4,856 research outputs found

    Integration of Bulk Piezoelectric Materials into Microsystems.

    Full text link
    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100μm. The characterized processes include reliable low-temperature (200˚C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (±0.5μm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12μmPP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with <7mW power consumption. The close match between test data and simulation results suggests that the piezoelectric properties of bulk-PZT5A are mostly preserved without any necessity of repolarization. Three generations of resonant vibration energy harvesters are designed, simulated and fabricated to demonstrate the competitive performance of the new fabrication process over traditional piezoelectric deposition systems. An unpackaged PZT/Si unimorph harvester with 27mm3 active device volume produces up to 205μW at 1.5g/154Hz. The prototypes have achieved the highest figure-of-merits (normalized-power-density × bandwidth) amongst previously reported inertial energy harvesters. The fabricated energy harvester is utilized to create an autonomous energy generation platform in 0.3cm3 by system-level integration of a 50-80% efficient power management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of <1μW in active-mode (measured) and <5pA in sleep-mode (simulated). Under 1g vibration at 155Hz, a 70mF ultra-capacitor is charged from 0V to 1.85V in 50 minutes.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91479/1/aktakka_3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/91479/2/aktakka_2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/91479/3/aktakka_1.pd

    Copper to copper bonding by nano interfaces for fine pitch interconnections and thermal applications

    Get PDF
    Ever growing demands for portability and functionality have always governed the electronic technology innovations. IC downscaling with Moore s law at IC level and system miniaturization with System-On-Package (SOP) paradigm at system level, have resulted and will continue to result in ultraminiaturized systems with unprecedented functionality at reduced cost. However, system miniaturization poses several electrical and thermal challenges that demand innovative solutions including advanced materials, bonding and assembly techniques. Heterogeneous material and device integration for thermal structures and IC assembly are limited by the bonding technology and the electrical and thermal impedance of the bonding interfaces. Solder - based bonding technology that is prevalent today is a major limitation to future systems. The trend towards miniaturized systems is expected to drive downscaling of IC I/O pad pitches from 40µm to 1- 5µm in future. Solder technology imposes several pitch, processability and cost restrictions at such fine pitches. Furthermore, according to International Technology Roadmap for Semiconductors (ITRS-2006), the supply current in high performance microprocessors is expected to increase to 220 A by 2012. At such supply current, the current density will exceed the maximum allowable current density of solders. The intrinsic delay and electromigration in solders are other daunting issues that become critical at nanometer sized technology nodes. In addition, formation of intermetallics is also a bottleneck that poses significant mechanical issues. Similarly, thermal power dissipation is growing to unprecedented high with a projected power of 198 W by 2008 (ITRS 2006). Present thermal interfaces are not adequate for such high heat dissipation. Recently, copper based thin film bonding has become a promising approach to address the abovementioned challenges. However, copper-copper direct bonding without using solders has not been studied thoroughly. Typically, bonding is carried out at 400oC for 30 min followed by annealing for 30 min. High thermal budget in such process makes it less attractive for integrated systems because of the associated process incompatibilities. Hence, there is a need to develop a novel low temperature copper to copper bonding process. In the present study, nanomaterials - based copper-to-copper bonding is explored and developed as an alternative to solder-based bonding. To demonstrate fine pitch bonding, the patterning of these nanoparticles is crucial. Therefore, two novel self-patterning techniques based on: 1.) Selective wetting and 2.) Selective nanoparticle deposition, are developed to address this challenge. Nanoparticle active layer facilitates diffusion and, thus, a reliable bond can be achieved using less thermal budget. Quantitative characterization of the bonding revealed good metallurgical bonding with very high bond strength. This has been confirmed by several morphological and structural characterizations. A 30-micron pitch IC assembly test vehicle is used to demonstrate fine pitch patternability and bonding. In conclusion, novel nanoparticle synthesis and patterning techniques were developed and demonstrated for low-impedance and low-cost electrical and thermal interfaces.M.S.Committee Chair: Rao R. Tummala; Committee Member: C. P. Wong; Committee Member: P. M. Ra

    Research and development of optically transparent join with low processing temperatures

    Get PDF
    The purpose of this study was to investigate durable solar cell cover glass joins produced by diffusion bonding with deep eutectic solvents (DES) and to develop a novel process of joining optically transparent materials at low temperatures. A joined PV cell-glass specimen was characterized using Raman, μ-FTIR, SEM-EDS, and thin-film XRD. DESs were created with malonic acid (MAL) and choline chloride (ChCl) of varying composition factors (CF; CF=MAL/ChCl). Joining borosilicate glass coupons was attempted using DESs with CF = 0.65 and 1 at temperatures between 100-150 °C for 20 hours. Joining the glass coupons failed at all temperatures and oxygen partial pressures. Metal salts and borosilicate glass solubilities were studied in a DES with varying CF. Oxide solubilities increased as CF approached 1. AlCl3, Al(NO3)3, and silicic acid exhibited greater solubilities than their corresponding oxides, but were not sufficient for joining. Silica was dissolved in a choline hydroxide (ChOH)-methanol solution to produce a join between borosilicate glass coupons at low temperatures. Tetramethoxysilane (TMOS) and hexamethyldisilazane (HMDS) were added as network modifiers. Thermal analyses showed alcohol condensation reactions occur at 67 °C. A solid join was produced between two borosilicate glass coupons when held at 67 °C for 20 hours. Optical spectroscopy showed the join had \u3e 80% transmission in the range of 350-1100 nm. The joins were thermally stable at 70 °C, but the decomposition of ChOH caused discoloration at \u3e 80 °

    Nanoscale platinum and iron -cobalt catalysts deposited in microchannel microreactors for use in hydrogenation and dehydrogenation of cyclohexene, selective oxidation of carbon monoxide and Fischer -Tropsch process to higher alkanes

    Get PDF
    Chemical Process Miniaturization (CPM) has predominant advantages in heat and mass transfer limited unit operations, synthesis of hazardous materials, and as a process development tool. For years, engineers have been seeking ways to apply CPM to practical applications. Studies of catalysts and catalyst supports that can be applied to microreactors are important for a number of commercially desirable gas phase reactions. Parameters such as surface-to-volume ratio and the pore structure of catalyst supports influence the activity and selectivity of the catalysts. In this study, platinum, iron and cobalt catalysts were fabricated by sputtering deposition and compared with catalysts deposited by chemical procedures. The chemical methods to fabricate silica-supported or alumina-supported Pt and alumina-supported Fe/Co catalysts were investigated using the sol-gel and ion impregnation techniques. A substantial increase in the reaction surface area was observed for the sol-gel supports; however, the sol-gel could not be uniformly applied in the smaller microchannels tested. The characterization of the catalysts and supports was performed using SEM, XPS, BET surface area measurement, EDX, and VSM. The support particles are approximately 80 nm in diameter, which results in a specific surface area of 400 m2/g and dramatically increases the surface area of the catalysts in a microreactor from 0.03 m2 to 7 m2. The activity and efficiency of catalysts were evaluated in microreactors with 100 micron and 5 micron wide channels. Process optimization of the Inductive Coupled Plasma (ICP) etching was necessary to achieve the desired microchannel dimensions and uniformity. The ICP parameters\u27 studies included cycle time of SF6 gas flow, bias power, and chamber pressure. The conversion of cyclohexene to cyclohexane and benzene is the model reaction for comparison of the various deposition methods of the catalysts and the supports. In addition, screening studies were performed on two reactions of enormous commercial potential: Fischer-Tropsch (F-T) synthesis, and preferential oxidation of CO in fuel cell. An over 50% conversion of CO and 78% selectivity to propane in F-T synthesis has been achieved. Meanwhile, a 70% conversion of CO and 80% selectivity to CO2 in preferential oxidation is reached in the fuel cell feed gas reaction. Statistical modeling studies were done using a Central Composite Design (CCD) to achieve the optimal condition (temperature 158°C, CO: O2 ratio 1.77 and total flow rate 0.207 sccm) for preferential oxidation of CO in fuel cells

    Development Of N-Type Spin-On Dopant For Silicon Devices

    Get PDF
    In this research, works are focused on the preparation of n-type spin-on dopant (SOD) using sol-gel technology. The main aim of this research is to prepare n-type SOD with doping concentration in the range of 1016 to 1020 cm-3. Di dalam penyelidikan ini, kerja-kerja lebih difokuskan kepada penyediaan pendopan putaran jenis n (SOD) menggunakan teknologi sol-gel. Tujuan utama penyelidikan ini adalah untuk menyediakan SOD dengan kepekatan pendopan di antara 1016 kepada 1020 sm-3

    Formation and characterization of inorganic membranes from zeolite-silica microcomposites

    Get PDF
    Small crystals of zeolites (500-1000 nm) with two- and three-dimensional channel systems (faujasite and ZSM-5 structures) were embedded in amorphous thin films derived from TEOS hydrolyzed in alcoholic solution. Scanning electron microscopy studies show that the zeolites can be quite evenly dispersed in the membrane, resulting in single layers of zeolite crystals protruding out of the amorphous matrix. In situ FT-IR studies with a series of probe molecules revealed that in most membranes the zeolites were 100% accessible from the gas phase. The membranes excluded molecules which are larger than the pore openings of the zeolite embedded in the composite

    Fabrication method for a room temperature hydrogen sensor

    Get PDF
    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature

    Screen Printed PZT Thick Films Using Composite Film Technology

    Get PDF
    A spin coating composite sol gel technique for producing lead zirconate titanate (PZT) thick films has been modified for use with screen printing techniques. The resulting screen printing technique can be used to produce 10 ?m thick films in a single print. The resultant films are porous but the density can be increased through the use of repeated sol infiltration/pyrolysis treatments to yield a high density film. When fired at 710°C the composite screen printed films have dielectric and piezoelectric properties comparable to, or exceeding, those of films produced using a 'conventional' powder/glass frit/oil ink and fired at 890°C

    Fabrication Method for a Room Temperature Hydrogen Sensor DIV

    Get PDF
    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature

    On-a-chip microdischarge thruster arrays inspired by photonic device technology for plasma television

    No full text
    This study shows that the practical scaling of a hollow cathode thruster device to MEMS level should be possible albeit with significant divergence from traditional design. The main divergence is the need to operate at discharge pressures between 1-3bar to maintain emitter diameter pressure products of similar values to conventional hollow cathode devices. Without operating at these pressures emitter cavity dimensions become prohibitively large for maintenance of the hollow cathode effect and without which discharge voltage would be in the hundreds of volts as with conventional microdischarge devices. In addition this requires sufficiently constrictive orifice diameters in the 10µm – 50µm range for single cathodes or &lt;5µm larger arrays. Operation at this pressure results in very small Debye lengths (4 -5.2pm) and leads to large reductions in effective work function (0.3 – 0.43eV) via the Schottky effect. Consequently, simple work function lowering compounds such as lanthanum hexaboride (LaB6) can be used to reduce operating temperature without the significant manufacturing complexity of producing porous impregnated thermionic emitters as with macro scale hollow cathodes, while still operating &lt;1200°C at the emitter surface. The literature shows that LaB6 can be deposited using a variety of standard microfabrication techniques
    corecore