9 research outputs found

    Addressing training data sparsity and interpretability challenges in AI based cellular networks

    Get PDF
    To meet the diverse and stringent communication requirements for emerging networks use cases, zero-touch arti cial intelligence (AI) based deep automation in cellular networks is envisioned. However, the full potential of AI in cellular networks remains hindered by two key challenges: (i) training data is not as freely available in cellular networks as in other fields where AI has made a profound impact and (ii) current AI models tend to have black box behavior making operators reluctant to entrust the operation of multibillion mission critical networks to a black box AI engine, which allow little insights and discovery of relationships between the configuration and optimization parameters and key performance indicators. This dissertation systematically addresses and proposes solutions to these two key problems faced by emerging networks. A framework towards addressing the training data sparsity challenge in cellular networks is developed, that can assist network operators and researchers in choosing the optimal data enrichment technique for different network scenarios, based on the available information. The framework encompasses classical interpolation techniques, like inverse distance weighted and kriging to more advanced ML-based methods, like transfer learning and generative adversarial networks, several new techniques, such as matrix completion theory and leveraging different types of network geometries, and simulators and testbeds, among others. The proposed framework will lead to more accurate ML models, that rely on sufficient amount of representative training data. Moreover, solutions are proposed to address the data sparsity challenge specifically in Minimization of drive test (MDT) based automation approaches. MDT allows coverage to be estimated at the base station by exploiting measurement reports gathered by the user equipment without the need for drive tests. Thus, MDT is a key enabling feature for data and artificial intelligence driven autonomous operation and optimization in current and emerging cellular networks. However, to date, the utility of MDT feature remains thwarted by issues such as sparsity of user reports and user positioning inaccuracy. For the first time, this dissertation reveals the existence of an optimal bin width for coverage estimation in the presence of inaccurate user positioning, scarcity of user reports and quantization error. The presented framework can enable network operators to configure the bin size for given positioning accuracy and user density that results in the most accurate MDT based coverage estimation. The lack of interpretability in AI-enabled networks is addressed by proposing a first of its kind novel neural network architecture leveraging analytical modeling, domain knowledge, big data and machine learning to turn black box machine learning models into more interpretable models. The proposed approach combines analytical modeling and domain knowledge to custom design machine learning models with the aim of moving towards interpretable machine learning models, that not only require a lesser training time, but can also deal with issues such as sparsity of training data and determination of model hyperparameters. The approach is tested using both simulated data and real data and results show that the proposed approach outperforms existing mathematical models, while also remaining interpretable when compared with black-box ML models. Thus, the proposed approach can be used to derive better mathematical models of complex systems. The findings from this dissertation can help solve the challenges in emerging AI-based cellular networks and thus aid in their design, operation and optimization

    Wireless Technologies and the National Information Infrastructure

    Get PDF
    This report examines the role wireless technologies will play in the emerging National Information Infrastructure (NII) and identifies the challenges that policymakers, regulators, and wireless service providers will face as they begin to more closely integrate wireless systems with existing wireline networks. The report also discusses some of the technical and social implications of the widespread use of wireless technologies— paying particular attention to the profound changes that wireless systems may cause in patterns of mobility

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Transmission Modeling with Smartphone-based Sensing

    Get PDF
    Infectious disease spread is difficult to accurately measure and model. Even for well-studied pathogens, uncertainties remain regarding the dynamics of mixing behavior and how to balance simulation-generated estimates with empirical data. Smartphone-based sensing data promises the availability of inferred proximate contacts, with which we can improve transmission models. This dissertation addresses the problem of informing transmission models with proximity contact data by breaking it down into three sub-questions. Firstly, can proximity contact data inform transmission models? To this question, an extended-Kalman-filter enhanced System Dynamics Susceptible-Infectious-Removed (EKF-SD-SIR) model demonstrated the filtering approach, as a framework, for informing Systems Dynamics models with proximity contact data. This combination results in recurrently-regrounded system status as empirical data arrive throughout disease transmission simulations---simultaneously considering empirical data accuracy, growing simulation error between measurements, and supporting estimation of changing model parameters. However, as revealed by this investigation, this filtering approach is limited by the quality and reliability of sensing-informed proximate contacts, which leads to the dissertation's second and third questions---investigating the impact of temporal and spatial resolution on sensing inferred proximity contact data for transmission models. GPS co-location and Bluetooth beaconing are two of those common measurement modalities to sense proximity contacts with different underlying technologies and tradeoffs. However, both measurement modalities have shortcomings and are prone to false positives or negatives when used to detect proximate contacts because unmeasured environmental influences bias the data. Will differences in sensing modalities impact transmission models informed by proximity contact data? The second part of this dissertation compares GPS- and Bluetooth-inferred proximate contacts by accessing their impact on simulated attack rates in corresponding proximate-contact-informed agent-based Susceptible-Exposed-Infectious-Recovered (ABM-SEIR) models of four distinct contagious diseases. Results show that the inferred proximate contacts resulting from these two measurement modalities are different and give rise to significantly different attack rates across multiple data collections and pathogens. While the advent of commodity mobile devices has eased the collection of proximity contact data, battery capacity and associated costs impose tradeoffs between the frequency and scanning duration used for proximate-contact detection. The choice of a balanced sensing regime involves specifying temporal resolutions and interpreting sensing data---depending on circumstances such as the characteristics of a particular pathogen, accompanying disease, and underlying population. How will the temporal resolution of sensing impact transmission models informed by proximity contact data? Furthermore, how will circumstances alter the impact of temporal resolution? The third part of this dissertation investigates the impacts of sensing regimes on findings from two sampling methods of sensing at widely varying inter-observation intervals by synthetically downsampling proximity contact data from five contact network studies---with each of these five studies measuring participant-participant contact every 5 minutes for durations of four or more weeks. The impact of downsampling is evaluated through ABM-SEIR simulations from both population- and individual-level for 12 distinct contagious diseases and associated variants of concern. Studies in this part find that for epidemiological models employing proximity contact data, both the observation paradigms and the inter-observation interval configured to collect proximity contact data exert impacts on the simulation results. Moreover, the impact is subject to the population characteristics and pathogen infectiousness reflective (such as the basic reproduction number, R0R_0). By comparing the performance of two sampling methods of sensing, we found that in most cases, periodically observing for a certain duration can collect proximity contact data that allows agent-based models to produce a reasonable estimation of the attack rate. However, higher-resolution data are preferred for modeling individual infection risk. Findings from this part of the dissertation represent a step towards providing the empirical basis for guidelines to inform data collection that is at once efficient and effective. This dissertation addresses the problem of informing transmission models with proximity contact data in three steps. Firstly, the demonstration of an EKF-SD-SIR model suggests that the filtering approach could improve System Dynamics transmission models by leveraging proximity contact data. In addition, experiments with the EKF-SD-SIR model also revealed that the filtering approach is constrained by the limited quality and reliability of sensing-data-inferred proximate contacts. The following two parts of this dissertation investigate spatial-temporal factors that could impact the quality and reliability of sensor-collected proximity contact data. In the second step, the impact of spatial resolution is illustrated by differences between two typical sensing modalities---Bluetooth beaconing versus GPS co-location. Experiments show that, in general, proximity contact data collected with Bluetooth beaconing lead to transmission models with results different from those driven by proximity contact data collected with GPS co-location. Awareness of the differences between sensing modalities can aid researchers in incorporating proximity contact data into transmission models. Finally, in the third step, the impact of temporal resolution is elucidated by investigating the differences between results of transmission models led by proximity contact data collected with varying observation frequencies. These differences led by varying observation frequencies are evaluated under circumstances with alternative assumptions regarding sampling method, disease/pathogen type, and the underlying population. Experiments show that the impact of sensing regimes is influenced by the type of diseases/pathogens and underlying population, while sampling once in a while can be a decent choice across all situations. This dissertation demonstrated the value of a filtering approach to enhance transmission models with sensor-collected proximity contact data, as well as explored spatial-temporal factors that will impact the accuracy and reliability of sensor-collected proximity contact data. Furthermore, this dissertation suggested guidance for future sensor-based proximity contact data collection and highlighted needs and opportunities for further research on sensing-inferred proximity contact data for transmission models

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Senate journal, 1 December 2004.

    Get PDF
    Titles and imprints vary; Some volumes include miscellaneous state documents and reports; Rules of the Senat

    Technology, Science and Culture

    Get PDF
    From the success of the first and second volume of this series, we are enthusiastic to continue our discussions on research topics related to the fields of Food Science, Intelligent Systems, Molecular Biomedicine, Water Science, and Creation and Theories of Culture. Our aims are to discuss the newest topics, theories, and research methods in each of the mentioned fields, to promote debates among top researchers and graduate students and to generate collaborative works among them
    corecore