normalized using Equation (4.18). By incorporating equations (4.16),

(5.4), and (5.5) to weigh the particles, the estimation of the vehicle’s position is based on the GPS observa-

tions at each time step, aided by the map constraint that considers the most probable lane of a road segment,

taking into account the correct direction and the distance between the vehicle and multiple lanes of the road.

The Particle Filter utilized to assess the impact of the map constraint on the position states and the con-

vergence of the ambiguities is the same Sequential Importance Resampling (SIR) PF described in Chapter

4. The only difference lies in the measurement update step, which incorporates the map-aiding algorithm.

5.3.1 Position domain

The map-aided Sequential Importance Resampling (SIR) Particle Filter described in this chapter was applied

to compute the geometry-based float solution for the dataset discussed in Section 4.2 of Chapter 4. Figure

5.4 illustrates the road segments that were analyzed to demonstrate the effect of the map-aiding algorithm

on the estimated position state. Each road segment represents a different scenario of the vehicle’s trajectory.

The complete dataset is displayed as a solid black line, while specific segments of data are highlighted for

analysis. The red trajectory represents a segment where the vehicle makes a turn, the yellow trajectory

represents a segment where the vehicle changes lanes, and the green, blue and brown trajectories represent

segments where the vehicle travels in a straight direction, which is the simplest case. A circle is used to

indicate the starting point of each analyzed segment.

The analyzed segments of data are characterized by an optimal environment for GPS signal reception, and the

estimation of the position state tends to converge within the first minute of the GPS phase and pseudorange

observations without the map-aiding. Since the objective of implementing a map constraint is to improve the

convergence time, the analysis focuses on the first thirty seconds after initializing the filter for each segment
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of data.

Figure 5.4: Plan view of segments analyzed. Each segment describes a different vehicle maneuver.

In Figure 5.5, the estimated position in an ENU local frame for the ”Turn” segment (red line in Figure

5.4) computed with the SIR PF is shown. The EKF solution is plotted in green, showing its 2σ error ellipse

derived from the covariance matrix at each epoch. The blue cloud of particles represents the prediction step

of the PF, which is computed for each particle using the constant acceleration dynamics model described

by Equation (4.5). The red cloud of particles represents the solution after the weighting and resampling

steps, based on their agreement with the GPS observations at each epoch. Both filters were initialized at

the top-right side of the plot, where the error ellipse is larger for the EKF solution, and the blue cloud of

random samples is more spread out for the PF. The reference trajectory is plotted in orange.
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In Figure 5.6, the biased solution resulting from using the original map as a constraint is illustrated. It can

be observed that the estimated position is biased because the vehicle is not navigating on the segment of

road represented by the corresponding edge in the digital map. In such cases, it is more favorable to not

use the digital map information, as the cloud of particles is dragged towards the only edge in the map that

represents the road.

In Figure 5.7, the solution estimated using the lane-level digital map is shown. During the turn, the map-

aiding is not applied, and the state vector is solely estimated using the GPS observations. The particles

without a map constraint are plotted in pink. It can be noted that the cross-track variance is significantly

reduced in the early epochs of the estimation when using the modified digital map. The particles are

distributed closely to their most probable lane based on their direction and distance to each lane. The

particles capture a multi-modal distribution in the early stages of the Particle Filter. In the second epoch,

some particles are distributed around the lane whose direction is opposite to the correct one; however, the

Particle Filter quickly adapts in the following epoch as Equation (5.7) de-weights the particles going in the

wrong direction. The map-aiding algorithm ensures that the majority of the particles are positioned on the

road, unlike when there is no constraint, where many particles end up in non-navigable areas.

Figure 5.5: Estimated position using the SIR Particle Filter without map-aiding.
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Figure 5.6: Estimated position using the SIR Particle Filter with map-aiding using the original digital map
from OSM.
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Figure 5.7: Estimated position state with map-aiding using the SIR Particle Filter.

In Figure 5.8, the histogram of the North-South errors of each particle with respect to the reference

trajectory is displayed. The center median and curb positions are depicted as solid lines, while the lane

boundaries are shown as dashed lines. This histogram corresponds to the updating step of the particle filter

without the map-aiding (Figure 5.5) at the second epoch after the filter initialization. The EKF solution is

represented by a Gaussian distribution shown in green, centered at the EKF estimate. The frequencies of

the particles over the latitudes fit the Gaussian curve from the EKF solution and are normalized by the total

number of samples to obtain the probability of the latitude. In this case, the histogram and the Gaussian

curve are plotted over the lanes of the road. The estimated latitude at this epoch is in the first lane or

turning lane of the Westbound side. Some particles are estimated on the median between both sides of the

road, which is a non-navigable area.

In Figure 5.9, the histogram of the estimated latitude of the particles for the same epoch but with the

map-aiding algorithm implemented is shown. The distribution now becomes multi-modal since the particles

are weighted according to their distance to their closest lane and their heading. Unlike the example in

Figure 5.8, all particles end up in navigable areas as the map-aiding assigns a large weight to the particles

whose position is close to the lane centers. The number of particles clustered around each lane represents the

estimated probability of the vehicle navigating in each lane. Without the map-aiding algorithm implemented
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and using the EKF instead, this probability could be estimated by integrating the PDF across each lane.

However, using the PF with the map constraint, the particles cluster near the lane centers. By comparing

the two plots, the improvement in the position solution at the early stages of the filter convergence is evident,

assuming the vehicle is indeed centered in a lane.

Figure 5.8: Particles distribution of the estimated latitude positions without map-aiding for the second
epoch of the Turn case shown in Figure 5.5. The EKF estimated position is plotted in green, described by
a Gaussian distribution (N (µ, σ2)) using the estimated position x̂k, and its covariance matrix P̂k
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Figure 5.9: Particles distribution of the estimated latitude positions with map-aiding for the second epoch
of the Turn case.

Figure 5.10 depicts a scenario where the vehicle is not centered within a lane but is navigating between

two lanes. In this case, the particles cloud is split into two clusters, each clustered around its closest lane.

The green line represents the EKF solution without any map constraint, indicating that the vehicle’s position

is not centered. It is important to note that the map-aiding algorithm is designed to improve the accuracy of

the position estimation when the vehicle is navigating within a lane. It assumes that the vehicle is following a

specific lane and weights the particles accordingly. However, in scenarios where the vehicle is changing lanes

or not positioned within a lane, the map constraint may not be applicable or may lead to biased estimates.

Therefore, the effectiveness of the map-aiding algorithm depends on the specific scenario and whether the

vehicle’s trajectory aligns with the lanes represented in the digital map.
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Figure 5.10: Estimated position with the map-aiding implemented when the vehicle is not centred in a lane.

Table 5.1 provides a comparison between the results obtained using the EKF and the Particle Filter (with

and without map-aiding) at 5, 15, and 30 seconds after initializing each filter for the five segments shown in

Figure 5.4. The estimated variance for the EKF is obtained from the covariance matrix P̂k after the update

step. The variance σ2 for the PF is estimated empirically using the distribution of the particles to obtain

a covariance matrix, as described in Equation (4.21) in Chapter 4. Although these empirical σ2 values are

larger than those of the EKF, the cross-track error is smaller even without map-aiding. The map-aided

PF significantly reduces the estimated variance and slightly improves the accuracy. In the last row of the

table, the mean of the variances and the cross-track errors for each filter at the compared epochs is shown.

It can be observed that the PF with map-aiding estimates the most accurate position. However, the EKF

variance is the smallest at the 15 and 30-second epochs, indicating that the effect of the map constraint on

the variance is more significant at earlier epochs.
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Table 5.1: Estimated cross-track (CT) error (m) and variance σ2 using the EKF, and the SIR Particle Filter
with and without the map-aiding algorithm at 5, 15, and 30 seconds after the filter initialization for the
different segments of data shown in Figure 5.4. The background colors of the first column match those shown
in Figure 5.4.

Time 5 seconds 15 seconds 30 seconds

Case/Estimator
EKF PF PF/MA EKF PF PF/MA EKF PF PF/MA

σ2 CT σ2 CT σ2 CT σ2 CT σ2 CT σ2 CT σ2 CT σ2 CT σ2 CT

Turn 1.188 0.269 1.402 0.277 0.329 0.201 0.389 0.220 0.844 0.102 0.198 0.092 0.202 0.338 0.812 0.259 0.183 0.257

Change Lane 1.705 0.452 2.104 0.504 1.295 0.389 0.627 4.287 2.310 4.020 0.852 3.865 0.295 2.385 1.521 2.142 0.233 1.532

Straight 1 0.775 0.680 0.975 0.623 0.280 0.609 0.201 1.435 0.854 1.023 0.351 0.993 0.131 0.541 0.548 0.332 0.231 0.328

Straight 2 0.785 0.628 0.923 0.601 0.356 0.532 0.207 1.830 0.713 1.760 0.290 1.661 0.138 0.395 0.492 0.345 0.199 0.625

Straight 3 0.984 0.456 1.123 0.468 0.578 0.438 0.248 0.387 0.378 0.351 0.194 0.277 0.154 0.299 0.241 0.279 0.122 0.234

Mean 1.087 0.497 1.305 0.494 0.567 0.434 0.334 1.6312 1.019 1.451 0.377 1.377 0.184 0.791 0.722 0.671 0.194 0.595

It is important to note that turning lanes are represented by rectangles where the road segments intersect

and do not accurately describe the vehicle’s true trajectory. Additionally, when the vehicle is changing lanes,

there is no edge between the lanes that describes this maneuver. In these cases, the map constraint can lead

to a biased position estimation, as it assigns large weights to particles near a road segment. To address this,

the map-aiding algorithm is designed to be applied only when the heading angle indicates that the vehicle is

driving straight and not turning, or when changing lanes. The applied map-aiding algorithm improves the

position estimation accuracy at early epochs by reducing the cross-track error and variance, as the particles

are resampled along the most probable lane of the road where the vehicle is navigating.

The map-aided SIR PF improves the accuracy of the cross-track position solution. However, it is important

to note that the digital map used for the constraint needs to be more detailed than the original maps provided

by the OSM website in order to accurately capture turning lanes and lane changes.

5.3.2 Convergence of the Ambiguities

Some ambiguity resolution algorithms exploit additional constraints or integrate additional sensor measure-

ments to improve float estimation. For example, in [16] the ambiguity resolution is improved by aiding the

float solution estimation with LIDAR measurements. [18] proposed an aided ambiguity resolution technique

based on a tight-coupling IMU integration using GPS and BeiDou navigation satellite system (BDS) data,

showing a faster ambiguity recovery after signal blockage. In [17], an assessment of the performance of both

a tightly and loosely coupled IMU/GPS integration for a faster ambiguity recovery is made.

In this section, the positive impact of the map-aiding algorithm on the ambiguity domain is demonstrated.

The performance of three integer estimators is compared when using the SIR PF with and without map-

aiding for the segments of data displayed in Figure 5.4. The success rate of the estimators is calculated to

assess the effect of the map constraint on the convergence of the float solutions.
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Figure 5.11 shows the histograms of the SD float ambiguities estimated with the PF without map-aiding

during a thirty-second time interval after the filter initialization of the Straight3 segment of data (brown).

The plotted values represent the differences between the float estimated ambiguities and their respective

final integer values, which are computed using the LAMBDA transformation with the ILS on the final epoch

of the EKF float solution using the same observations. The histograms are displayed at five-second intervals

although the filter updates every second. The first histogram in red at the bottom represents the second

epoch after the filter initialization, while the histogram at the top in blue shows the convergence of the float

solution after thirty seconds. Since this example does not implement the map constraint, the distribution

of the particles is Gaussian at each epoch. In Figure 5.12, the convergence of the float ambiguities is shown

when the map-aiding algorithm is implemented. The first histogram in the plot is no longer Gaussian, as

the Particle Filter captures a multi-modal distribution resulting from each particle being constrained to its

nearest road segment (or lane). However, as the measurement updates are carried out through epochs, the

distributions become Gaussian. Comparing these histograms to the solution without map-aiding (Figure

5.11), it can be observed that the variances are reduced, indicating a faster convergence of the filter.

These results demonstrate that implementing the map-aiding algorithm improves the convergence of the

float ambiguities in the ambiguity domain. The multi-modal distributions observed when using map-aiding

indicate that the particles are constrained to their nearest road segments or lanes, leading to a more accurate

estimation of the integer ambiguities.
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Figure 5.11: Single-Difference ambiguities without map-aiding. Histograms are shown during a 30 second
time interval every 5 seconds for better although the filter updates every second second. Each distribution
is Gaussian as no constraint is applied.
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Figure 5.12: Single-Difference ambiguities estimated with the PF with map-aiding. The first histogram is
no longer Gaussian, as the map-aiding algorithm results in a multimodal pdf.

The map-aiding algorithm, which weights the particles according to the digital map in addition to the

GPS observations, tends to cluster the particles around the most probable lane that the vehicle is navigating

on. This clustering effect is primarily observed in the position state, as the map constraint is directly

applied to this state. In Figure 5.13, the particles after the resampling step of the second epoch after filter

initialization are plotted in a 2-D plot, showing the cross-track position state and a float ambiguity. Without

the map-aiding algorithm, both distributions, represented in blue for the position state and red for the float

ambiguity, appear Gaussian as no map-matching algorithm is applied. Figure 5.14 shows the same estimation

case but with the map-aiding algorithm implemented. In this case, the particles’ distributions are no longer

Gaussian, especially in the cross-track position state. The particles are clustered around the lanes due to

the map constraint. However, in the float ambiguity domain, the distribution still exhibits a Gaussian shape

with some irregularities resulting from the resampling and clustering of particles around the lanes. The EKF

solution is shown in both cases in green in order to compare the effect of the map-matching technique. The

map-matching algorithm applied to the position state improves the position accuracy by reducing the space

of the dimension that needs to be described by the particles. This allows the particles to accurately represent
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the remaining states. This effect is similar to the reduction of states achieved by marginalizing the state

using an EKF, as described in Chapter 3.

Figure 5.13: Across-track position and float ambiguity distributions and histograms without map-aiding.
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Figure 5.14: Across-track position and float ambiguity distributions and histograms with map-aiding.

In Chapter 4, the probability of correct fix [36] is computed at each epoch using the EKF and PF is

computed and shown in figures 4.10 and 4.11. These plots show the comparison between the probabilities

of correct fix using the rounding and bootstrapping methods for the correct integer search after the decor-

relation transformation. A similar analysis is made in this section to show the effect of the map-aiding

algorithm on the float solution when fixing the ambiguities using three integer estimators. However, for

this purpose, the comparison is made using only the SIR Particle Filter and the 3 search methods after

LAMBDA transformation, with and without the map-aiding algorithm . In Figure 5.15, the probabilities

of correct fixing using bootstrapping and rounding as integer search estimators after decorrelation without

the map constraint is shown. The empirical covariance matrix (Equation (4.21)) was used to compute the

probability of correct fixing, while the success rates are estimated by counting the success or failure of the

method applied directly to each of particles. In Figure 5.16, the probabilities of correct fixing and success

rates of the search estimators are shown for the same segment of data in Figure 5.15. As the variance of

the float ambiguities is reduced due to the map-aiding, the probabilities of correct fixing and success rates

improve. Although the map-aiding is directly applied to the position state, it improves the convergence of

the float ambiguities resulting in higher probabilities of correct fixing.

91



Figure 5.15: Probability of correct rounding (orange) and bootstrapping (light blue) using the PF. Success
rates of rounding (red), bootstrapping (blue) and ILS (green).
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Figure 5.16: Probability of correct rounding (orange) and bootstrapping (light blue) and success rates of
rounding (red), bootstrapping (blue) and ILS (green) using the PF with the map-aiding algorithm

Results from all segments

In Table 5.2, the success rate of the ILS and the probability of correct fix of the bootstrapping (PB) method

obtained using the SIR PF with and without the map constraint are compared for each of the five segments

shown in Figure 5.4 at 5, 15 and 30 seconds after initializing each filter. In the last row of the table, we show

the mean of the probabilities of correct fix and success rates of the three epochs. As shown in Chapter 4, the

map constraint improves the estimated position at early epochs, reducing the cross-track error and variance

as the particles are being resampled along the most probable lane of the road where the car is navigating.

Moreover, this improvement in position accuracy is reflected in the ambiguity domain as well. It can be

noted that the probability of a correct fix improves as the variance of the float ambiguities is also reduced

at each analyzed epoch. In consequence, there is an increase in the count of particles that are being fixed to

their respective integer value.
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Table 5.2: Estimated probabilities of correct fixing of bootstrapping (PB) and empirical success rates of the
ILS using the SIR Particle Filter with and without the map-aiding algorithm at 5, 15, and 30 seconds after
the filter initialization for the different segments of data shown in Figure 5.4. The background colors of the
first column match those shown in Figure 5.4.

Time 5 seconds 15 seconds 30 seconds

Case/Estimator
PF PF/MA PF PF/MA PF PF/MA

PB ILS PB ILS PB ILS PB ILS PB ILS PB ILS

Turn .0038 0.0009 0.0066 0.0017 0.0331 0.0284 0.5156 0.0324 0.1316 0.2091 0.2260 0.2815

Change Lane 0.0041 0.0008 .0074 0.0026 0.0346 0.0142 0.0595 0.0189 0.1428 0.1562 0.2091 0.2001

Straight 1 0.0057 0.0015 0.0103 0.0089 0.0472 0.0303 0.0704 0.0468 0.1731 0.1854 0.2416 0.3251

Straight 2 0.0068 0.0021 0.0094 0.0028 0.0578 0.0462 0.0642 .0438 0.1895 0.0946 0.3461 0.4101

Straight 3 0.0059 0.0012 0.0089 0.0023 0.0413 0.0305 0.0697 .0344 0.1531 0.0678 0.2371 0.2848

Mean .0052 0.0013 0.0085 0.0037 0.0428 0.0298 0.1556 0.0359 0.1500 0.1426 0.2529 0.3003

5.4 Map-constrained EKF

In order to integrate a digital map as a constraint in the EKF, it is required to represent this information

as an additional row in the design matrix H, an additional element for uncertainty in R, and additional row

in the innovation or misclosure. The map-constrained EKF follows the next steps:

1. Search the closest lane of a segment of road to the predicted position state x̂−
k

2. Compute the orthogonal vector rlanex̂ between the position state and the lane.

3. Compute the magnitude
∥∥rlanex̂

∥∥ and the unit vector r̂.

The orthogonal vector is obtained by projecting the position state x̂−
k into the lane vector L⃗AB with nodes

A and B. For convenience, x̂−
k is renamed Vpoint in this description. First, the projection of Vpoint onto the

vector L⃗AB is as follows:

Vpj = A+
A⃗V · L⃗AB∥∥∥L⃗AB

∥∥∥2 (L⃗AB) (5.6)

where A is the first node (point) of the lane L⃗AB and A⃗V is the vector from point A to V . Hav-

ing computed the projection Vpj , the orthogonal vector V⃗ortho is formed between this point and Vpoint.

The measurement model of the map constrain would then be the magnitude of the orthogonal vector∥∥∥V⃗ortho

∥∥∥ =
√
(Vpj,x − Vpoint,x)2 − (Vpj,y − Vpoint,y)2 − (Vpj,z − Vpoint,z)2, therefore, getting the differentials

for the matrix H is as follows:

H =

 ... ... ... ...

∂Lane
∂x

∂Lane
∂y

∂Lane
∂z ...

 (5.7)
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H =

 ... ... ... ...

−(Vpj,x−Vpoint,x)

∥V⃗ortho∥
−(Vpj,y−Vpoint,y)

∥V⃗ortho∥
−(Vpj,z−Vpoint,z)

∥V⃗ortho∥ ...

 (5.8)

The H matrix would have an extra row for the digital map measurement, where all values are 0 except for

the position state. As the assumption of this pseudo-measurement is that the distance between the centre of

the lane and the vehicle is 0, the innovation is the orthogonal distance
∥∥∥V⃗ortho

∥∥∥. In Figure 5.17 the solution

estimated with the map-aided EKF for the ”Turn” segment in Figure 5.4. The solutions obtained with the

EKF without and with the map-constraint are plotted in green and blue respectively. Both solutions are

shown along with their 2σ error ellipse derived from the covariance matrices at each epoch. As expected,

the accuracy is improved and the cross-track variance is reduced. However, an important feature of the

map-aided PF is the ability to capture the multi-modal distribution, which is not possible when using the

EKF.

Figure 5.17: Estimated position with the map-aiding EKF.

In Figure 5.18, the probability density functions of the EKF solution are displayed both with and without

the application of the map-constraint, specifically for the second epoch of the Turn segment (same as shown

in Figure 5.8). Notably, the variance in across-track positioning is reduced, leading to improved accuracy.

However, unlike the map-aided PF, the Gaussian curve of the EKF solution with the map-constraint still
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partially overlaps with the median. This indicates a probability of the vehicle being located in non-navigable

areas. This is a consequence from the EKF’s consistent assumption of a Gaussian distribution for the

posterior pdf. Given the nature of the map-constraint and the particle filter’s capability to accommodate

various posterior distributions, the particle filter is better suited for handling this type of constraint.

Figure 5.18: EKF distributions with and without the map-constraint for the second epoch of the Turn case.

Figure 5.19 illustrates the SD float ambiguities estimated using the EKF, both with and without the

map-constraint. This corresponds to the same time interval and data segment as presented in Figure 5.11.

The Gaussian distributions are presented at five-second intervals across a thirty-second duration, despite

the filter updating every second. As anticipated, the influence of the map-constraint, when applied to the

position state, leads to a reduction in the variance of the estimated ambiguities. This outcome arises from

the direct correlation between the position state and the ambiguities. Note that the impact of the map-aiding

algorithm becomes more pronounced when employed within the PF framework. This can be attributed to

the inherent characteristics of sample-based estimators. In addition to the correlation between the position

state and the ambiguities, particles more effectively depict the ambiguity posterior distribution when the

map-constraint is implemented and the position state space is constrained.
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Figure 5.19: Single-Difference ambiguities estimated wit the map-constrained.

The root mean square errors (RMSE) of the across-track position state using the EKF, both with and

without the map constraint, for all analyzed data segments, are 0.2561 m and 0.2001 m, respectively, sig-

nifying a 27% enhancement. When the PF is applied, the RMSE with and without the map-constraint is

0.2467 m and 0.1957 m, representing a 26% improvement in position accuracy. While the particle filter

estimation offers superior accuracy, its key advantage lies in providing more comprehensive information con-

tained within the posterior density when integrating the map-aiding algorithm. This comprehends factors

like the probability of the vehicle traversing each lane within a road segment. Regarding the ambiguity

resolution, the incorporation of map-matching improves the success rates of the ILS by 90%, demonstrating

the algorithm’s efficacy and the influence of a position constraint within the ambiguity domain.

In this chapter, the implementation of a map-aiding algorithm in the SIR Particle Filter has been demon-

strated, showcasing its positive impact on position accuracy and ambiguity convergence. The constraint

provided by the digital map improves the estimation in both the position and ambiguity domains, highlight-

ing the particle filter’s ability to handle non-Gaussian posterior distributions. The map-aiding algorithm is

particularly useful in the early epochs of the filter, when the state variances are large and the convergence
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is still ongoing. By weighting the particles according to the map information, the algorithm helps improve

the accuracy and convergence speed of the filter. However, it should be noted that the original maps ob-

tained from the OSM repository require modification. The current representation, where multiple lanes are

described by a single vector, leads to biased estimations. Therefore, it is necessary to modify the maps by

providing lane-level details to achieve more accurate results.

In the next chapter, an outlier detection algorithm will be implemented to identify observations distorted

by multipath effects. Once these observations are detected, the particles will be weighted according to a

distribution that accounts for these distortions, deviating from the typical Gaussian distribution.
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Chapter 6

Non-Gaussian measurements

In the previous chapters, a detailed explanation about the implementation of the SIR PF for estimating the

geometry-based float solution is carried out. A comparison between the EKF and the PF was conducted,

revealing their equivalence under optimal conditions for signal reception and low nonlinearity in measure-

ment models. However, the PF offers a more realistic probability of success rate for Integer Rounding

and Bootstrapping during the ambiguity resolution process, as it directly counts the samples fixing to the

correct integer solution. Chapter 5 introduced the implementation of a map constraint with the goals of

improving position accuracy, enhancing convergence of float ambiguities, and showcasing the PF’s ability to

handle non-Gaussian distributions. Incorporating map-matching within the EKF is impractical due to the

challenges of representing highly non-Gaussian posterior densities with a mean and variance parametrization.

In this chapter, we focus on evaluating the performance of the PF in estimating the float solution under

urban and semi-urban environments. Specifically, we analyze the PF’s behavior when confronted with non-

Gaussian measurements, such as those obtained in urban canyon scenarios where GPS measurements are

distorted by multipath effects. This analysis demonstrates the PF’s capability to weight particles according

to any likelihood function, in contrast to the EKF’s assumption of a Gaussian distribution.

Section 6.1 provides an overview of Signal Quality Monitoring (SQM) and Measurement Quality Monitor-

ing (MSM) techniques for detecting and mitigating multipath effects. Section 6.2 explains the methodology

employed for detecting and mitigating multipath effects on measurements using the state PDF based on

point mass representation. Section 6.3 describes the particle filter implementation with outlier detection and

the application of Rao-Blackwellization to estimate the full geometry-based solution under urban canyon
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environment conditions, along with the corresponding results. Finally, in Section 6.3.2, we present the ob-

tained results with the robust PF, showcasing the impact of deweighting particles based on measurements

likely to be distorted by multipath.

6.1 Multipath

The presence of reflective surfaces between GNSS spacecraft and the receiver gives rise to multipath signals,

where the signal arrives at the receiver through paths other than the direct line of sight. These reflected

signals can cause errors in GNSS measurements [4]. Multipath signals in GNSS are typically classified as

Line of Sight (LOS) or Non-Line of Sight (NLOS) signals. LOS multipath occurs when both the direct

and reflected signals are received, while NLOS multipath occurs when the received signal comes solely from

reflections off surrounding buildings. LOS multipath errors can reach several metres, whereas NLOS errors

can be on the order of tens of metres or more in pseudorange measurements [27]. Figure 6.1 provides a

2-dimensional schematic illustrating multipath effects resulting from the reflection of GNSS satellite signals

by surrounding buildings.

Figure 6.1: 2-dimension schematic example of NLOS and LOS multipath cases.

Multipath signals, being delayed compared to the direct signal, introduce distortions in the phase and

pseudorange measurements due to the longer path they travel. Many techniques for the detection and
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mitigation of Line of Sight (LOS) multipath have been developed and tested in recent years. These techniques

are commonly threefold classified [93]:

� The first group of techniques focuses on isolating the receiver from multipath interference and modifying

the antenna design. ”Choke ring” antennas or the use of synthetic antenna arrays are within this

classification. The ”choke ring” suppresses the entry of small elevation signals. A popular technique

in this group is polarization diversity which uses two receiver ports with orthogonal polarizations to

obtain diversity gain [94].

� The second group attempts to jointly estimate the multipath parameters and remove or mitigate the

errors due to multipath. Well-known algorithms in this group are the Narrow [95] and Strobe [96]

Correlators. The Narrow Correlator reduces the chip space between the early and late correlator in

order to cut down the impact of multipath on the Delay Lock Loop (DLL) [97].

� The third group focuses on detecting and excluding (or de-weight) measurements distorted by multi-

path. The techniques in this classification include signal and measurement monitoring techniques for

detecting and mitigating multipath effects. In [93], it has been demonstrated that these multipath

countermeasure techniques satisfy some level of navigation integrity, keeping the satellite geometry (if

possible) in most of the cases.

6.1.1 Signal and Measurement Quality Monitoring

Signal Quality Monitoring (SQM) metrics involve the use of different tracking and monitoring correlators to

detect any distortions on the overlapped correlation peaks during the receiver tracking stage [98]. Common

SQM metrics include Signal-to-Noise Ratio (SNR) and Carrier-to-Noise (C/N0) ratio, which are used to

detect and mitigate multipath effects by employing stochastic weighting models based on metrics like Ratio

SQM and Delta SQM [99]. In [100], a review of SQM methods for multipath detection and mitigation is

provided. However, one limitation of SQM techniques is their inability to detect short-range multipath. To

address this, Measurement Quality Monitoring (MQM) techniques have been developed, focusing on moni-

toring GNSS measurements (code and carrier phase, Doppler, and C/N0) to detect and exclude (or deweight)

measurements affected by multipath effects. In [93], three traditional MQM approaches are described, namely

multipath error correction, stochastic weighting, and detection-exclusion. The Code Minus Carrier (CMC)

metric is a popular monitoring metric that combines code phase and carrier phase measurements to provide

an estimation of the code range multipath error.
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6.1.2 Code Minus Carrier

CMC is a direct measurement of the code range multipath error which is computed by subtracting the

carrier phase measurements from the corresponding pseudoranges [101]. Considering the code and carrier

phase measurement models (Equation 4.10 and Equation 4.11), CMC is as follows:

CMCk = P i
k − Φi

k

=
(((((((((((
ρik − (δtr − δti)c+ δtrop + δion +MPP + εc

−
((((((((((((
ρik + (δtr − δti)kc− δtrop − λN i

k + δion −���MPΦ − εp

CMCk = MPP + 2δion − λN i
k − εp + εc

(6.1)

where MPP and MPΦ is the code and carrier multipath error, δion is the ionospheric error,λN i
k is the

wavelength times the ambiguity and εp, εc are the code and carrier noise errors. Given that MPΦ is

considerably smaller than MPP , the carrier multipath can be neglected. Equation 6.1 describes the CMC

metric as an indicator of the code multipath, commonly used to detect measurements distorted by multipath

and remove them. If the ambiguity N and the ionospheric effect δion are computed, then CMC would be

equivalent to the code multipath and can be used to correct the multipath from the measurements and avoid

excluding the measurement to keep the satellite geometry configuration [93]. However, considering that the

ambiguities and twice the ionospheric effect are constant, these can be removed by computing the average.

In Figure 6.2 the CMC metric computed for a segment of the dataset described in Section 4 is shown. In this

plot, observations from satellites 18 and 12 present severe multipath effects, while the rest of the observations

can be accurately approximates to a Gaussian pdf. This is due to the reason that both satellites have low

elevations as shown in Figure 6.3 and the plotted segment of data is of the vehicle driving near buildings.

Figure 6.2: CMC metric of segments of data with measurements distorted by multipath.
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Figure 6.3: Satellites skyplot.

In [93], the CMC metric is utilized for the detection of multipath effects, and a stochastic weighting

model is employed to deweight the measurements distorted by multipath. The approach aims to assign

lower weights to the detected measurements instead of discarding them, however, the approach assumes

Gaussian measurement errors. An important feature of the PF is the ability to weigh the particles according

to any likelihood function, and not assuming Gaussian in cases where the measurements are likely to have

different distributions. Figure 6.5 illustrates the non-Gaussian distribution of the measurements affected by

multipath from the data set used in this thesis, in contrast to measurements without multipath distortion

(Figure 6.4). To quantify the level of Gaussianity, a Gaussian curve was modeled using the least-squares

method, and the R2 statistic was computed for both histograms (see Appendix E). The R2 value for the

first histogram is 0.96, indicating that measurement errors without multipath follow a Gaussian distribution.

However, in the multipath case analyzed in this thesis, the R2 value is 0.74, depicting non-Gaussianity.
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Figure 6.4: Measurements without multipath. The fitted Gaussian (green curve) has a coefficient of deter-
mination R2 of .96

Figure 6.5: Measurements with multipath error. The fitted Gaussian has a coefficient of determination of
R2 = .78

A traditional approach for handling measurements distorted by multipath is to utilize the CMC metric

to detect the presence of multipath, followed by applying a stochastic model to de-weight the affected mea-

surements by increasing their variance in the filter [93]. However, a limitation of using the CMC metric for

multipath detection is its reliance on carrier phase measurements, which requires a restart of the time averag-

ing process in the event of a cycle slip. Figure 6.5 demonstrates that the error distribution of measurements
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affected by multipath deviates from the Gaussian assumption, thereby impeding proper weighting of such

measurements by the traditional EKF estimator. As discussed in Chapter 3, the Particle Filter (PF) not only

addresses nonlinear measurement or system models but also accommodates non-Gaussian measurements.

6.2 Particle Filter in the presence of multipath

Using the double differencing technique reduces the atmospheric errors and the clock error terms are elimi-

nated from the code pseudorange model, leaving only the measurement error:

∆∇P = ∆∇ρ+ ε∆∇P

ε∆∇P = ∆∇P −∆∇ρ

(6.2)

where the ∆∇ operator represents the differencing operation between receivers (rover r and base b) and

satellites (satellite rs and reference bs). In the presence of multipath error, the pseudorange measurement

is significantly affected, leading to distortion in the error term ε∆∇P . In particular, if the reference satellite

bs is selected with the highest altitude and the base receiver b is situated in a location conducive to optimal

signal reception, it can be assumed that ε∆∇P is predominantly influenced by the multipath error occurring

in the pseudorange observation between the rover r and the satellite rs [27]:

ε∆∇P = εrsr −��ε
bs
r −��ε

rs
b +��ε

bs
s

ε∆∇P ≈ εrsr

(6.3)

where the error ε
{a}
{b} = P a

b − ρab . In this scenario, the detection of observations with multipath error is

achieved through the identification of outliers. This work utilizes an algorithm based on the recursive

validation method, also known as innovation testing, for outlier detection [102]. This approach allows for the

identification and exclusion of measurements that deviate significantly from the expected values, indicating

the presence of multipath error.

Recursive validation on the particle filter

The recursive validation implemented on the EKF consists on computing a predicted residual with its

covariance matrix as follows [102]:

υk = yk −Hkx̂k|k−1

Qυk = Rk +HkPk|k−1H
T
k

(6.4)
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Considering the local null hypothesis:

H0 : E(υk) = 0 (6.5)

versus the alternative hypothesis :

Ha : E(υk) ∈ Rmk (6.6)

Then, the normally distributed statistic tk can be used for data snooping as:

tk =
cTkQ

−1
υk υk√

cTkQ
−1
υk υk

|N (0, 1) (6.7)

where c is the canonical unit vector. The main idea of the recursive validation (or innovation testing) for

the local identification of outlier measurements is to compare the normalized predicted residual, as defined

in Equation (6.7), to a normal distribution at a specified confidence level, denoted as α. Within a Bayesian

framework, the predicted distribution of the residuals can be obtained through a two-step procedure:

1. Samples are drawn from the transitional density p(xk|xk−1) by propagating the prior distribution

p(xk−1|yk−1) through the dynamics model (prediction step).

2. Compute the residuals for each particle using Equation 6.2

From the distribution of predicted residuals p(υk|xk, xk−1), the mean value along with its covariance matrix

can be computed as (equations (4.20) and (4.21)):

υk =

∑i=Np

i=1 υi
k

Np
(6.8)

and:

Q′
υk =

∑i=Np

i=0 (υi
k − υk)⊗ (υi

k − υk)

Np − 1

Qυk = Rk +Q′
υk

(6.9)

Having the predicted residual υk with its covariance matrix Qυk, the residual testing is carried out using

Equation 6.7. Detecting outliers using the DD pseudorange residuals overcomes the limitation of relying

solely on carrier phase measurements, as in the case of the CMC metric. When an outlier pseudorange

observation is detected at a particular epoch k, the particles in the particle filter are weighted using a

different likelihood function, deviating from the assumption of a Gaussian distribution. This allows for more

flexibility in incorporating non-Gaussian errors and handling outlier measurements effectively.
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6.2.1 Mixture of Gaussians

Once the outlier measurement is detected, it can be weighted according to a different statistical distribution

model than the Gaussian distribution. The particle filter has no restrictions on using any likelihood function

for weighting the measurements. A typical distribution model used when having non-Gaussian measurement

errors is the mixture of Gaussians [103]. The sum of two or more Gaussians can represent many error

distributions according to different environments or conditions for the observations in one function, improving

the accuracy and performance of the filter [80]. The statistical model used for computing the weights of

detected outlier measurements at time k and mitigating the multipath effects follows the next mixture of

Gaussians [104]:

wi
k,P,MP,b = (1−MP )

1√
2πσ2

P (k)
exp

(
− ε2∆∇P

2σ2
P (k)

)
+ (MP )

1√
2πb2σ2

P (k)
exp

(
− ε2∆∇P

2b2σ2
P (k)

)
(6.10)

where MP is the probability of the measurement being distorted with multipath effects, b is a factor that

accounts for the larger standard deviation associated with outliers [104].

The first term in the expression represents the Gaussian error of the measurement without considering

multipath effects (Equation (4.16) from Chapter 4), scaled by 1 − MP . The second term corresponds to

the distribution associated with the measurements, scaled by the probability of being an actual outlier. By

weighting both distributions, we ensure that the integral over the entire domain of the mixture of Gaussians

remains equal to one. Figure 6.6 illustrates the mixture of Gaussians (Equation (6.10)) used in this analysis.

In this distribution, the measurement noise variance is σ2 = 0.2, the scaling factor for the variance of the

second Gaussian is b = 5, the multipath probability MP is 0.8, and both Gaussians have a mean value of

0. The red line represents the measurement error distribution, the blue line represents the multipath effect,

and the black line represents the mixture of both Gaussians. Note that the variance σ2 is the only parameter

that varies according to the measurement. This mixture of Gaussians is only used for detected outliers

to appropriately de-weight them. Therefore, an MP value sufficiently large was chosen for the multipath

distribution (with a larger variance) to have a greater impact on the weight computation and to fit the

empirical distribution plotted in Figure 6.5. In [105], the multipath code delay is modeled using statistical

models (or distributions) based on a large set of measurements in an urban environment. The author employs

a Gamma distribution to model the distribution of multipath delays, considering that multipath delays result

in larger pseudoranges. The measurements are grouped based on satellite elevation, resulting in a Gamma

distribution model for each group set (divided into intervals of 15 degrees from 0 to 90 degrees). There is

a strong correlation between multipath errors and satellite elevation. As satellite elevation decreases, the

multipath error distribution tends to widen. However, even for high-elevation satellites, the multipath error
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distribution can still exhibit significant width. An important conclusion from this research is that there is no

single distribution that universally describes the multipath effects, as it depends on the specific environment,

satellite, receiver, and reflecting surface. The motivation behind utilizing a Mixture of Gaussian distributions

is to reduce the influence of measurements that are more likely to have multipath errors by combining the

original probability density function and the one corresponding to measurements with multipath effects.

The result of the mixture of Gaussians is a new distribution that accounts for the uncertainties introduced

by multipath, which de-weights the measurements that are likely to have multipath, as determined by the

outlier detection method described in the previous subsection. Furthermore, given that the variance of

the multipath error is significantly larger than the measurement noise variance, it is crucial to consider a

parameter b that adequately broadens the multipath distribution.

Figure 6.6: Gaussian mixture noise.

6.3 Multipath environment data

The main objective of this section is to evaluate the performance of the particle filter robustified by the outlier

detection step and its ability to handle non-Gaussian errors. Chapter 5 demonstrated that incorporating a

constraint such as the map-aiding algorithm into the position state improves position accuracy and enhances

the convergence of float ambiguities. In this section, we demonstrate how de-weighting measurements affected

by multipath enhances position accuracy, thereby also positively impacting the ambiguity domain.

While the majority of the dataset used in this thesis comprises drive-throughs in suburban areas, cer-
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tain segments involve urban canyon environments or scenarios where the vehicle navigates near buildings,

potentially causing reflections of the GPS signal. Additionally, the CMC metric was employed to identify

segments of data that may contain measurements with multipath errors. Figure 6.7 illustrates a representa-

tive segment of the dataset corresponding to an urban canyon environment, where the vehicle travels between

two buildings for 20 seconds, enough time to evaluate the performance of the outlier detection algorithm

during the initial epoch of filter initialization. The objective of this evaluation is to assess the impact of the

algorithm on the position and ambiguity convergence and compare the performance of three integer estima-

tors using the float solution estimated with the robust particle filter (with the outlier detection algorithm

implemented), the SIR PF, and the PF aided with digital map information.

(a) Multipath environment drive trajectory.

(b) Urban canyon ground-level view.

Figure 6.7: Urban canyon environment example from satellite 6.7a and terrestrial 6.7b view.
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6.3.1 Robust Particle Filter

In order to apply the outlier detection step, Rao-Blackwellization (Chapter 3) was used to make the SIR

Particle Filter more efficient and reduce the computational demand of the estimation. The Rao-Blackwell

process consists on marginalizing the linear state variables and estimating them with a Kalman filter. This

means the state vector is split into linear and nonlinear parts, using the SIR-PF for estimating the nonlinear

state variables. The partition is as follows:

xk =

xl
k

xnl
k

 (6.11)

where xl
k = (vk, ak), x

nl
k = (rk, NL1k). vk, ak are the rover station velocity and acceleration respectively,

which are linear and Gaussian distributed, while the nonlinear part includes the position of the rover rk and

the NL1k between receiver single difference ambiguities.

Filter initialization

The filter is initialized with N number of particles samples from a Gaussian distribution N (x0, P0). Each

particle contains the original complete state vector, however, the linear part is parametrized by a mean

and its variance-covariance matrix, effectively reducing the dimensionality of the state space from 9 +NL1

to 3 + NL1. By reducing the dimensionality of the state space, fewer particles are needed to accurately

represent the distribution of the state, resulting in improved computational efficiency. The initial real-valued

ambiguities are computed by subtracting the carrier-phase observations minus pseudoranges λN̂ = P − Φ.

Outlier detection

Prior to the weighting step, the statistic tk from Equation (6.7) is used to detect any outlier measurement.

The distribution of the predicted residuals p(υk|xk, xk−1) is generated computing the residual for each particle

from the transitional density p(xk|xk−1). Estimating the mean value and the empirical covariance matrix

from the residuals pdf, the statistic tk is computed with Equation (6.7) and then compared against the

critical value from the normal distribution N (0, 1) at a level of significance α = .05. If tk > N (0, 1)α=.025

then the measurement is detected as an outlier.

Weighting

The measurement update follows the same procedure as the SIR PF explained in Chapter 4. However, if the

measurement is identified as an outlier, the particles are weighted using the function described by Equation

(6.10). Considering the DD measurement models for code and phase observations, the misclosures can be
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calculated as follows:

ε∆∇P = ∆∇ρ−∆∇P (6.12)

and:

ε∆∇Φ = ∆∇ρ+ λ∆∇N −∆∇Φ (6.13)

To compute the weight of each particle, the same probability-based approach as the SIR-PF described in

Chapter 4 is used, which takes into account the distribution of observation errors. If the measurement is not

detected as an outlier, we assume a Gaussian distribution. However, if the measurement is an outlier, we use

a mixture of Gaussians (as described in Equation (6.10)). Each observation individual weight is computed

as:

wi
k,P,Φ =

1√
2πσ2

P,Φ(k+1)
exp

(
−

ε2∆∇P,Φ

2σ2
P,Φ(k+1)

)
(6.14)

If the measurement is detected as an outlier, then the weight is computed using Equation (6.10) (repeated

in this subsection for convenience):

wi
k,P,MP,b = (1−MP )

1√
2πσ2

P (k)
exp

(
−
ε2∆∇P,Φ

2σ2
P (k)

)
+ (MP )

1√
2πb2σ2

P (k)
exp

(
−

ε2∆∇P,Φ

2b2σ2
P (k)

)
(6.15)

If the map constraint is implemented in the filter, then each particle weight must consider the nearest lane

and the correct direction of the edge according to the vehicle’s velocity (equation (5.4)):

wi
k,∆x,∆α =

1√
2πσ2

∆x,∆α(k+1)
exp

(
−

∆2
x,α

2σ2
∆x,∆α(k+1)

)
(6.16)

The product of the weights for each measurement is the particle’s total weight. After having computed all

the weights, these are normalized such that their sum equals to 1.

After computing the weights for each particle, systematic resampling is carried out in order to discard

particles with low weights and replicate those with higher weights. The systematic resample helps to maintain

a diverse set of particles that represent the posterior distribution, while focusing on the regions of high

probability.
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Particle filter prediction

In this step, only the position states and float ambiguities (nonlinear partition xnl) are predicted next epoch.

Using the constant acceleration dynamics model augmented by random walk ambiguity states, the nonlinear

part is predicted:

Φnl
k+1 =



I3x3 I3x3∆T I3x3
∆T 2

2 0

0 I3x3 I3x3 0

0 0 I3x3 0

0 0 0 Imxm


(6.17)

where ∆T is the sampling interval in seconds and m is the number of SD observations. The process noise

Qnl
k for the nonlinear part is as follows:

Qnl
k =

Q(p)3x3

Q(N)mxm

 (6.18)

where the covariance matrix of the position, velocity and acceleration of the state is Q(p)3x3 = G·GT ·σ2
a, with

Gnl = [∆T 2

2 1x3
]T , σ2

a as the acceleration process noise and Q(N)mxm as a diagonal matrix of process noise

σ2
N . After getting the lower-triangular matrix Lk from the Cholesky decomposition to Qk, the prediction of

the nonlinear partition of the state is as follows:

xnl
k+1 = Φnl

k+1xk + Lk · N (0, Qk) (6.19)

It can be noted that the only states being modified by the given Φnl
k+1 matrix are the position states.

Furthermore, the only states to which process noise is added are the position and ambiguity states. At this

point in the filter estimation process, the linear part has not been modified or updated, as the weighting,

resampling, and prediction steps are only applied to the nonlinear partition.

Rao-Blackwellization

As the acceleration and the velocity states (linear partition xl) are not included in the measurement model,

the observation information gets to the linear partition through the KF time update step i.e. the prediction

step of the linear part. Considering the process noise for the velocity and acceleration states as:

Ql
k =

[
Q(v,a)6x6

]
(6.20)
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with Q(p)3x3 = G · GT · σ2
a, with Gnl = [∆T 2

1x3, I1x3]
T , σ2

a as the acceleration process noise, the state noise

involving both partitions can be formed as:

Qk =

 Ql
k Qlnl

k

(Qlnl
k )T Qnl

k

 (6.21)

Using the set of Equations 3.101, the prediction of the states x̂l
k+1 is computed for each particle along with

the covariance matrix P l
k+1.:

x̂l
k+1 = Āl

kx̂
l
k−1 + (Qlnl

k )T (Qnl
k )−1 + Lk(x

nl
k+1 − x̂nl

k −Anl
k x̂l

k)

Pk+1 = Āl
kPk(Ā

l
k)

T + Q̄l
k − LkNkL

T
k

Lk = Āl
kPk(A

nl
k )TN−1

k

Nk = Anl
k Pk(A

nl
k )T +Qnl

k

(6.22)

where:

Āl
k = Al

k − (Qlnl
k )T (Qnl

k )−1Anl
k ,

Q̄l
k = Ql

k − (Qlnl
k )T (Qnl

k )−1Qlnl
k

(6.23)

Although the KF time update needs to be run for each particle, neither the update Pk+1 nor the Kalman

gain Lk have dependency with the nonlinear part estimated with the PF, this means that these terms are

computed just once for the entire set of particles. Without the additional steps that include outlier detection

and the Rao-Blackwellization step, the filter is the same as the SIR PF described in Chapter 4. The SIR PF

with Rao-Blackwellization and the outlier detection process is summarized in algorithm 4:
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Algorithm 4 Marginalized Particle Filter with outlier detection

Require: For i=1,...,Np initialize the particles x
nl(i)
k0 = N (x0, P0) and set {xl(i)

0 , P
(i)
0 } = {x̄l

0, P̄0} , dynamic

model f

1: for k = 1, 2, ... do

2: for i = 1, 2, ..., N do

3: Get transitional density p(xk|xk−1) from sampling x
(i)
k ∼ f(x

(i)
k−1)

4: for j = 1, 2, ...,m do

5: Estimate the distribution of the predicted residuals p(υk|xk, xk−1) and perform outlier detec-

tion test (Equation (6.7)) at each measurement yjk.

6: if yjk is an outlier then

7: Calculate the ith importance weight using the mixture of Gaussians for likelihood function

(Equation (6.15))

8: else

9: Calculate the ith importance weight using the Gaussian distribution (Equation (6.14))

10: end if

11: end for

12: end for

13: Normalize weights ŵ
(i)
k =

w
(i)
k∑N

j=1 w
(j)
k

14: Resample particles x
nl(i)
k = {xnl(i)

k , ŵ
(i)
k }Ni=1 using systematic resampling method

15: for i = 1, 2, ..., N do

16: Perform Kalman Filter update for the linear partition of the state x
l(i)
k using equations (6.22)

17: end for

18: Calculate the complete state x̂nl,l
k =

∑N
i=1 ŵ

(i)
k x

(i)
k

19: Calculate estimated state covariance Pk =
∑N

i=1 ŵ
(i)
k (x

nl,l(i)
k − x̂nl,l

k )(x
nl,l(i)
k − x̂nl,l

k )T

20: end for

21: return estimated state x̂k and estimated state covariance Pk

6.3.2 Results

The particle filter with the outlier detection step discussed in the preceding section was implemented to

estimate the complete geometry-based float solution for a segment of the dataset that presented pseudorange

measurements affected by multipath errors, thereby facilitating an evaluation of the proposed algorithm’s

efficacy in improving position accuracy and ambiguity convergence. Figure 6.8 visually depicts the analyzed
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segment, representing a trajectories within an urban environment. This scenario involve the vehicle traversing

areas surrounded by buildings, which serve as potential reflecting surfaces for the GPS signals. Such settings

increase the likelihood of encountering multipath-induced errors in the measurements, making it ideal for

assessing the impact of the proposed algorithm.

Figure 6.8: Plan view of the segment with multipath analyzed in this chapter.

The analyzed segment represents a 20-second narrow travel route characterized by the vehicle’s proximity

to three surrounding buildings. This particular environment is highly susceptible to multipath errors in the

GPS measurements. Figure 6.7 illustrates the trajectory of this segment, showcasing a ground-level view of

the path. Additionally, Figure 6.9 displays a fish-eye image captured at the location where the drive-through

took place.
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Figure 6.9: Fish-eye image of the analyzed segment.

In Figure 6.10, the discrepancy between the reference trajectory and the float solution estimated with

the PF is depicted in the east, north, and up directions. It can be observed that the estimated positions

exhibit a bias, which can be attributed to the presence of multipath errors. On the other hand, Figure 6.11

illustrates the ENU errors of the same subset of data estimated with the PF that incorporates the outlier

detection algorithm. The detected outlier measurements were assigned the mixture of Gaussians likelihood

function, as in the previous section (Equation 6.15), for weighting the particles. This modification leads to

a reduction in the position bias.
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Figure 6.10: ENU errors of the float solution obtained with the PF .

Figure 6.11: ENU errors with the outlier detection and de-weighting process implemented on the PF.
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In Figure 6.12 the probabilities of correct fix and estimated success rates using the PF are shown. Figures

6.12a and 6.12b illustrate the impact of the outlier detection without map-aiding while figures 6.12c and 6.12d

show the results with the map constraint. The outlier detection has a more noticeable effect when there is no

map constraint, resulting in faster ambiguity convergence. However, as the map constraint impact is harder,

the deweighting of the multipath measurements effect on the ambiguity domain is slightly appreciated. The

map constraint has a stronger effect on the convergence of the float ambiguities enhancing the convergence

of the float ambiguities by reducing the variance in the position state, which enables the particle to better

describe the remaining states.
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(a) Probabilities of correct fixing and success rates using
the SIR PF

(b) Probabilities of correct fixing and success rates using
the PF with outlier detection

(c) Probabilities of correct fixing and success rates using
the map-aided PF

(d) Probabilities of correct fixing and success rates using
the map-aided PF with outlier detection

Figure 6.12: Probability of correct rounding (orange) and bootstrapping (light blue) and success rates of
rounding (red), bootstrapping (blue) and ILS using the SIR PF

The implementation of the outlier deweighting algorithm positively impacted the estimated probabilities

of correct fixing, leading to a reduction in the variance of float ambiguities and higher success rates as more

particles accurately converged to their correct integer values. On average, the outlier deweighting algorithm

improved the success rate of the Integer Least Squares (ILS) by 30% and the probabilities of correct fixing of

the bootstrapping method by 18% after 30 seconds of the filter initialization. This positive impact is due to

reduction of bias in the position state. The RMSE’s for the ENU positions, are 1.415m, .878 m. and 1.231m
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respectively without deweighting the measurements distorted by multipath. When the outlier detection

algorithm is implemented, the position accuracy improves and the RMSE values for the ENU positions are

.856 m, .363 m. and .341 m. This results show the importance of detecting and deweighting (or rejecting)

outlier measurements.

This chapter highlights the particle filter’s capability to handle non-Gaussian measurements by utilizing

a likelihood function other than the Gaussian distribution. This is particularly relevant when dealing with

distorted pseudorange observations caused by multipath effects. An outlier detection methodology based on

the innovation testing technique was introduced, leveraging the transitional prior to obtain the distribution of

predicted residuals and calculating the normally distributed tk statistic. The identified outlier measurements

were subsequently deweighted using a mixture of Gaussians, effectively reducing bias in the position estimate

and yielding a beneficial impact on the ambiguity domain. By utilizing the map constraint and incorporating

the outlier detection algorithm, the position estimate is enhanced, leading to a reduction in bias and improved

accuracy. This, in turn, has a beneficial effect on the convergence of ambiguities. These results reinforce the

importance of considering and refining the position estimate in order to achieve more reliable and accurate

ambiguity resolution.
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Chapter 7

Conclusions and recommendations for

future work

This work focuses on conducting a comprehensive assessment of the particle filter performance in estimating

the geometry-based float solution. The research highlights the main advantages of the PF over the commonly

used Kalman filter. The PF outperforms the KF in two cases: when the dynamic system has a highly

nonlinear measurement model and when non-Gaussian posterior densities are present. Additionally, the PF

has the flexibility to use any likelihood function to weigh the particles, unlike the KF which assumes Gaussian

measurements. In this chapter, the major conclusions of this research are discussed, and recommendations

for future work are suggested.

7.1 Conclusions

The conclusions provided in this section are sorted by chapter for the reader convenience.

7.1.1 Nonlinear Filters

The comparison between the most common nonlinear estimators, namely the extended Kalman filter, un-

scented Kalman filter, and particle filter, was conducted in this research. The EKF is a first-order Taylor

series approximation to the nonlinear case, while the PF does not require any approximation and can directly

use the measurement model. The UKF approximates the posterior probability density function (pdf) to a

Gaussian using a set of defined samples, without approximating the nonlinear model itself. The UKF shares

common features with both the EKF and PF.
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In linear cases with Gaussian posterior densities (which are ideal scenarios for the Kalman Filter), the EKF,

UKF, and PF estimate equivalent results, and there is no particular reason to choose one over the others.

However, describing the full posterior pdf with particles in the PF requires a large set of samples, which

leads to a heavy computational cost. This is a major limitation of the PF. To address this, two options

were discussed to reduce computational costs without compromising estimation accuracy. The first option

is the local-linearization step, which improveThe shaded areas are the 2σ standard deviation of the float

ambiguities.s the importance density by applying the EKF to each particle before the weighting and re-

sampling step. This step moves the particles towards the likelihood area, reducing the number of particles

required. However, a downside is that the distribution becomes more Gaussian, and the original distribution

of particles is lost. The second option is the Rao-Blackwellized or marginalized particle filter, which splits

the state into nonlinear and linear parts. The nonlinear part is estimated using the PF, while the linear part

is estimated using the Kalman Filter. This reduces the number of particles needed, as fewer state pdfs are

described by the particles.

The implementation of the Sequential Importance Resampling (SIR) PF is described in detail, highlight-

ing the equivalence between the measurement and prediction steps of both filters. The PF is presented as

a Minimum Mean Square Error (MMSE) estimator, which provides a comprehensive understanding of its

operation and capabilities.

7.1.2 SIR Particle Filter in Float Solution for Ambiguity Resolution

The SIR PF was used to estimate the full geometry-based float solution for ambiguity resolution using L1

GPS carrier phase and pseudorange observations, and the results were compared to those obtained with

an EKF. The implementation details of the SIR PF were described in detail. The chosen data segment for

analysis was selected to ensure optimal signal reception conditions, resulting in similar estimations from both

filters. This aligns with the findings from Chapter 3, which demonstrated that the estimations from both

filters are comparable when dealing with Gaussian posterior pdfs and low nonlinear measurement models.

The float solution obtained with the PF provides the necessary information to estimate the empirical success

rate of three admissible integer estimators (ILS, bootstrapping, and rounding) based on the distribution of

particles. This estimation involved counting the number of particles that were fixed to their correct integer

values using each integer estimator. The estimated success rates were then compared to the probabilities of

correct fix calculated using Equations 4.22 and 4.23 from a previous study [36] for rounding and bootstrap-

ping. However, since these expressions do not account for biases in the float solution, the estimated success

rates were lower compared to the probabilities of correct fix assuming unbiased float estimates.
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The application of the LAMBDA transformation to the float ambiguities significantly reduced the compu-

tational complexity when performing the integer search.

In the optimal signal reception conditions considered, there was no significant difference between the solutions

obtained with both estimators. However, the PF provided additional information for fixing the ambiguities,

such as more realistic success rates for the integer fixing using any of the three integer estimators..

7.1.3 Map-aided Particle Filter for Ambiguity Resolution

In Chapter 5, a map-aiding algorithm was implemented in the SIR PF to estimate the float solution for

ambiguity resolution. The algorithm uses digital maps available in the OSM repository and weights the

particles based on the most probable lane of a road segment, considering the correct direction and the dis-

tance between the vehicle and the multiple lanes. It is important to note that using the original maps in the

map-aiding algorithm would introduce bias since the multiple lanes of the road are typically described by a

single vector. Therefore, a lane-level map was required for accurate results.

By applying a constraint that leads to highly non-Gaussian posterior distributions, the SIR PF demonstrated

its capability to capture multi-modal distributions. In contrast, using the EKF would only provide an ap-

proximate estimation of the probabilities by integrating the Gaussian over each lane.

The map-aiding algorithm notably improved the accuracy (by %26)of the vehicle’s across-track position,

particularly in the early epochs where the solution had a larger variance. As the solution converged, the

impact of the map-aiding algorithm diminished. Five segments of the dataset representing different driv-

ing maneuvers were analyzed. For each scenario, the results obtained using the PF with and without the

map-aiding algorithm were compared to the results obtained with the EKF at different time intervals after

the filter initialization. In all cases, the PF with the map-aiding algorithm demonstrated better position

accuracy compared to the other methods. Furthermore, the convergence of the float ambiguities was im-

proved when the PF was aided with the digital map. The success rates of the ILS had an improvement of

%95. This highlights the positive impact of improving the position estimation on the ambiguity resolution.

The particles being less dispersed in the position state allowed the filter to better describe the posterior

distribution of the other states, similar to the effect of marginalizing states with the EKF.

The incorporation of a map constraint into the EKF becomes feasible when digital map information is incor-

porated as a measurement using the H design matrix. This process involves differentiating the measurement

model, which corresponds to the magnitude of the orthogonal vector connecting the lane and the predicted

position. Although a comparable enhancement is observed as with the map-aided PF (%26), the EKF is

limited in capturing the multimodal posterior distribution. Additionally, one of the distinct advantages of
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the map-aided PF is that particles are not resampled within non-navigable regions. In contrast, the Gaussian

distribution derived from the EKF solution intersects with the median between roadways.

Chapter 5 showcased two significant advantages of the PF over the EKF: the ability to integrate highly

nonlinear and non-Gaussian constraints into the estimation process and the ability to capture multi-modal

distributions or other types of distributions beyond the Gaussian assumption.

7.1.4 Non-Gaussian Measurements

The assessment of the PF for estimating the float solution for ambiguity resolution in the presence of

non-Gaussian measurements was conducted. Specifically, the analyzed data segment was selected to have

measurements distorted by multipath, which do not follow a Gaussian distribution. To address this, two

additional steps were implemented in the SIR PF prior to the measurement update step. The first step

was the implementation of an outlier detection algorithm. The statistic tk, which is a normalized predicted

residual estimated from the transitional density, is firstly computed. This metric was then compared to

the normal distribution at the desired level of significance α. Unlike the recursive validation (or innovation

testing) usually implemented on the EKF, the predicted residual and its covariance for the PF are estimated

using the particles themselves. The second step was the Rao-Blackwellization (or marginalization) of the

velocity and acceleration states. This step aimed to reduce the dimensionality of the state being estimated

by the PF, thereby reducing the computational load. By separating the nonlinear and linear states, the

estimation of the nonlinear part was performed using the PF, while the linear part was estimated using the

Kalman Filter. Once an outlier measurement was detected, a mixture of Gaussians was adopted to weight

the particles in the PF. This distribution consisted of a sum of two Gaussians weighted according to the

probability of the measurement being distorted by multipath. As a result, the weighted distribution became

a skewed Gaussian that accounted for distortions in both directions. For the analyzed data where the outlier

detection and the mixture of Gaussians were employed, improvements in position accuracy were observed,

and the estimated float ambiguities were less biased. By de-weighting the measurements instead of excluding

them entirely, the algorithm effectively mitigated the effects of multipath while maintaining the same satellite

geometry. Overall, the implemented algorithm demonstrated its effectiveness in addressing non-Gaussian

measurements and improving the accuracy of the float solution for ambiguity resolution, particularly in

scenarios where multipath distortions were present.
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7.1.5 Recommendations for Future Work

The assessment of the performance of the SIR PF for estimating the full geometry-based float solution was

done in this thesis. This analysis demonstrates the most important features and advantages of using the

Particle Filter. The main limitation of the PF is the computational cost as a large number of particles are

needed to estimate a 9+N dimension state vector. However, The SIR PF with a map-constraint can be

applied to help the states converge faster at the first 30 seconds after the filter has been initialized, and the

EKF can be used afterwards. Moreover, if the vehicle is navigating through an urban canyon environment

and, therefore, prone to receive observations with multipath, the SIR PF can be used to de-weight this

measurements and improve the position accuracy. The PF allows to add any constraint despite the resulting

distribution or the nonlinearity of the measurement model. Considering the limitations and unique features

of the SIR PF for estimating the float solution, some suggestions for future work may include:

� Integrate other sensor data in order to assess which one has greater impact on the position accuracy

and on the ambiguity domain.

� In terms of hardware, evaluate how the resources can be managed to increase efficiency of the Particle

Filter.

� Test multiple kinds of distributions for weighting the measurements as there is no limitation in this

aspect for the PF.

� This research was carried out using L1 GPS measurements in order to keep the state vector as small as

possible, however, this research can be extended to the multi-constellation and multi-frequency case.

� The addition of other non-holonomic constraints to the estimation, regardless how non-Gaussian the

resulting distribution becomes could be investigated.

The Particle Filter has gained popularity in recent years because of its advantages and the highly developed

computers existing nowadays. Monte Carlo methods were only possible in specialized computers and were

applied on particular robotics tracking and navigation cases. As the technology keeps increasing at a fast

pace, the main limitation of the PF eventually will disappear and this estimator will become even more

popular. The study and description of a filter of this kind applied to GPS navigation, and specifically to

estimate the float solution for ambiguity resolution is pertinent.
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Appendix A

RTKLIB GNSS software

RTKLIB is an open source program developed by Tomoji Takasu in 2007 [82]. This software consist of several

application programs and libraries developed in C and C++ which can be executed either on a Graphics

User Interface (GUI) application or a Command-line User Interface (CUI). The system requirements for

executing an application of RTKLIB are minimal, as the library functions are developed in C, the libraries or

applications can be executed on any operating system as long as a C/C++ compiler is installed. However, it

should be considered that in order to run any GUI app, a Microsoft Windows operating system is required.

The CUI applications can be executed in any operating system, and is the suggested way to do it when

modifications are being made to any of the routines. Although the algorithms written in RTKLIB are

complex, the simplicity for modifying the code for experiments is the main reason why it is popular for

processing GNSS data. Within the libraries and applications, RTKLIB provides a solution for standard and

precise positioning. The main features of RTKLIB are the following:

� It supports multi-constellation: GPS, Galileo, GLONASS, QZSS, BeiDou and SBAS

� It provides a real time and post-processing solution for: Single point positioning, Differential position-

ing, kinematic with static and moving baseline, PPP-kinematic, PPP-static and PPP-fixed.

� Supports many standard formats and protocols for GNSS

� Supports external communication via serial, TCP/IP, NTRIP, local log file and FTP/HTTP.

RTKLIB library functions include several algorithms and mathematical functions in order to process

GNSS data and perform the computations. This functions may include matrices operations, positioning

models, coordinates transformation, PPP algorithms, integer ambiguity resolution and can be used in any
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independent program by importing the header files that include the function needed. The main applications

of RTKLIB are in Table A.1

Table A.1: Main RTKLIB applications.

GUI CUI Description

RTK-NAVI RTKRCV Real-time positioning

STRSVR STR2STR Communication Server

RTKPOST RNX2RTKP Post-processing analysis

RTKCONV CONVBIN RINEX converter

RTKPLOT - Plot solutions

RTKGET - Downloader for GNSS data

A.1 RNX2RTKP

The RTKLIB CUI module for post processing analysis RNX2RTKP was used in this thesis. This applica-

tion inputs standard RINEX observation data for the base-station and rover and the navigation file when

performing a differential positioning. Several options about the entire process can be modified, including

the time lapse of the analysis, time interval, coordinate system of the solution, the minimal ratio to fix the

ambiguities. In Figure A.1 the GUI application RTPOST is showed. The command version is compiled

in a better way on a UNIX environment, i.e. Linux or MacOS, because it is easier to inlcude compilation

flags to make the execution more customized. When compiling the application, it is possible to set the same

options as flags, for example: ./executable input -m 15 -p mode output where -m and -p are the

option flags for elevation mask and positioning mode (single point, PPP-kinematic, fixed, static, moving-

base and Kinematic). However, it is suggested to include the configuration file in the compile command:

./executable input file.conf output. In Figure A.2 it is shown an example of a command line for exe-

cuting RNX2RTKP application, where file.conf is the configuration file containing all the options required,

commandresultpy.pos is the output file, then a time interval is passed in order to analyze just a segment of

data, finally the observation and navigations data files are input.
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Figure A.1: RTPOST GUI application for GNSS post-processing analysis

Figure A.2: RNX2RTKP CUI application for GNSS post-processing analysis
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Appendix B

Coordinate systems transformation

In this appendix, a description about the transformation from a geographic coordinate system to a local

geodetic frame is provided. This transformation is useful when estimating position and velocity vectors

from GNSS measurements that are referenced to a geodetic coordinate system but a description about the

navigation trough a specific are or project site is needed. The standard or root mean square errors of the

estimated position in a local geodetic system are useful for interpreting the results.

B.0.1 Coordinate Systems

The geodetic coordinate system is defined as follows [106]:

� The origin is at the center of the reference ellipsoid.

� The primary pole or z axis is the semi-minor axis of the ellipsoid. The plane perpendicular to this axis

is called equatorial plane.

� The secondary axis or x axis is the intersection of the equatorial plane and the Greenwich meridian

plane. Passes through the pojnt P0 (λ = 0 , ϕ = 0).

� The y axis is chosen to form a right-handed system.

However, a local geodetic frame (LGF) is a local coordinate system that is referenced to a specific location.

The local geodetic frame or East North Up (ENU) system is defined as follows [106]:

� The origin is at any point P (λ , ϕ , h) referred to a given ellipsoid.

� The Up axis (U) is normal to the surface of the reference ellipsoid. It is assumed that the gravity vector

coincides with this axis. Primary plane is defined as the plane containing the origin and perpendicular
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to the primary pole.

� The North axis (N) (primary axis) is the intersection of the primary plane and the plane containing

the semi-minor axis of the ellipsoid and the origin.

� The East axis (E) is directed east to complete a left-handed system.

Figure B.1 is a graphical description of the relation between the geodetic and local geodetic coordinate

frames.

Figure B.1: Local navigation system (East North Up system).

B.0.2 Transformation Equations

The transformation of coordinates from a curvilinear geodetic system to a cartesian frame is described by

the following equations.

e2 = 2f − f2 (B.1)

N =
a√

1− e2 sin2 ϕ
(B.2)
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x = (N + h) cosϕ cosλ (B.3)

y = (N + h) cosϕ sinλ (B.4)

z = [(1− e2)N + h] sinϕ (B.5)

where a is the semi-major axis of the WGS84 ellipsoid, f is the flattening factor, e2 is the eccentricity

squared, N is the radius of curvature in the prime vertical, h is the height above the ellipsoid, and x, y,

and z are the geodetic cartesian coordinates in meters. The inverse transformation from the cartesian to the

curvilinear geodetic frame is as follows (non-iterative method [107]):

ϕ = arctan

 z√
x2 + y2(1− e2bz

a
√

x2+y2
)

 λ = arctan
(y
x

)
h =

√
x2 + y2

cosϕ
−N (B.6)

The transformation from the geodetic to the local geodetic frame is described by the following expression:


x

y

z


Geodetic

= P2R2(ϕ− π/2)R3(λ− π)


x

y

z


LocalGeodetic

(B.7)

and the inverse transformation is as follows:
x

y

z


LocalGeodetic

= R3(π − λ)R2(π/2− ϕ)P2


x

y

z


Geodetic

(B.8)

with rotational matrices R3 and R2 as:

R2 =

cos θ 0 − sin θ

0 1 0 sin θ 0 cos θ

 (B.9)
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and:

R3 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (B.10)

P2 is the reflection matrix described as:

P2 =


1 0 0

0 −1 0

0 0 1

 (B.11)
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Appendix C

Cholesky decomposition

The Cholesky decomposition is a transformation or factorization of a positive-definite Hermitian matrix into

the product of a lower triangular matrix and its conjugate transpose. It is useful in sampling methods such

as Monte-Carlo estimators (Particle Filter) to produce a set of samples with the covariance properties of

the system. Consider having a set of uncorrelated samples s and the lower-triangular matrix L from the

Cholesky decomposition of matrix A, then is possible to compute a sample vector Ls correlated according

to L. The algorithm is to compute the Cholesky decomposition of a positive-definite matrix A is as follows

[108]:

Algorithm 5 Cholesky Decomposition

Require: A positive-definite matrix A of order n.

Ensure: The lower triangular Cholesky factor L such that A = LLT.

1: Let a11 =
√
A11 and L11 = a11.

2: for j = 2 to n do

3: Compute Lj1 =
Aj1

L11
.

4: Compute s =
∑j−1

k=1 L
2
jk.

5: Compute Ljj =
√
Ajj − s.

6: for i = j + 1 to n do

7: Compute Lij =
Aij−

∑j−1
k=1 LikLjk

Ljj
.

8: end for

9: end for

The Cholesky decomposition is used in this thesis to ensure that the correlated process noise Qk is added

to the particles at the prediction step instead of just adding the uncorrelated variances of the diagonal values
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of Qk:

xk+1 = Φk+1xk + Lk · N (0, Qk) (C.1)

where Lk is the lower-triangular matrix after applying the Cholesky decomposition to Qk.

143



Appendix D

Double Difference Transformation

Matrix

A description of the algorithm used to compute the double difference transformation matrix to change the

state quantity from single to double difference is provided in this appendix. This algorithm is implemented

in RTKLIB software [82] to simplify the base-satellite book-keeping, as well as the observation covariance

matrix. The DD transformation matrix is applied for the ambiguity resolution step. The algorithm is as

follows:

1. Set all the diagonal elements of the matrix to 1 of the state vector that represent the position, velocity

and acceleration of the receiver.

2. Iterate over each satellite observed and used for the estimation. The index of the first satellite that

meets the criteria to be selected as base is saved. The satellite elevation needs to meet the elevation

mask, the signal needs to be tracked for a sufficient amount of time with no cycle slips.

3. Iterate over each satellite, skipping the base satellite. Check the visibility of the satellite according to

mask angle and if the signal has been tracked for a sufficient amount of time with no cycle slips. If

the criteria are met, the corresponding element is set to 1 for the base satellite and -1 for the current

satellite.

The result of the algorithm described is a matrix of n rows by n columns, n being the dimension of the

state vector. The matrix is identity matrix for the first 9 states (position, velocity and acceleration) and

the rest elements are filled according to the algorithm described. The transformation from SD to DD is as
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follows:

xDD = DT
k xSD (D.1)

and the transformed covariance matrix as:

PDD = DT
k PSDDT

k (D.2)

where xSD is the state vector with the SD float ambiguties with its covariance matrix PSD and Dk is the

DD transformation matrix. Assuming the state vector includes only the position state and three SD float

ambiguities, and example of the 6x6 DD transformation matrix would be as follows:

Dk =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 1

0 0 0 0 −1 0

0 0 0 0 0 −1


It can be noted that the product of the DD matrix and the SD vector reduces the state vector by 1

dimension due to the base satellite.
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Appendix E

Non-linear measurement models and

non-Gaussian distributions

E.1 Non-linear models

In the context of state estimation, measurements serve to update or correct the predicted state vector.

The measurement model h establishes a connection between the observables y = (y1, y2, y3, ..., , yn) and the

unknown state vector x = (x1, x2, x3, ..., , xm) [49]. This mathematical representation assumes a linear form

for any of the states xm if the plot of h(xm) forms a straight line. It’s important to note that a model

satisfying this criterion takes the shape h(x) = ax + b (line equation). However, in practice, most state

estimation problems are nonlinear, causing the graph of h(xm) to deviate from a straight line.

For the carrier and code measurement models (as depicted in equations (2.1) and (2.2)), the introduction

of the position state induces nonlinearity in the model, particularly within the geometric distance term ρir.

Despite this nonlinearity, the substantial separation between satellite i and receiver r yields a h(x) plot with

relatively mild nonlinear characteristics. Illustrated in Figure E.1, the graph shows the geometric distance ρ

varying along the x coordinate from the position state vector. To further assess the degree of linearity within

the model, a linear approximation has been achieved using least squares, yielding the slope and y-intercept of

the line equation. A method to quantify the extent of linearity in the model is by computing the coefficient

of determination R2 between the model and the linear equation. The coefficient R2, is a statistical measure

that indicates how well the independent variables explain the variability of the dependent variable [109]. R2

is described as follows:

R2 = 1− SSR

SST
(E.1)
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where SSR (Sum of Squares Residual) is the sum of squared differences between the actual values of the

dependent variable and the predicted values from the regression model and SST (Total Sum of Squares)

is the sum of squared differences between the actual values of the dependent variable and the mean of the

dependent variable. Note that R2 ranges from 0 to 1, where:

� R2 = 0 indicates that the model does not explain any variability in the dependent variable.

� R2 = 1 indicates that the model explains all the variability in the dependent variable.

Figure E.1: Linear function. Geometric distance ρ and x position state vector rate change. Due to the large
distance between the satellite and the receiver, the function is almost linear. R2 statistic is close to 1.

Measurement models from additional sensors to aid the position estimation usually involve trigonometric

functions to describe different maneuvers. For example, the cosine function is shown in Figure E.2 along

with a line fitted to it. The R2 value is lower than the previous example, depicting more nonlinearity.
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Figure E.2: Nonlinear function. Angle Θ and cos(Θ) values. R2 statistic is .85 depicting less linearity.

The least-squares and EKF estimators use a first-order point of expansion Taylor series to approximate

a non-linear model into its linear form. From a geometric perspective, the Jacobian matrix containing

the derivatives ∂h(x)
∂x represents the slope of a tangent line to the nonlinear function h at the point h(x).

Two limitations arise when the measurement model is highly non-linear and the first-order Taylor series

approximation is used for linearization. Firstly, computing the derivatives for the Jacobian matrix H is

a complex task. Secondly, the approximation does not adequately describe the relationship between the

unknown states and the measurements, which can result in filter divergence. In Figure E.3 a cosine function

with its linear approximation evaluated in 4 different points. As mentioned, the Jacobian contains the

tangent lines to the cosine function evaluated at x.
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Figure E.3: Nonlinear function. Angle Θ and cos(Θ) values. R2 statistic is .85 depicting less linearity.

In Chapter 5, the map-aiding algorithm implemented in the EKF is described. As explained, when digital

map information is used to weigh the particles, each particle’s weight is determined by the Euclidean distance

and directional difference to the closest lane of a road segment. Similar to the code and carrier measurement

models, the position state enters the model nonlinearly when estimating the Euclidean distance between

each particle and its nearest lane. However, these distances are generally shorter than ρir, making the model

more nonlinear than the code and carrier GNSS equations. Moreover, multiple lanes are considered, further

complicating the model’s approximation in its linear form.

E.2 Non-Gaussian Distributions

In GNSS positioning, measurements are treated as continuous random variables assumed to have Gaussian-

distributed errors [49]. Constructing histograms of these measurements provides insight into the probability

distribution of the errors inherent in the measurements. Similarly, histograms of measurement errors directly

depict the probability distribution of these errors. In most cases, the Gaussian assumption about measure-

ment errors holds true. However, when measurements are influenced by external sources of error, such as

when satellite signals are reflected or refracted by nearby surfaces, the distribution no longer conforms to

a Gaussian pattern [80]. Graphical analysis entails plotting the histogram of measurement errors to assess

whether it adheres to a Gaussian curve. Additionally, a quantitative assessment of the distribution’s ”Gaus-

sianity” level can be conducted by fitting the equation of the normal distribution curve to the probability
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distribution of measurements and estimating the R2 metric.

In Figures E.4 and E.5, the distributions of pseudorange measurements are shown both without and

with multipath errors, respectively. This distributions correspond to segments of the data used in this

thesis. As illustrated, the Gaussian curve fitted to the pdf of measurements without multipath effects offers

a better description. The R2 metric for the first distribution is .95, and for the second distribution, it is

.45. As anticipated, the R2 value in the presence of multipath errors is low, signifying a certain degree

of non-Gaussianity. Furthermore, the statistical analysis conducted in [105] demonstrates that the non-

line-of-sight (NLOS) multipath error distribution adheres to a Gamma distribution model. Given that the

Kalman filter always assumes Gaussian distributions for measurement errors, the estimation becomes biased

when measurements are distorted by multipath effects. Chapter 6 discusses the particle filter’s capability to

utilize any likelihood function for weighting measurements which are detected as outliers and do not follow

a Gaussian distribution.

Figure E.4: Gaussian distribution of code measurement errors without multipath effects.
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Figure E.5: Example of non-Gaussian distribution for code measurements distorted by mulitpath .
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