3,739 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Efficient cloud computing system operation strategies

    Get PDF
    Cloud computing systems have emerged as a new paradigm of computing systems by providing on demand based services which utilize large size computing resources. Service providers offer Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) to users depending on their demand and users pay only for the user resources. The Cloud system has become a successful business model and is expanding its scope through collaboration with various applications such as big data processing, Internet of Things (IoT), robotics, and 5G networks. Cloud computing systems are composed of large numbers of computing, network, and storage devices across the geographically distributed area and multiple tenants employ the cloud systems simultaneously with heterogeneous resource requirements. Thus, efficient operation of cloud computing systems is extremely difficult for service providers. In order to maximize service providers\u27 profit, the cloud systems should be able to serve large numbers of tenants while minimizing the OPerational EXpenditure (OPEX). For serving as many tenants as possible tenants using limited resources, the service providers should implement efficient resource allocation for users\u27 requirements. At the same time, cloud infrastructure consumes a significant amount of energy. According to recent disclosures, Google data centers consumed nearly 300 million watts and Facebook\u27s data centers consumed 60 million watts. Explosive traffic demand for data centers will keep increasing because of expansion of mobile and cloud traffic requirements. If service providers do not develop efficient ways for energy management in their infrastructures, this will cause significant power consumption in running their cloud infrastructures. In this thesis, we consider optimal datasets allocation in distributed cloud computing systems. Our objective is to minimize processing time and cost. Processing time includes virtual machine processing time, communication time, and data transfer time. In distributed Cloud systems, communication time and data transfer time are important component of processing time because data centers are distributed geographically. If we place data sets far from each other, this increases the communication and data transfer time. The cost objective includes virtual machine cost, communication cost, and data transfer cost. Cloud service providers charge for virtual machine usage according to usage time of virtual machine. Communication cost and transfer cost are charged based on transmission speed of data and data set size. The problem of allocating data sets to VMs in distributed heterogeneous clouds is formulated as a linear programming model with two objectives: the cost and processing time. After finding optimal solutions of each objective function, we use a heuristic approach to find the Pareto front of multi-objective linear programming problem. In the simulation experiment, we consider a heterogeneous cloud infrastructure with five different types of cloud service provider resource information, and we optimize data set placement by guaranteeing Pareto optimality of the solutions. Also, this thesis proposes an adaptive data center activation model that consolidates adaptive activation of switches and hosts simultaneously integrated with a statistical request prediction algorithm. The learning algorithm predicts user requests in predetermined interval by using a cyclic window learning algorithm. Then the data center activates an optimal number of switches and hosts in order to minimize power consumption that is based on prediction. We designed an adaptive data center activation model by using a cognitive cycle composed of three steps: data collection, prediction, and activation. In the request prediction step, the prediction algorithm forecasts a Poisson distribution parameter lambda in every determined interval by using Maximum Likelihood Estimation (MLE) and Local Linear Regression (LLR) methods. Then, adaptive activation of the data center is implemented with the predicted parameter in every interval. The adaptive activation model is formulated as a Mixed Integer Linear Programming (MILP) model. Switches and hosts are modeled as M/M/1 and M/M/c queues. In order to minimize power consumption of data centers, the model minimizes the number of activated switches, hosts, and memory modules while guaranteeing Quality of Service (QoS). Since the problem is NP-hard, we use the Simulated Annealing algorithm to solve the model. We employ Google cluster trace data to simulate our prediction model. Then, the predicted data is employed to test adaptive activation model and observed energy saving rate in every interval. In the experiment, we could observe that the adaptive activation model saves 30 to 50% of energy compared to the full operation state of data center in practical utilization rates of data centers. Network Function Virtualization (NFV) emerged as a game changer in network market for efficient operation of the network infrastructure. Since NFV transforms the dedicated physical devices designed for specific network function to software-based Virtual Machines (VMs), the network operators expect to reduce a significant Capital Expenditure (CAPEX) and Operational Expenditure (OPEX). Softwarized VMs can be implemented on any commodity servers, so network operators can design flexible and scalable network architecture through efficient VM placement and migration algorithms. In this thesis, we study a joint problem of Virtualized Network Function (VNF) resource allocation and NFV-Service Chain (NFV-SC) placement problem in Software Defined Network (SDN) based hyper-scale distributed cloud computing infrastructure. The objective of the problem is minimizing the power consumption of the infrastructure while enforcing Service Level Agreement (SLA) of users. We employ an M/G/1/K queuing network approximation analysis for the NFV-SC model. The communication time between VNFs is considered in the NFV-SC placement because it influences the performance of NFV-SC in the highly distributed infrastructure environment. The joint problem is modeled by a Mixed Integer Non-linear Programming (MINP) model. However, the problem is intractable in large size infrastructures due to NP-hardness of the problem. We therefore propose a heuristic algorithm which splits the problem into two sub-problems: resource allocation and the NFV-SC embedding. In the numerical analysis, we could observe that the proposed algorithm outperforms the traditional bin packing algorithms in terms of power consumption and SLA assurance. In this thesis, we propose efficient cloud infrastructure management strategies from a single data center point of view to hyper-scale distributed cloud computing infrastructure for profitable cloud system operation. The management schemes are proposed with various objectives such as Quality of Service (Qos), performance, latency, and power consumption. We use efficient mathematical modeling strategies such as Linear Programming (LP), Mixed Integer Linear Programming (MILP), Mixed Integer Non-linear Programming(MINP), convex programming, queuing theory, and probabilistic modeling strategies and prove the efficiency of the proposed strategies through various simulations

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design
    • …
    corecore