619 research outputs found

    The Applications of Additive Manufacturing Technologies in Cyber-Enabled Manufacturing Systems

    Get PDF
    The application of networked sensors and control in various areas, such as smart grids and infrastructures, has become a recent trend, called cyber-physical systems. The Cyber Enabled Manufacturing (CEM) environment is to apply these technologies in manufacturing systems to handle a significantly greater magnitude of manufacturing data. Additive manufacturing techniques print or place material layer by layer to form a part, thus have a great potential to help accelerate CEM process by printing or embedding sensors and actuators in the proper locations. This paper summarizes the roles of additive manufacturing technologies to help establish a CEM environment.Mechanical Engineerin

    Fuel Cell Development using Additive Manufacturing Technologies -- A Review

    Get PDF
    Fuel cells are being perceived as the future clean energy source by many developed countries in the world. The key today for clean power is the reliance of fuel cells not only to power automobiles but also for residential, small commercial, backup power etc. which calls for production on a large scale. Additive manufacturing is perceived as a way to develop cost effective fuel cells. It imparts flexibility to design different kinds of fuel cells along with reduction in material wastage. This paper deals with the review of additive manufacturing processes for research and development of fuel cell components, such as synthesizing and prototyping new materials for fuel cell components, fuel cell system design and prototyping, designing well sealed fuel cells, bridging from fuel cell design to manufacturing tooling, etc

    Recent Advances in Printed Capacitive Sensors

    Get PDF
    In this review paper, we summarize the latest advances in the field of capacitive sensors fabricated by printing techniques. We first explain the main technologies used in printed electronics, pointing out their features and uses, and discuss their advantages and drawbacks. Then, we review the main types of capacitive sensors manufactured with different materials and techniques from physical to chemical detection, detailing the main substrates and additives utilized, as well as the measured ranges. The paper concludes with a short notice on status and perspectives in the field.H2020-MSCA-IF-2017-794885-SELFSEN

    HIGH PERFORMANCE COMPUTING AND PROCESS CONTROL OF ADDITIVE LAYER MANUFACTURING METHODS FOR POLYMER PRODUCT METAL TOOLS PRODUCTION

    Get PDF
    Purpose of the study: Additive layer manufacturing is basically different from the traditional formative manufacturing process where a complete structure can be constructed into designed shape from layer to layer manufacturing rather than other methods or casting, forming or other machining processes. Additive layer manufacturing is a highly versatile, flexible, and customizable. Methodology: In this paper, we discussed high-performance computing and process control of AM methods by using different parameters. The significant interest in making complex, innovative and robust products by using AM methods to great extent to deal with work is needed in AM challenges relevant to key enabling technologies namely different materials and metrology to achieve functionally and reproductive ways. Main Findings: In this paper, we discussed major processes that highly accurate and the key applications, challenges and recent developments of future additive Am processes. Applications of this study: Additive layer manufacturing methods to develop the most highly and controlled methods for producing a variety of complex shapes and structures. The significant role of AM layer technology is to make produce the most economical and highly effective methods. In this study, we compared different AM methods for achieving the most highly and controlled methods of AM technology. Novelty/Originality of this study: Today manufacturing trends are very highly impacted by technologies globalizations. Various manufactures are using layer manufacturing into their best practices so that they can be changes in the global economy and manufacturing

    A 3D printed electromagnetic nonlinear vibration energy harvester

    Get PDF
    A 3D printed electromagnetic vibration energy harvester is presented. The motion of the device is in-plane with the excitation vibrations, and this is enabled through the exploitation of a leaf isosceles trapezoidal flexural pivot topology. This topology is ideally suited for systems requiring restricted out-of-plane motion and benefits from being fabricated monolithically. This is achieved by 3D printing the topology with materials having a low flexural modulus. The presented system has a nonlinear softening spring response, as a result of designed magnetic force interactions. A discussion of fatigue performance is presented and it is suggested that whilst fabricating, the raster of the suspension element is printed perpendicular to the flexural direction and that the experienced stress is as low as possible during operation, to ensure longevity. A demonstrated power of ~25 μW at 0.1 g is achieved and 2.9 mW is demonstrated at 1 g. The corresponding bandwidths reach up-to 4.5 Hz. The system's corresponding power density of ~0.48 mW cm−3 and normalised power integral density of 11.9 kg m−3 (at 1 g) are comparable to other in-plane systems found in the literature

    Integrated printed microfluidic biosensors

    Get PDF
    Integrated printed microfluidic biosensors are one of the most recent point-of-care (POC) sensor developments. Fast turnaround time for production and ease of customization, enabled by the integration of recognition elements and transducers, are key for on-site biosensing for both healthcare and industry and for speeding up translation to real-life applications. Here, we provide an overview of recent progress in printed microfluidics, from the 2D to the 4D level, accompanied by novel sensing element integration. We also explore the latest trends in integrated printed microfluidics for healthcare, especially POC diagnostics, and food safety applications

    Inkjet-Printed Carbon Nanotubes for Fabricating a Spoof Fingerprint on Paper.

    Get PDF
    A spoof fingerprint was fabricated on paper and applied for a spoofing attack to unlock a smartphone on which a capacitive array of sensors had been embedded with a fingerprint recognition algorithm. Using an inkjet printer with an ink made of carbon nanotubes (CNTs), we printed a spoof fingerprint having an electrical and geometric pattern of ridges and furrows comparable to that of the real fingerprint. With this printed spoof fingerprint, we were able to unlock a smartphone successfully; this was due to the good quality of the printed CNT material, which provided electrical conductivities and structural patterns similar to those of the real fingerprint. This result confirms that inkjet-printing CNTs to fabricate a spoof fingerprint on paper is an easy, simple spoofing route from the real fingerprint and suggests a new method for outputting the physical ridges and furrows on a two-dimensional plane

    3D printing of functional structures

    Get PDF
    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be developed. Nevertheless, one can al- ready start to wonder what possibilities for electrical engineering applications will become available in the near future. Here I try to give a brief and balanced overview of current developments and a few examples of the first small steps towards 3D printed transducers

    Recent advances in the extrusion methods for ceramics

    Get PDF
    In recent years, extrusion 3D printing processes have undergone an important development. They allow obtaining complex shapes in an easy way and relatively low cost. Different plastic materials can be 3D printed with the fused filament fabrication (FFF) technology. Bioinert ceramics such as alumina or zirconia have excellent physical and mechanical properties (high melting point, high strength...) that make them appropriate in different fields: medicine, electronics, etc. However, 3D printing of ceramics is by far less developed than 3D printing of plastics or metals. A possible application for 3D printing of ceramics is the manufacture of prostheses, which usually have complex shapes with porous structures. Ceramic prostheses have several advantages over the use of other materials: they generate low debris, they are hard and they are inert and corrosion-resistant. In the present work the recent advances about extrusion 3D printing of ceramic materials are presented, with a special focus on the manufacture of prosthesesPeer ReviewedPostprint (published version
    • …
    corecore