8,638 research outputs found

    Techniques for Aging, Soft Errors and Temperature to Increase the Reliability of Embedded On-Chip Systems

    Get PDF
    This thesis investigates the challenge of providing an abstracted, yet sufficiently accurate reliability estimation for embedded on-chip systems. In addition, it also proposes new techniques to increase the reliability of register files within processors against aging effects and soft errors. It also introduces a novel thermal measurement setup that perspicuously captures the infrared images of modern multi-core processors

    An Aging-Aware GPU Register File Design Based on Data Redundancy

    Get PDF
    "© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."[EN] Nowadays, GPUs sit at the forefront of high-performance computing thanks to their massive computational capabilities. Internally, thousands of functional units, architected to be fed by large register files, fuel such a performance. At deep nanometer technologies, the SRAM memory cells that implement GPU register files are very sensitive to the Negative Bias Temperature Instability (NBTI) effect. NBTI ages cell transistors by degrading their threshold voltage Vth over the lifetime of the GPU. This degradation, which manifests when a cell keeps the same logic value for a relatively long period of time, compromises the cell read stability and increases the transistor switching delay, which can lead to wrong read values and eventually exceed the processor cycle time, respectively, so resulting in faulty operation. Thiswork proposes architectural mechanisms leveraging the redundancy of the data stored in GPU register files to attack NBTI aging. The proposed mechanisms are based on data compression, power gating, and register address rotation techniques. All these mechanismsworking together balance the distribution of logic values stored in the cells along the execution time, reducing both the overall Vth degradation and the increase in the transistor switching delays. Experimental results show that a conventional GPU register file suffers the worst case for NBTI, since a significant fraction of the cells maintain the same logic value during the entire application execution (i.e., a 100 percent '0' and '1' duty cycle distributions). On average, the proposal reduces these distributions by 58 and 68 percent, respectively, which translates into Vth degradation savings by 54 and 62 percent, respectively.This work was supported by the Gobierno de Aragon and the European ESF (gaZ: T58_17R research group), and by the Ministerio de Economia y Competitividad (MINECO) and AEI/FEDER (EU) funds under Grants TIN2016-76635-C2-1-R and TIN2015-66972-C5-1-R.Valero Bresó, A.; Candel-Margaix, F.; Suárez-Gracia, D.; Petit Martí, SV.; Sahuquillo Borrás, J. (2019). An Aging-Aware GPU Register File Design Based on Data Redundancy. IEEE Transactions on Computers. 68(1):4-20. https://doi.org/10.1109/TC.2018.2849376S42068

    On microarchitectural mechanisms for cache wearout reduction

    No full text
    Hot carrier injection (HCI) and bias temperature instability (BTI) are two of the main deleterious effects that increase a transistor's threshold voltage over the lifetime of a microprocessor. This voltage degradation causes slower transistor switching and eventually can result in faulty operation. HCI manifests itself when transistors switch from logic ''0'' to ''1'' and vice versa, whereas BTI is the result of a transistor maintaining the same logic value for an extended period of time. These failure mechanisms are especiall in those transistors used to implement the SRAM cells of first-level (L1) caches, which are frequently accessed, so they are critical to performance, and they are continuously aging. This paper focuses on microarchitectural solutions to reduce transistor aging effects induced by both HCI and BTI in the data array of L1 data caches. First, we show that the majority of cell flips are concentrated in a small number of specific bits within each data word. In addition, we also build upon the previous studies, showing that logic ''0'' is the most frequently written value in a cache by identifying which cells hold a given logic value for a significant amount of time. Based on these observations, this paper introduces a number of architectural techniques that spread the number of flips evenly across memory cells and reduce the amount of time that logic ''0'' values are stored in the cells by switchingThis work was supported in part by the Spanish Ministerio de EconomĂ­a y Competitividad within the Plan E Funds under Grant TIN2015-66972-C5-1-R, in part by the HiPEAC Collaboration Grant funded by the FP7 HiPEAC Network of Excellence under Grant 287759, and in part by the Engineering and Physical Sciences Research Council under Grant EP/K 026399/1 and Grant EP/J016284/1

    Cross-Layer Approaches for an Aging-Aware Design of Nanoscale Microprocessors

    Get PDF
    Thanks to aggressive scaling of transistor dimensions, computers have revolutionized our life. However, the increasing unreliability of devices fabricated in nanoscale technologies emerged as a major threat for the future success of computers. In particular, accelerated transistor aging is of great importance, as it reduces the lifetime of digital systems. This thesis addresses this challenge by proposing new methods to model, analyze and mitigate aging at microarchitecture-level and above

    Thermal Management for Dependable On-Chip Systems

    Get PDF
    This thesis addresses the dependability issues in on-chip systems from a thermal perspective. This includes an explanation and analysis of models to show the relationship between dependability and tempature. Additionally, multiple novel methods for on-chip thermal management are introduced aiming to optimize thermal properties. Analysis of the methods is done through simulation and through infrared thermal camera measurements

    Proactive Aging Mitigation in CGRAs through Utilization-Aware Allocation

    Full text link
    Resource balancing has been effectively used to mitigate the long-term aging effects of Negative Bias Temperature Instability (NBTI) in multi-core and Graphics Processing Unit (GPU) architectures. In this work, we investigate this strategy in Coarse-Grained Reconfigurable Arrays (CGRAs) with a novel application-to-CGRA allocation approach. By introducing important extensions to the reconfiguration logic and the datapath, we enable the dynamic movement of configurations throughout the fabric and allow overutilized Functional Units (FUs) to recover from stress-induced NBTI aging. Implementing the approach in a resource-constrained state-of-the-art CGRA reveals 2.2Ă—2.2\times lifetime improvement with negligible performance overheads and less than 10%10\% increase in area.Comment: Please cite this as: M. Brandalero, B. N. Lignati, A. Carlos Schneider Beck, M. Shafique and M. H\"ubner, "Proactive Aging Mitigation in CGRAs through Utilization-Aware Allocation," 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 2020, pp. 1-6, doi: 10.1109/DAC18072.2020.921858

    Aging-aware parallel execution

    Get PDF
    Computation has been pushed to the edge to decrease latency and alleviate the computational burden of the IoT applications in the cloud. However, the increasing processing demands of Edge Applications make necessary the employment of platforms that exploit thread-level parallelism (TLP). Yet, power and heat dissipation rise as TLP inadvertently increases or when parallelism is not cleverly exploited, which may be the result of the non-ideal use of a given PPI (Parallel Program Interface). Besides the common issues, such as the need for more robust power sources and better cooling, heat also adversely affects aging, accelerating phenomenons such as negative bias temperature instability (NBTI) and hot-carrier injection (HCI), which further reduces processor lifetime. Hence, considering that increasing the lifespan of an edge device is key, so the number of times the application set may execute until its end-of-life is maximized, we propose BALDER. It is a learning framework capable of automatically choosing optimal configuration executions (PPI and number of threads) according to the parallel application at hand, aiming to maximize the trade-off between aging and performance. When executing ten well-known applications on two multicore embedded architectures, we show that BALDER can find a nearly-optimal configuration for all our experiments.Peer ReviewedPostprint (author's final draft

    Degradation in FPGAs: Monitoring, Modeling and Mitigation

    Get PDF
    This dissertation targets the transistor aging degradation as well as the associated thermal challenges in FPGAs (since there is an exponential relation between aging and chip temperature). The main objectives are to perform experimentation, analysis and device-level model abstraction for modeling the degradation in FPGAs, then to monitor the FPGA to keep track of aging rates and ultimately to propose an aging-aware FPGA design flow to mitigate the aging

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints

    Resource management and application customization for hardware accelerated systems

    Get PDF
    Computational demands are continuously increasing, driven by the growing resource demands of applications. At the era of big-data, big-scale applications, and real-time applications, there is an enormous need for quick processing of big amounts of data. To meet these demands, computer systems have shifted towards multi-core solutions. Technology scaling has allowed the incorporation of even larger numbers of transistors and cores into chips. Nevertheless, area constrains, power consumption limitations, and thermal dissipation limit the ability to design and sustain ever increasing chips. To overpassthese limitations, system designers have turned towards the usage of hardware accelerators. These accelerators can take the form of modules attached to each core of a multi-core system, forming a network on chip of cores with attached accelerators. Another option of hardware accelerators are Graphics Processing Units (GPUs). GPUs can be connected through a host-device model with a general purpose system, and are used to off-load parts of a workload to them. Additionally, accelerators can be functionality dedicated units. They can be part of a chip and the main processor can offload specific workloads to the hardware accelerator unit.In this dissertation we present: (a) a microcoded synchronization mechanism for systems with hardware accelerators that provide distributed shared memory, (b) a Streaming Multiprocessor (SM) allocation policy for single application execution on GPUs, (c) an SM allocation policy for concurrent applications that execute on GPUs, and (d) a framework to map neural network (NN) weights to approximate multiplier accuracy levels. Theaforementioned mechanisms coexist in the resource management domain. Specifically, the methodologies introduce ways to boost system performance by using hardware accelerators. In tandem with improved performance, the methodologies explore and balance trade-offs that the use of hardware accelerators introduce
    • …
    corecore