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PEMBANGUNAN PENDOP PUTARAN ATAS JENIS-N UNTUK PERANTI 
SILIKON 

 
ABSTRAK 

Di dalam penyelidikan ini, kerja-kerja lebih difokuskan kepada penyediaan 

pendopan putaran jenis n (SOD) menggunakan teknologi sol-gel. Tujuan utama 

penyelidikan ini adalah untuk menyediakan SOD dengan kepekatan pendopan di antara 

1016 kepada 1020 sm-3. Kepelbagaian kepekatan ini adalah amat penting memandangkan 

peranti yang berbeza memerlukan kepekatan pendop yang berbeza.  Fokus dan cabaran 

utama di dalam penyelidikan ini ialah untuk menentukan komposisi bahan kimia dan 

keadaan yang jitu dimana dapat memenuhi kriteria penyediaan pendopan putaran jenis n 

(SOD) yang mempunyai ciri-ciri yang hampir sama ataupun lebih baik daripada yang 

berada di pasaran.  

 Pelbagai alatan pencirian telah digunakan untuk mengkaji ciri-ciri SOD. 

Pengukuran Kesan Hall telah dilakukan untuk mendapatkan rintangan keping, 

kerintangan, kelincahan, kepekatan kepingan dan kepekatan pembawa. SOD dengan 

kepekatan fosforus yang berlainan berjaya diperolehi dengan menggunakan teknologi 

sol-gel dengan kepekatan pendopan  di antara 1016 kepada 1020 sm-3. Setiap SOD 

mempunyai resepi tersendiri bergantung kepada kepekatan fosforus.  

Penduga-empat titik kemudiannya digunakan mengesahkan rintangan keping dan 

kerintangan yang telah diukur oleh Kesan Hall. Perbezaan antara rintangan keping dan 

kerintangan yang diukur oleh Kesan Hall dan penduga empat titik adalah sangat kecil. 

Selain daripada alatan di atas, spektrometer Fourier transformasi inframerah juga 

digunakan untuk mengkaji ikatan dan komposisi SOD. Komposisi dan ikatan dalam 

SOD boleh diperolehi daripada penyerapan spektra inframerah.  
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 Untuk membuktikan keberkesanan SOD yang telah disediakan di dalam makmal, 

larutan itu digunakan dalam fabrikasi peranti iaitu simpang p-n (diod). Sistem arus-

voltan (I-V) menunjukkan diod yang terhasil menggunakan SOD yang telah disediakan 

di dalam makmal dan SOD yang berada di pasaran mempunyai lengkuk yang hampir 

sama.  

 Kajian ini menunjukkan yang SOD yang telah didop dengan kepekatan fosforus 

yang berbeza telah berjaya dihasilkan menggunakan teknologi sol-gel. SOD boleh 

disediakan di dalam makmal tanpa perlu untuk membeli SOD di pasaran. Namun, kajian 

perlu diteruskan untuk pendop putaran jenis-p. 
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DEVELOPMENT OF N-TYPE SPIN-ON DOPANT FOR SILICON DEVICES 
 

ABSTRACT 

In this research, works are focused on the preparation of n-type spin-on dopant 

(SOD) using sol-gel technology. The main aim of this research is to prepare n-type SOD 

with doping concentration in the range of 1016 to 1020 cm-3. This various doping 

concentration is very important as different type of device need different dopant 

concentration. The major focus and challenge of the research is in finding the exact ratio 

of chemical and conditions that would satisfy the preparation criterion of n-type SOD 

that is on par or perhaps even better than those available commercially.   

 Various characterization instruments were used to investigate the properties of 

SOD. Hall Effect measurement was done to obtain the sheet resistance, resistivity, 

mobility and sheet and bulk concentration of prepared SOD. SOD with different 

phosphorus concentration have been successfully attainable using sol-gel technology 

with doping concentration of 1016 to 1020 cm-3. Each SOD has its own recipe accordance 

to the phosphorus concentration.  

Four-point probe was then used to verify the sheet resistance and resistivity 

measured from Hall Effect. The difference between sheet resistance and resistivity 

measured by Hall Effect and four-point probe is insignificant. Apart from the above 

mentioned instruments, Fourier transform infrared (FTIR) spectrometer has also been 

used to study the bond and composition of SOD. Composition and bond in SOD can be 

determined from absorbance IR spectra. 

 To prove the effectiveness of SOD prepared in the laboratory, that solution was 

used in device fabrication which is p-n junction (diode). Current-voltage (I-V) 



 xix 

characteristic system showed that the diode which uses prepared SOD in the lab and 

commercial SOD have almost similar behavior.  

This research shows that SOD doped using different phosphorus concentrations 

have been successfully prepared using sol-gel technology. SOD can be prepared in the 

laboratory thus eliminating the need to buy commercial SOD anymore. However, further 

research need to be done for p-type SOD.  
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CHAPTER 1 

INTRODUCTION 

 
1.1 Research motivation 

 SOD, although widely available in the market, has always been a cost-sensitive 

material to the semiconductor industry. Usage of SOD in laboratory and for academic 

purposes has seen the material to be highly regarded and pivotal in attaining the desired 

output and results especially in the doping process. Nevertheless, the importance of SOD 

has seen the price of the material to escalate. In addition to that, several other factors 

contributes to the unattractiveness of market supplied SOD. For example, SOD supply 

has always been unavailable in small quantities that usually suit the usage and 

application in academic laboratories. Market supplied SOD has also been scarce in 

various level of concentration, which usually are the requirement for experimentation 

usage in classrooms in Universities around the world, especially in Malaysia, where the 

semiconductor  supply chain is heavily dependent on the demand by the industry. 

 SOD is also notorious for its short shelf life. Coupled with its supply that is quite 

often in bulk and also its sporadic usage in laboratory, more often than not the material 

ended up discarded and wasted.  

 These issues may seem trivial yet it has dogged the academic world for ages and 

has been a constant contributor to the increasing cumulative costing in maintaining a 

science laboratory in educational institutions. 

With this research experience, the researcher hope to be able to look at other 

hindrances and challenges in the researcher’s future undertaking and later contribute to 
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the solution finding exercise on other aspects of the running of a science faculty in a 

university.  

 

1.2 Research objectives 

The first goal of this research is to prepare n-type SOD with a various dopant 

concentration in the range of 1016 to 1020 cm-3 for silicon devices. This various 

concentration is very important as different type of device need different dopant 

concentration. The major focus and challenge of the project is in finding the exact ratio 

of chemical and conditions that would satisfy the preparation criterion of n-type SOD 

that is on par or perhaps even better than those available commercially.   

 Another objective of this research is to reproduce SOD in a classroom using the 

sol-gel technology to cater to the need of students and researchers doing experiments 

about the doping process. It is hoped that this research will lead to the possibility of 

preparing the vital material in a most cost effective manner and optimizing the produced 

quantity specifically for the needed requirement for study thus eliminating wastages and 

over procurement of the said material. 

Following the intensive investigations about SOD, various instruments were used 

to characterize prepared and commercial SOD. Each instrument was used to compare 

quality and properties between prepared and commercial SOD. 

 Finally, to prove the effectiveness and its performance, the prepared SOD needs 

to be tested in device fabrication. P-n junction (diode) was chosen to test prepared and 

commercial SOD. The ease of fabrication, simple experimental setup and the availability 

of characterization tools for measuring the performance of the diode are the main 

reasons for choosing diode as a device to test the prepared and commercial SOD.  
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1.3 Outline of the Thesis 

The content of this thesis is organized as follows:- 

Chapter two encompasses types of dopant, phosphorus dopant and method of doping, 

application of phosphosilicate, as well as selection method and recipe for the research. 

Chapter three will cover SOD related matters and theory that are relevant to the work in 

this research. Chapter four is devoted to the instrumentation employed in this work. 

Some principles and theories underlying the operation of the instruments are covered in 

this chapter. Chapter five will consists all process and methodology used in this work 

which includes sample preparation and characterization. Furthermore, this chapter 

includes samples usage in this research. This chapter also presents step by step 

procedure for all work in this research. Continuation from chapter five, chapter six will 

interpret the characterized data from some interesting point of views. Analysis and 

comments on the results were also given in this chapter. Last but not least, the summary 

for the entire work will be expressed in chapter seven. Closing remarks and some 

suggestions for continuation work is also included. 
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CHAPTER 2 

LITERATURE REVIEW  

 

2.1 Introduction 

 
In this chapter, an overview of types of dopant is presented. The review mainly 

focuses on the phosphorus dopant and method of doping. An application of 

phosphosilicate is also include in this chapter. Furthermore, this chapter also consist 

selection of method and recipe for this research.  

 
2.2 Types of dopant 

Boron, arsenic, phosphorus and antimony, among other substances, are 

commonly used dopants in the semiconductor industry. There are two types of dopants 

which act as a donor and acceptor (Singh, 2001).  

Dopants for silicon and germanium, group IV semiconductors:  

Donors: group V atoms: antimony, phosphorus, arsenic  

Acceptors: group III atoms: boron, aluminium, gallium  

Dopants for gallium arsenide, a group III-V semiconductor:  

Donors: group VI and group IV atoms: sulfur, selenium, tellurium, silicon  

Acceptors: group II and group IV atoms: magnesium, zinc, cadmium, silicon  

 

2.3 Phosphorus dopant and method of doping 

Many research have been done on phosphorus dopant. Normally, phosphorus 

dopant material used to dope into silicon is silicate based compound and usually called 

http://en.wikipedia.org/wiki/Boron
http://en.wikipedia.org/wiki/Arsenic
http://en.wikipedia.org/wiki/Phosphorus
http://en.wikipedia.org/wiki/Antimony
http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/Germanium
http://en.wikipedia.org/wiki/Group_4_element
http://en.wikipedia.org/wiki/Group_5_element
http://en.wikipedia.org/wiki/Antimony
http://en.wikipedia.org/wiki/Phosphorus
http://en.wikipedia.org/wiki/Arsenic
http://en.wikipedia.org/wiki/Group_3_element
http://en.wikipedia.org/wiki/Boron
http://en.wikipedia.org/wiki/Aluminium
http://en.wikipedia.org/wiki/Gallium
http://en.wikipedia.org/wiki/Gallium_arsenide
http://en.wikipedia.org/wiki/Group_6_element
http://en.wikipedia.org/wiki/Group_4_element
http://en.wikipedia.org/wiki/Sulfur
http://en.wikipedia.org/wiki/Selenium
http://en.wikipedia.org/wiki/Tellurium
http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/Group_2_element
http://en.wikipedia.org/wiki/Group_4_element
http://en.wikipedia.org/wiki/Magnesium
http://en.wikipedia.org/wiki/Zinc
http://en.wikipedia.org/wiki/Cadmium
http://en.wikipedia.org/wiki/Silicon
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phosphosilicate. Phosphosilicate fabrications start with fabrication of spin-on glass 

(SOG) and then modified by adding phosphorus inside SOG (Chul & Seong, 1994). A 

rough description of the SOG and phosphosilicate molecular structure is presented in 

figure 2.1 (a) and (b) respectively. The dopant source can be in solid, liquid or gas. 

 

(a) 

 

(b) 
 

Figure 2.1: Molecular structure of (a) spin-on glass (b) phosphosilicate         
(Ergul, 2005) 
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  The doping process can be carried out using a number of methods of which the 

most commonly employed are chemical vapour deposition (CVD) method, ion 

implantation method and spin-on dopants (SOD) method.  

There are two steps involved in CVD method which are pre-deposition and 

drive-in steps. During pre-deposition, the diffusant source is transported to the substrate 

using a carrier gas, resulting in the formation of a dopant-containing film on the silicon 

surface (Teh, 1988). In the subsequent drive-in step, the predeposited substrate is 

introduced into diffusion furnace at elevated temperature for a period of a few minutes 

to several hours.  

 Tenney and Ghezzo (1973) studied about phosphorus doping using CVD method.  

Phosphosilicate was deposited by passing argon (Ar) diluted mixtures of silane (SiH4), 

phosphine (PH3) and oxygen (O2) over silicon wafers heated to 300-700oC. For instance, 

with flow rates of 3800 cm3 min-1 Ar, 40 cm3 min-1 O2,150 cm3 min-1 SiH4 (1% in Ar), 

and 13 cm3 min-1 PH3 (1% in Ar), a 1.0 μm thick film of phosphosilicate was deposited 

in 35 minutes at 400oC. Alexieva, et al. (1986) deposited phosphosilicate using plasma 

enhanced chemical vapour deposition (PECVD). Phosphosilicate were deposited onto a 

silicon wafer in a plasma reactor from the reaction of SiH4, N2O, PH3 and O2. The 

temperature was 380oC, the specific pressure was 0.86 Torr and the power density was 6 

x 10-3 Wcm-2.  

Besides that, research was done by Bantoiu and Pavalescu (1990). Films of 

phosphosilicate (0.2 μm thickness) were deposited on silicon substrate in a rotary reactor 

at atmospheric pressure and temperature of 400oC in SiH4- PH3- O2- N2 system. 

Furthermore, phosphosilicate has also been deposited by Poenar, et al. (1996). 

Phosphosilicate layer were deposited on silicon wafers in a three-zone hot-wall resistor-
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heated low pressure chemical vapour deposition (LPCVD) reactor. The deposition 

temperature, the pressure and the oxygen flow had values of 425oC, 200 mTorr and 200 

sccm respectively. Doping was supplied using PH3 diluted with SiH4. Kim, et al. (2001) 

used an almost similar source with Poenar, et al. (1996) but they used atmospheric 

pressure chemical vapour deposition (AP-CVD) instead of LPCVD. Hsiao, et al. (2005)  

then deposited phosphosilicate layer with gas sources of SiH4, PH3, O2 and Ar at the 

flow rates of 60,50,170 and 70 sccm, respectively, at about 400oC in high-density 

plasma chemical vapour deposition (HDP-CVD).  

On the other hand, ion implantation affords an alternative means of introducing 

dopants and other atoms into the near-surface region of a semiconductor. In ion 

implantation, an impurity is introduced into the semiconductor by creating ions of the 

impurity, accelerating the ions to high energies and then literally shooting the ions into 

the semiconductor (Pierret, 1996).  

 There are many researchers who studied about doping phosphorus using ion 

implantation method at different energy and conditions. One of the research reported 

that phosphorus were implanted at energy of 100 keV. The dose was varied from 1013 to 

1016 cm-2 (Hwang, et al., 1996). Another research related to this topic was done by 

Capano, et al. (2000). The energy/dose conditions for the phosphorus implants were 360 

keV /  1.5 X 1015 cm–2, 220 keV/1.1 X 1015 cm–2, 100 keV/8.0 X 1014 cm–2, and 30 keV/ 

6.0 X 1014 cm–2. Tetelbaum, et al. (2003) doped P ion at energy of 150 keV with 

condition of (0.1-300) X 1014 cm-2. Ion implantation of 31P+ ion beam was also 

performed by Yamamoto and Itoh (2006). Trimethylphosphine (TMP) was used as the 

source gas for the phosphorus ions. The energy of the phosphorus ions was 30 eV, which 
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is the displacement energy of atoms out of their lattice site in silicon at room 

temperature.  

  Moreover, spin-on dopants refers to solution of dopants containing silicate in 

alcohol which is also been called phosphosilicate. It can be applied by spinning, 

spraying or dip-coating methods. Application of spinning using photoresist spinner is a 

preferred method because the thickness of the coating can be controlled by varying the 

spin speed (Teh, 1988). Normally, for spin-on dopant, phosphosilicate is prepared using 

sol-gel technology.  

Sol gel processing is a chemical synthesis of oxide involving hydrolizable 

alkoxides that undergo a sol-gel transition. Generally it refers to a low-temperature 

method using chemical precursors that can produce ceramics and glasses. In most of the 

sol- gel processes for preparing microporous membranes, a stable sol is first prepared as 

an organometallic oxide precursor, followed by the addition of acid for peptization 

(Hsieh, 1996). In sol-gel process, a minimum critical amount of certain acid is needed to 

peptize the hydroxide to a clear sol and in order to form a stable dispersion of particles 

in the sol (Lee & Pope, 1994). 

 Organic solvents such as ethanol, methanol, isopropanol, etc are also added in 

sol gel processing as they are allowed to control the reaction of alkoxide precursors with 

water, and hence to direct with more flexibility the structure of sol gel products (Mulder, 

1996). It is also added to enhance the adhesion of coating to the support and is used to 

slow the hydrolysis rate and thus stabilize the alkoxides to the formation of well-

dispersed particles in sol to the formation of clear gel. If the hydrolysis rate is faster, it 

will lead to the precipitation of the sol (Lee & Pope, 1994). A sol is a colloidal 

suspension of solid particles in a liquid while gel is a porous 3-dimensionally 
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interconnected solid network that expands in a stable fashion throughout a liquid 

medium (Brinker & Scherer, 1990). 

For spin-on dopant, phosphosilicate should remain only on sol phase before it is 

applied to the wafer. However, the SOD/phosphosilicate goes through a sol-gel 

transition upon coating on the substrate. It is observed that the solution film undergoes a 

sharp increase in viscosity. If the substrate has been handled properly, it is now covered 

uniformly by a tacky gel. In the systems described above, the sol-gel transition is 

reached when one-phase liquid becomes a two-phase alcogel, solid plus liquid. The 

alcogel is an oxide polymer that condenses in the presence of solvent. The transition in 

alcogels is irreversible and occurs with no change in volume. The time of the transition 

depends on the chemistry of the solution. That tacky gel will be dried gel after baking 

process (Nguyen, 1999).  

Many research had been done in relation to the preparation of phosphosilicate 

using sol-gel technique with different conditions, methods and recipes. One of the 

research done was by Szu, et al. (1992).  Three series of phosphosilicate were prepared 

using phosphoric acid (H3PO4), triethylphosphate (PO(C2H5)3) and trimethylphosphite 

(P(OCH3)3) respectively as precursors of phosphorus. In all cases, tetraethoxysilane 

(TEOS) was the source for silica. Phosphosilicate were prepared by mixing two 

solutions which is solution A and B. Solution A is a mixture of TEOS and methanol and 

solution B contain water and appropriate amounts of the phosphorus precursors. 

Solution A and B were subsequently mixed together. Nitric acid (HNO3) was added to 

the mixed solutions.  

Another research done was by Kim and Tressler (1994). In their work, the TEOS 

and H3PO4 were used as raw materials. Because the number of hydroxyl groups in 
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phosphoric acid is sufficient to completely hydrolyse TEOS, no water was added in the 

sol-gel process. To slow down the gelation process, TEOS and H3PO4 were diluted with 

ethanol before they were mixed. Besides that, Chul and Seong (1994) also had prepared 

phosphosilicate. The starting material was TEOS dissolved in an organic solvent which 

contains isopropanol, acetone and ethyl alcohol. TEOS is hydrolyzed by water under a 

catalytic reaction. An organic acid was used as a catalyst. Then, the solution was added 

with phosphorus pentoxide dissolved in isopropanol.  

Moreover, the research was also done by Fernandez-Lorenzo, et al. (1994). Equal 

volume of TEOS and ethanol containing the phosphate precursor were mixed.  

Hydrolysis and condensation were performed by the addition of the appropriate amount 

of water. Two different phosphate precursors were used, PO(C2H5)3 and H3PO4. Solid 

anhydrous H3PO4 (Fluka) was used in order to study the role played by the phosphate 

with TEOS before hydrolysis was carried out. Nguyen (1999) had fabricated 

phosphosilicate by adding TEOS, water, phosphoric acid, IPA and acetone. 

The research related to the fabrication of phosphosilicate continued to be done by 

D’Apuzzo, et al. (2000). Phosphoryl chloride (POCl3) and TEOS were used as starting 

materials in the sol-gel preparation. A solution of TEOS in anhydrous ethanol (EtOH) 

was prepared and hydrolyzed at room temperature using water and concentrated 

hydrochloric acid (HCl).This solution was then mixed with a solution of POCl3 in an 

anhydrous ethanol. The final solution was then diluted with EtOH. 

 Matsuda, et al. (2001) synthesized phosphosilicate from TEOS and various 

kinds of phosphorus-containing compounds such as H3PO4, triethylphosphate 

(PO(C2H5)3) and 2-(diethoxyphosphoryl)ethyltriethoxysilane (DPTS) by the sol-gel 

method. TEOS was diluted with EtOH and hydrolyzed with water containing HCl while 
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left stirring at room temperature. An appropriate amount of H3PO4, PO(C2H5)3 or DPTS 

was added to the hydrolyzed solution and stirred at room temperature. 

Massiot, et al (2001) then prepared phosphosilicate by a sol-gel process, using 

TEOS and H3PO4 as precursors. TEOS was dissolved in EtOH with TEOS: EtOH ratio 

of 1:4. Distilled water was then added and the solution was stirred at room temperature. 

After that, the appropriate amount of H3PO4 and water were added. Clayden, et al. (2005) 

and Aronne, et al. (2005) used similar material and techniques to prepare 

phosphosilicate. They mixed TEOS, water, HCl, EtOH and POCl3. TEOS was 

hydrolyzed at 50oC without any alcoholic solvent using HCl as catalyst. This solution 

was left to cool to room temperature and then was mixed with a solution of POCl3 in 

anhydrous ethanol. 

In order to prepare phosphosilicate, Anastasescu, et al. (2006) used TEOS as 

SiO2 source and triethylphosphite (TEPI), PO(C2H5)3 and H3PO4 as a phosphorus 

source. TEOS diluted with EtOH, water containing HCl as catalyst and the appropriate 

amount of phosphorus precursor: TEPI, PO(C2H5)3 and H3PO4 were added. The 

mixture was then stirred. Visiliu, et al. (2007) again use mixture of TEOS, EtOH, water, 

HCl and H3PO4 to produce phosphosilicate.  

Jin, et al. (2007) prepared phosphosilicate by mixing TEOS, EtOH, water, HNO3 

and H3PO4. A two-step catalysed hydrolysis process was employed to prepare 

phosphosilicate solution using TEOS, EtOH, distilled water containing HNO3. TEOS 

was mixed with EtOH and a stock solution of water and HNO3 was added drop by drop 

with constant stirring. A solution of H3PO4 diluted with EtOH was added drop by drop 

at room temperature and stirred. 
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Avila, et al. (2008) also prepared phosphosilicate using sol-gel process. The 

composition of starting solutions was TEOS, phenyltriethoxysilane (PTES), ammonium 

phosphate (NH4H2PO4) and ammonium hydroxide. The sols were prepared by adding 

the precursors to a mixture of ethanol, water and ammonium hydroxide. It was reported 

that Qiu, et al. (2008) had prepare phosphosilicate with high phosphorus content (P 

mol % > S mol %) using phytic acid (inositol hexakisphosphate, IP6), TEOS, EtOH and 

water. Phytic acid was mixed with EtOH and water at ambient temperature. After 20 

minutes, TEOS was added through a syringe while stirring. 

 Of the three methods of doping, CVD is one of the earliest and most established 

methods. This method offers excellent process control since the surface concentration of 

dopant is dependent on the vapour pressure of the dopant source during predeposition 

and the solid solubility of the dopant in silicon (which is temperature dependent). 

Therefore, by controlling the vapour pressure of the dopant source and the predeposition 

temperature, precise level of doping can be achived. Nevertheless, the use of poisonous 

and sometimes explosive dopant source will require extra safety precautions which made 

the process very expensive and dangerous. 

Ion implantation also offers excellent process control where the number of 

implanted dopant atoms and the implanted depth can be precisely controlled but the fast 

projectile upon impact on the target inevitably induced defects in the target. Although, 

these defects can be annealed off but the biggest worry is over the ability of the 

annealing processes to completely eliminate the implant-induced damage. Besides that, 

the equipment is expensive and complex (Van Zant, 2000). It contains many safety 

hazards (example high voltage and toxic gases) to the personnel which operate and 

service the machine. To minimize the likelihood of accidents from operating and 
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maintaining such equipment, careful safety procedures must be established and strictly 

followed. Ion implanters are complex machines, among the most sophisticated systems 

in wafer manufacturing. In order to be effectively utilized they must be conscientiously 

operated, monitored, and maintained by well-trained personnel (Wolf & Tauber, 1986).   

          Spin-on dopants, on the other hand, offer a number of clear advantages over 

CVD and ion implantation for device fabrication. First of all, the spin on dopant is 

applied to the substrate at certain humidity which is very easy to setup. Secondly by 

doing away with vapour-phase processes, the need to use and metering of toxic gases (as 

in CVD) is eliminated. Furthermore, the application of spin-on dopant using spinner will 

mean that the uniformity of dopant source over the silicon substrate surface can be 

ensured even if the size of the substrate is increased. Hence, a more uniform doping over 

the whole substrate is obtained. This may be important for application such as solar cell 

fabrication since the trend is towards increasing the size of individual cell (Teh, 1988).  

Moreover, phosphosilicate sol prepared by sol-gel technology are easy compared 

from preparation of all the other method of doping. Plus, it is cost effective because the 

temperatures required in the process are low, (<100oC), and no delicate vacuum system 

is needed. Besides, because of its speciality of low temperature preparation, it results in 

minimized air pollution and prevent of reaction with containers, thus it maintain the 

purity of the material (Brinker & Scherer, 1990). In addition, the most popular 

precursors used in sol-gel technology is metal alkoxides. Metal alkoxides are frequently 

volatile and high purity products. (Carter & Norton, 2007).   
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2.4 Applications of phosphosilicate 
 

Although phosphosilicate has been used for dopant purpose, it also can be used 

for other application. Properties of phosphosilicate make it useful in a variety of 

applications in semiconductor technology. Phosphosilicate is widely used as insulating 

layers in the manufacture of microelectronic devices. It is used as the dielectric layer 

between polysilicon and metal in logic device and between stacked capacitors and metal 

in memory devices. In addition, doped silicon oxide finds use in microelectromechanical 

systems (MEMS) as sacrificial planar layers (Muscat, et al., 2001).  

Phosphosilicate is exclusively used for its function as an intermediate dielectric 

providing, due to the phosphorus presence, added capabilities for effective gettering of 

sodium and other rapidly diffusing metal ions which are detrimental to microelecronic 

devices, and to increase the etching rate (Nassau, et al., 1985). The addition of these 

dopants lower the temperature required to soften or to flow the glass layer. The lowering 

of this temperature minimizes the diffusion of contaminates in underlying layers, and 

minimizes defect sites and warpage (Walder & Boyle, 2008). Nevertheless, the ability of 

phosphosilicate to undergo viscous deformation at a given temperature is primarily a 

function of the phosphorus content in the phosphosilicate (Nassau, et al., 1985). 

 

2.5 Selection for the reseach 

From all the chemical use by other researcher, a mixture of TEOS, isoprapanol, 

distilled water and phosphoric acid was chosen for this research because of their 

availability in the laboratory. Furthermore, all the chemical listed above are available 

commercially which make the material easy to be obtained. Moreover, phosphoric acid 
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was selected as a phosphorus precursor due to its better incorporation in the SiOx matrix 

(Anatasescu, et al., 2006).  

 

2.6 Summary 

 This chapter discussed the types of dopant used in semiconductor technology. 

This chapter also revealed some information about phoshorus dopant and method of 

doping. The ingredients of phosphosilicate by other research works were also presented. 

Besides being used as a dopant source, phosphosilicate also can be used for other 

purposes.  
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CHAPTER 3 

THEORY 

 

3.1 Introduction 

This chapter presents the general principles and theories of various aspects 

involved in this project. It starts with an explanation on spin-on glass/ dopant (n-type) 

fabrication. Then, it continues with the fundamental theories for formation of doped 

region. Metal-semiconductor contacts are also addressed in this chapter.  

 

3.2 Spin-on glass/ dopant (n-type) fabrication 
 

The SOG materials were prepared using sol-gel method. This technology is 

straightforward. The starting materials are silicon alkoxide or Si ((OC2H5)4), water 

(H2O), isopropanol ((CH5)2CH (OH)) and hydrochloric acid (HCl) as catalycing acid 

(Brinker & Scherer, 1990). However, in order to make spin-on dopant (SOD) containing 

n-type impurities, e.g phosphorus in this case, phosphoric acid (H3PO4) was used 

instead of HCl as a catalyzing acid.  

The fabrication of silica by means of the sol-gel method is based on the 

hydrolysis and polycondensation of silicon alkoxides such as tetraethylorthosilicate 

(TEOS) and tetramethoxysilane (TMOS). Both these compounds can be expressed as 

Si(OR)4, where R is the alkyl group. For TEOS R=C2H5 whereas R=CH3 for TMOS. 

The silicon bonds with OR groups can easily be cleaved by water and therefore the 

above compound can easily be hydrolysed to yield hydroxyl derivatives in which the 

hydroxyl groups are attached to silicon atoms. Because TEOS and water are immiscible, 
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a mutual solvent which is isopropanol is normally used as a homogenizing agent and the 

reactions only begin when the solvent isoprapanol is added (Nguyen, 1999).  

 
Hydrolysis is described by the reaction 3.1: 
 
 

        (3.1) 
 
    
In the reaction 3.1, the alkoxy (OR) group is replaced by a hydroxyl group (OH) and 

alcohol is released as a by-product. If one adds a further water molecule hydrolysis will 

continue and as a result one further alkoxy group will be replaced. Overall the complete 

hydrolysis of a silicon alkoxide is described by the reaction 3.2. 

 

                   Si(OR)4 + 4 H2O→ Si(OH)4 + 4ROH                                    (3.2) 

 

 
There are two parallel condensation reactions that take place in the sol. The first 

releases alcohol as a byproduct and is described by the reaction 3.3: 

 

 (3.3) 
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Reaction 3.3 is most commonly referred to as the weak condensation process. 

This process is not sufficiently strong to form a long chain gel structure. It shows, 

however, that condensation does take place even in the presence of a small quantity of 

water. 

The most dominant condensation process takes place between one hydroxyl and 

one alkoxy group, giving water instead of alcohol as a byproduct. The importance of the 

reaction in the sol-gel process is immense since the excess water is then used to further 

hydrolyze alkoxy bonds according to reactions 3.1 and 3.2 (Darmstadt University of 

Technology, 2008): 

                          (3.4) 

The result of these hydrolysis and condensation reactions is the formation of 

colloidal suspension of particles in a liquid solution; the sol. All the reactions will 

continue with time even at room temperature and may result in dense sol of larger 

network polymers. If this happens the SOD will not be able to be applied uniformly on a 

substrate because of its very high viscosity. If allowed to continue, after some time, the 

sol will extend throughout in some random way to form a gel. In order to prevent these 

reactions the SOD should be stored at low temperature (Thompson, 2006). 
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3.3 Formation of doped region 

IC fabrication is accomplished by selectively changing the electrical properties 

of silicon through the introduction of impurities commonly referred to as dopants. A 

major advance in semiconductor production was the development of diffusion doping 

techniques (Van Zant, 2000).  

 

3.3.1 Dopant atom activation 

A semiconductor is a material that can be tailored in such a way that it will 

conduct current in specified areas. The conductive properties are controlled by small 

concentrations of impurities, known as dopants. Silicon, the most common 

semiconductor, has four valence electrons; therefore it must either gain or lose four 

electrons to reach a stable state. The result is that silicon bonds with four other silicon 

atoms to create a stable structure. Dopant atoms change the conduction of the silicon by 

replacing one of the silicon atoms in the bonding arrangement. There are two types of 

impurities that can be used to change the conductive properties of a semiconductor; 

donors or acceptors. Donors are atoms that have five electrons in their outer orbital, and 

once inserted into the lattice, give this extra electron up to maintain a stable bonding 

configuration. This is illustrated in figure 3.1. This extra electron is then free to move 

about the crystal structure and can contribute to conduction. Since an electron is added 

to the system, this creates more negative charge carriers, therefore a region with a 

majority of donor atoms is known as n-type. Atoms used to create n-type regions are 

phosphorus, antimony, and arsenic; all group five elements on the periodic table.  
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Figure 3.1: Atom substitutions as an activation mechanism (Woodard, 2006). 
 

 

Similarly, acceptors are atoms that contain only three valence electrons. When 

these atoms replace silicon, they require an extra electron to achieve a stable bonding 

arrangement. This results in the contribution of a hole, or the absence of an electron, to 

the electrical conduction within the silicon. The hole is a positive charge carrier, 

therefore the region with mostly acceptor atoms is known as p-type. The atoms that can 

be used to create p-type regions are boron and indium.  

There are several different choices for atoms to create either n-type or p-type 

regions in silicon. These atoms have different sizes, masses and bonding properties. 

Some atoms fit better in the silicon lattice. Arsenic fits in the silicon lattice best of all 

dopant atoms, therefore a higher concentration of arsenic atoms can be placed into the 

silicon crystal without having them form precipitates. In addition, the greater the 

mismatch between the dopant and the lattice, the more strain will be induced on the 

crystal structure, causing the formation of defects (stacking faults and dislocations) as 

the doping concentration is increased. 

Silicon 

Electron Donor 
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The method of activating dopant atoms is a process referred to as annealing. 

Energy in the form of heat is applied to the semiconductor. This energy must be 

sufficient to allow the dopant atoms to displace the silicon and form bonds with its 

neighbors. The temperature of the anneal process is a primary factor in determining how 

many of the dopants activate. In general, as the temperature increases, the amount of 

activation also increases. However, there are several factors that complicate this process. 

The amount of dopant in the silicon, referred to as the dose, actually affects the amount 

of dopants that activate. Figure 3.2 shows literature data for activation of boron at 

isochronal or constant time, annealing conditions.  

 
 

Figure 3.2: Temperature activation effects (PHall refers to the measured Hall dose) 
(Wolf & Tauber, 1986). 

 

Note the decrease in activation around 600°C; this de-activation is due to 

formation of dislocations in the lattice, at which dopants can segregate (Wolf & Tauber, 
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1986). High temperature processing is required to remove these defects, as they can only 

be removed by a re-ordering of the lattice. Therefore it is critical in investigating low 

temperature activation that these defects do not form, as they cannot be removed 

(Woodard, 2006).   

 

3.3.2 Fick’s law of diffusion 

 
 In 1855, Fick developed his theory of diffusion on the analogy between material 

transfer in a solution and heat transfer by conduction. Fick’s first law states that in the 

absence of convection the local rate of transfer of solute atom per unit area (i.e the 

diffusion flux) is proportional to the concentration gradient in the direction of transfer at 

that point. In one-dimension, 

                                                             
x
NDJ
∂
∂

−=                                                    (3.5) 

where J is the rate of solute transfer (i.e diffusion rate), N is the concentration of solute 

at the point x , and D is the diffusivity. 

 Fick’s second law which is the law of conservation of matter, states that the 

change of solute concentration with time must be equal to the decrease in diffusion flux, 

i.e,  
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where t is time. Substituting equation (3.5) into (3.6) gives  
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Equation (3.7) can be solved for various diffusion conditions by considering the 

corresponding initial and boundary conditions to obtain N(x,t), the solute concentration 

at the point, x and time, t (Teh, 1988). 

 

3.3.3 Diffusion process 

Diffusion is the process by which a species moves as a result of the presence of a 

chemical gradient. It is a natural chemical process with many examples in everyday life   

(Van Zant, 2000). The diffusion of controlled impurities or dopants into Si is the basis of 

p-n junction formation and device fabrication. In the doping of silicon by diffusion, the 

silicon wafer is placed in an atmosphere containing the impurity or dopant to 

incorporate. Because the silicon does not initially contain the dopant in its lattice, two 

regions with different concentrations of impurities and diffusion can therefore occur, as 

schematically illustrated in figure 3.3.  

 
            

 Figure 3.3: Diffusion of dopants in a silicon wafer  
 
 

There exist several diffusion mechanisms. An impurity can diffuse into an 

interstitial site in the lattice and can move from there to another interstitial site, as shown 

in figure 3.4(a). For interstitial diffusion, sometimes a silicon atom can be knocked into 
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an interstitial site, leaving a vacancy in the lattice where a diffusing dopant atom can fit, 

as shown in figure 3.4(b). A third mechanism is possible which consists of a dopant 

directly diffusing into a lattice vacancy (figure 3.4(c)) which is substitutional diffusion. 

It is only in the last two cases that an impurity occupies a vacated lattice site that n-type 

or p-type doping occurs. 

There are two major techniques for conducting diffusion, depending on the state 

of the dopant on the surface of the wafer: (1) constant-source diffusion, also called 

predeposition or thermal predeposition, in which the concentration of the desired 

impurity at the surface of the semiconductor is kept constant; and (2) limited-source 

diffusion, or drive-in, in which a fixed total quantity of impurity is diffused and 

redistributed into the semiconductor to obtain the final profile.  

 
 

Figure 3.4:  Three possible diffusion mechanisms in a silicon wafer (Razeghi, 2006). 
 

3.3.3 (a) Constant-source diffusion: predeposition 

During predeposition, the silicon wafer is heated to a carefully selected and 

controlled temperature, and an excess of the desired dopant is maintained above the 

wafer. The dopants diffuse into the crystal until their concentration in it near the surface 

is in equilibrium with the concentration in the surrounding ambient above it. The 
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