425 research outputs found

    Blind Receiver Design for OFDM Systems Over Doubly Selective Channels

    Get PDF
    We develop blind data detectors for orthogonal frequency-division multiplexing (OFDM) systems over doubly selective channels by exploiting both frequency-domain and time-domain correlations of the received signal. We thus derive two blind data detectors: a time-domain data detector and a frequency-domain data detector. We also contribute a reduced complexity, suboptimal version of a time-domain data detector that performs robustly when the normalized Doppler rate is less than 3%. Our frequency-domain data detector and suboptimal time-domain data detector both result in integer least-squares (LS) problems. We propose the use of the V-BLAST detector and the sphere decoder. The time-domain data detector is not limited to the Doppler rates less than 3%, but cannot be posed as an integer LS problem. Our solution is to develop an iterative algorithm that starts from the suboptimal time-domain data detector output. We also propose channel estimation and prediction algorithms using a polynomial expansion model, and these estimators work with data detectors (decision-directed mode) to reduce the complexity. The estimators for the channel statistics and the noise variance are derived using the likelihood function for the data. Our blind data detectors are fairly robust against the parameter mismatch

    Equalization Techniques of Control and Non-Payload Communication Links for Unmanned Aerial Vehicles

    Get PDF
    In the next years, several new applications involving unmanned aerial vehicles (UAVs) for public and commercial uses are envisaged. In such developments, since UAVs are expected to operate within the public airspace, a key issue is the design of reliable control and non-payload communication (CNPC) links connecting the ground control station to the UAV. At the physical layer, CNPC design must cope with time- and frequency-selectivity (so-called double selectivity) of the wireless channel, due to lowaltitude operation and flight dynamics of the UAV. In this paper, we consider the transmission of continuous phase modulated (CPM) signals for UAV CNPC links operating over doubly-selective channels. Leveraging on the Laurent representation for a CPM signal, we design a two-stage receiver: the first one is a linear time-varying (LTV) equalizer, synthesized under either the zero-forcing (ZF) or minimum mean-square error (MMSE) criterion; the second one recovers the transmitted symbols from the pseudo-symbols of the Laurent representation in a simple recursive manner. In addition to LTV-ZF and LTV-MMSE equalizers, their widely-linear versions are also developed, to take into account the possible noncircular features of the CPM signal. Moreover, relying on a basis expansion model (BEM) of the doubly-selective channel, we derive frequency-shift versions of the proposed equalizers, by discussing their complexity issues and proposing simplified implementations. Monte Carlo numerical simulations show that the proposed receiving structures are able to satisfactorily equalize the doubly-selective channel in typical UAV scenarios

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    High mobility in OFDM based wireless communication systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has been adopted as the transmission scheme in most of the wireless systems we use on a daily basis. It brings with it several inherent advantages that make it an ideal waveform candidate in the physical layer. However, OFDM based wireless systems are severely affected in High Mobility scenarios. In this thesis, we investigate the effects of mobility on OFDM based wireless systems and develop novel techniques to estimate the channel and compensate its effects at the receiver. Compressed Sensing (CS) based channel estimation techniques like the Rake Matching Pursuit (RMP) and the Gradient Rake Matching Pursuit (GRMP) are developed to estimate the channel in a precise, robust and computationally efficient manner. In addition to this, a Cognitive Framework that can detect the mobility in the channel and configure an optimal estimation scheme is also developed and tested. The Cognitive Framework ensures a computationally optimal channel estimation scheme in all channel conditions. We also demonstrate that the proposed schemes can be adapted to other wireless standards easily. Accordingly, evaluation is done for three current broadcast, broadband and cellular standards. The results show the clear benefit of the proposed schemes in enabling high mobility in OFDM based wireless communication systems.Orthogonal Frequency Division Multiplexing (OFDM) wurde als Übertragungsschema in die meisten drahtlosen Systemen, die wir täglich verwenden, übernommen. Es bringt mehrere inhärente Vorteile mit sich, die es zu einem idealen Waveform-Kandidaten in der Bitübertragungsschicht (Physical Layer) machen. Allerdings sind OFDM-basierte drahtlose Systeme in Szenarien mit hoher Mobilität stark beeinträchtigt. In dieser Arbeit untersuchen wir die Auswirkungen der Mobilität auf OFDM-basierte drahtlose Systeme und entwickeln neuartige Techniken, um das Verhalten des Kanals abzuschätzen und seine Auswirkungen am Empfänger zu kompensieren. Auf Compressed Sensing (CS) basierende Kanalschätzverfahren wie das Rake Matching Pursuit (RMP) und das Gradient Rake Matching Pursuit (GRMP) werden entwickelt, um den Kanal präzise, robust und rechnerisch effizient abzuschätzen. Darüber hinaus wird ein Cognitive Framework entwickelt und getestet, das die Mobilität im Kanal erkennt und ein optimales Schätzungsschema konfiguriert. Das Cognitive Framework gewährleistet ein rechnerisch optimales Kanalschätzungsschema für alle möglichen Kanalbedingungen. Wir zeigen außerdem, dass die vorgeschlagenen Schemata auch leicht an andere Funkstandards angepasst werden können. Dementsprechend wird eine Evaluierung für drei aktuelle Rundfunk-, Breitband- und Mobilfunkstandards durchgeführt. Die Ergebnisse zeigen den klaren Vorteil der vorgeschlagenen Schemata bei der Ermöglichung hoher Mobilität in OFDM-basierten drahtlosen Kommunikationssystemen

    MMSE estimation of basis expansion model for rapidly time-varying channels

    Get PDF
    In this paper, we propose an estimation technique for rapidly time-varying channels. We approximate the time-varying channel using the basis expansion model (BEM). The BEM coefficients of the channel are needed to design channel equalizers. We rely on pilot symbol assisted modulation (PSAM) to estimate the channel (or the BEM coefficients of the channel). We first derive the optimal minimum mean-square error (MMSE) interpolation based channel estimation technique. We then derive the BEM channel estimation, where only the BEM coefficients are estimated. We consider a BEM with a critically sampled Doppler spectrum, as well as a BEM with an oversampled Doppler spectrum. It has been shown that, while the first suffers from an error floor due to a modeling error, the latter is sensitive to noise. A robust channel estimation can then be obtained by combining the MMSE interpolation based channel estimation and the BEM channel estimation technique. Through computer simulations, it is shown that the resulting algorithm provides a significant gain when an oversampled Doppler spectrum is used (an oversampling rate equal to 2 appears to be sufficient), while only a slight improvement is obtained when the critically sampled Doppler spectrum is used. 1

    Channel Estimation Architectures for Mobile Reception in Emerging DVB Standards

    Get PDF
    Throughout this work, channel estimation techniques have been analyzed and proposed for moderate and very high mobility DVB (digital video broadcasting) receivers, focusing on the DVB-T2 (Digital Video Broadcasting - Terrestrial 2) framework and the forthcoming DVB-NGH (Digital Video Broadcasting - Next Generation Handheld) standard. Mobility support is one of the key features of these DVB specifications, which try to deal with the challenge of enabling HDTV (high definition television) delivery at high vehicular speed. In high-mobility scenarios, the channel response varies within an OFDM (orthogonal frequency-division multiplexing) block and the subcarriers are no longer orthogonal, which leads to the so-called ICI (inter-carrier interference), making the system performance drop severely. Therefore, in order to successfully decode the transmitted data, ICI-aware detectors are necessary and accurate CSI (channel state information), including the ICI terms, is required at the receiver. With the aim of reducing the number of parameters required for such channel estimation while ensuring accurate CSI, BEM (basis expansion model) techniques have been analyzed and proposed for the high-mobility DVB-T2 scenario. A suitable clustered pilot structure has been proposed and its performance has been compared to the pilot patterns proposed in the standard. Different reception schemes that effectively cancel ICI in combination with BEM channel estimation have been proposed, including a Turbo scheme that includes a BP (belief propagation) based ICI canceler, a soft-input decision-directed BEM channel estimator and the LDPC (low-density parity check) decoder. Numerical results have been presented for the most common channel models, showing that the proposed receiver schemes allow good reception, even in receivers with extremely high mobility (up to 0.5 of normalized Doppler frequency).Doktoretza tesi honetan, hainbat kanal estimazio teknika ezberdin aztertu eta proposatu dira mugikortasun ertain eta handiko DVB (Digital Video Broadcasting) hartzaileentzat, bigarren belaunaldiko Lurreko Telebista Digitalean DVB-T2 (Digital Video Broadcasting - Terrestrial 2 ) eta hurrengo DVB-NGH (Digital Video Broadcasting - Next Generation Handheld) estandarretan oinarrututa. Mugikortasuna bigarren belaunaldiko telebista estandarrean funtsezko ezaugarri bat da, HDTV (high definition television) zerbitzuak abiadura handiko hartzaileetan ahalbidetzeko erronkari aurre egiteko nahian. Baldintza horietan, kanala OFDM (ortogonalak maiztasun-zatiketa multiplexing ) sinbolo baten barruan aldatzen da, eta subportadorak jada ez dira ortogonalak, ICI-a (inter-carrier interference) sortuz, eta sistemaren errendimendua hondatuz. Beraz, transmititutako datuak behar bezala deskodeatzeko, ICI-a ekiditeko gai diren detektagailuak eta CSI-a (channel state information) zehatza, ICI osagaiak barne, ezinbestekoak egiten dira hartzailean. Kanalaren estimazio horretarako beharrezkoak diren parametro kopurua murrizteko eta aldi berean CSI zehatza bermatzeko, BEM (basis expansion model) teknika aztertu eta proposatu da ICI kanala identifikatzeko mugikortasun handiko DVB-T2 eszenatokitan. Horrez gain, pilotu egitura egokia proposatu da, estandarrean proposatutako pilotu ereduekin alderatuz BEM estimazioan oinarritua. ICI-a baliogabetzen duten hartzaile sistema ezberdin proposatu dira, Turbo sistema barne, non BP (belief propagation) detektagailua, soft BEM estimazioa eta LDPC (low-density parity check ) deskodetzailea uztartzen diren. Ohiko kanal ereduak erabilita, simulazio emaitzak aurkeztu dira, proposatutako hartzaile sistemak mugikortasun handiko kasuetan harrera ona dutela erakutsiz, 0.5 Doppler maiztasun normalizaturaino.Esta tesis doctoral analiza y propone diferentes técnicas de estimación de canal para receptores DVB (Digital Video Broadcasting) con movilidad moderada y alta, centrándose en el estándar de segunda generación DVB-T2 (Digital Video Broadcasting - Terrestrial 2 ) y en el próximó estándar DVB-NGH (Digital Video Broadcasting - Next Generation Handheld ). La movilidad es una de las principales claves de estas especificaciones, que tratan de lidiar con el reto de permitir la recepción de señal HDTV (high definition television) en receptores móviles. En escenarios de alta movilidad, la respuesta del canal varía dentro de un símbolo OFDM (orthogonal frequency-division multiplexing ) y las subportadoras ya no son ortogonales, lo que genera la llamada ICI (inter-carrier interference), deteriorando el rendimiento de los receptores severamente. Por lo tanto, con el fin de decodificar correctamente los datos transmitidos, detectores capaces de suprimir la ICI y una precisa CSI (channel state information), incluyendo los términos de ICI, son necesarios en el receptor. Con el objetivo de reducir el número de parámetros necesarios para dicha estimación de canal, y al mismo tiempo garantizar una CSI precisa, la técnica de estimación BEM (basis expansion model) ha sido analizada y propuesta para identificar el canal con ICI en receptores DVB-T2 de alta movilidad. Además se ha propuesto una estructura de pilotos basada en clústers, comparando su rendimiento con los patrones de pilotos establecidos en el estándar. Se han propuesto diferentes sistemas de recepción que cancelan ICI en combinación con la estimación BEM, incluyendo un esquema Turbo que incluye un detector BP (belief propagation), un estimador BEM soft y un decodificador LDPC (low-density parity check). Se han presentado resultados numéricos para los modelos de canal más comunes, demostrando que los sistemas de recepción propuestos permiten la decodificación correcta de la señal incluso en receptores con movilidad muy alta (hasta 0,5 de frecuencia de Doppler normalizada)
    corecore