531 research outputs found

    Big data analytics for large-scale wireless networks: Challenges and opportunities

    Full text link
    © 2019 Association for Computing Machinery. The wide proliferation of various wireless communication systems and wireless devices has led to the arrival of big data era in large-scale wireless networks. Big data of large-scale wireless networks has the key features of wide variety, high volume, real-time velocity, and huge value leading to the unique research challenges that are different from existing computing systems. In this article, we present a survey of the state-of-art big data analytics (BDA) approaches for large-scale wireless networks. In particular, we categorize the life cycle of BDA into four consecutive stages: Data Acquisition, Data Preprocessing, Data Storage, and Data Analytics. We then present a detailed survey of the technical solutions to the challenges in BDA for large-scale wireless networks according to each stage in the life cycle of BDA. Moreover, we discuss the open research issues and outline the future directions in this promising area

    A Systematic Review of IoT Solutions for Smart Farming

    Get PDF
    The world population growth is increasing the demand for food production. Furthermore, the reduction of the workforce in rural areas and the increase in production costs are challenges for food production nowadays. Smart farming is a farm management concept that may use Internet of Things (IoT) to overcome the current challenges of food production. This work uses the preferred reporting items for systematic reviews (PRISMA) methodology to systematically review the existing literature on smart farming with IoT. The review aims to identify the main devices, platforms, network protocols, processing data technologies and the applicability of smart farming with IoT to agriculture. The review shows an evolution in the way data is processed in recent years. Traditional approaches mostly used data in a reactive manner. In more recent approaches, however, new technological developments allowed the use of data to prevent crop problems and to improve the accuracy of crop diagnosis.info:eu-repo/semantics/publishedVersio

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Building an Improved Internet of Things Smart Sensor Network Based on a Three-Phase Methodology

    Full text link
    © 2013 IEEE. In recent years, the Internet of Things (IoT) has allowed the easy, intelligent, and efficient connection of many devices used in daily life by means of numerous smart sensors which communicate with each other using wireless signals. The rapid development of the IoT has been a result of recent advances in sensing technology. This paper proposes a three-phase methodology to improve the quality of experience for IoT system technologies. The proposed method employs the concepts of simple routing and two well-known multi-criteria decision-making method (MCDM) techniques: The Analytic Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). First, all simple routings are obtained using the proposed depth-first search technology (DFS). AHP is applied to analyze the structure of the problem and to obtain weights for various selected criteria in the second phase. In the third phase, TOPSIS is utilized to rank the simple routings, which are simple paths. A case study example is provided to demonstrate the proposed three-phase methodology. The results from the numerical experiments show that the proposed methodology can successfully achieve the aim of this paper

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    UniPreCIS : A data pre-processing solution for collocated services on shared IoT

    Full text link
    Next-generation smart city applications, attributed by the power of Internet of Things (IoT) and Cyber-Physical Systems (CPS), significantly rely on the quality of sensing data. With an exponential increase in intelligent applications for urban development and enterprises offering sensing-as-aservice these days, it is imperative to provision for a shared sensing infrastructure for better utilization of resources. However, a shared sensing infrastructure that leverages low-cost sensing devices for a cost effective solution, still remains an unexplored territory. A significant research effort is still needed to make edge based data shaping solutions, more reliable, feature-rich and costeffective while addressing the associated challenges in sharing the sensing infrastructure among multiple collocated services with diverse Quality of Service (QoS) requirements. Towards this, we propose a novel edge based data pre-processing solution, named UniPreCIS that accounts for the inherent characteristics of lowcost ambient sensors and the exhibited measurement dynamics with respect to application-specific QoS. UniPreCIS aims to identify and select quality data sources by performing sensor ranking and selection followed by multimodal data pre-processing in order to meet heterogeneous application QoS and at the same time reducing the resource consumption footprint for the resource constrained network edge. As observed, the processing time and memory utilization has been reduced in the proposed approach while achieving upto 90% accuracy which is arguably significant as compared to state-of-the-art techniques for sensing. The effectiveness of UniPreCIS has been evaluated on a testbed for a specific use case of indoor occupancy estimation that proves its effectiveness

    Bodacious-instance coverage mechanism for wireless sensor network

    Get PDF
    Copyright © 2020 Shahzad Ashraf et al. Due to unavoidable environmental factors, wireless sensor networks are facing numerous tribulations regarding network coverage. These arose due to the uncouth deployment of the sensor nodes in the wireless coverage area that ultimately degrades the performance and confines the coverage range. In order to enhance the network coverage range, an instance (node) redeployment-based Bodacious-instance Coverage Mechanism (BiCM) is proposed. The proposed mechanism creates new instance positions in the coverage area. It operates in two stages; in the first stage, it locates the intended instance position through the Dissimilitude Enhancement Scheme (DES) and moves the instance to a new position, while the second stage is called the depuration, when the moving distance between the initial and intended instance positions is sagaciously reduced. Further, the variations of various parameters of BiCM such as loudness, pulse emission rate, maximum frequency, grid points, and sensing radius have been explored, and the optimized parameters are identified. The performance metric has been meticulously analyzed through simulation results and is compared with the state-of-the-art Fruit Fly Optimization Algorithm (FOA) and, one step above, the tuned BiCM algorithm in terms of mean coverage rate, computation time, and standard deviation. The coverage range curve for various numbers of iterations and sensor nodes is also presented for the tuned Bodacious-instance Coverage Mechanism (tuned BiCM), BiCM, and FOA. The performance metrics generated by the simulation have vouched for the effectiveness of tuned BiCM as it achieved more coverage range than BiCM and FOA

    Data redundancy reduction for energy-efficiency in wireless sensor networks: a comprehensive review

    Get PDF
    Wireless Sensor Networks (WSNs) play a significant role in providing an extraordinary infrastructure for monitoring environmental variations such as climate change, volcanoes, and other natural disasters. In a hostile environment, sensors' energy is one of the crucial concerns in collecting and analyzing accurate data. However, various environmental conditions, short-distance adjacent devices, and extreme usage of resources, i.e., battery power in WSNs, lead to a high possibility of redundant data. Accordingly, the reduction in redundant data is required for both resources and accurate information. In this context, this paper presents a comprehensive review of the existing energy-efficient data redundancy reduction schemes with their benefits and limitations for WSNs. The entire concept of data redundancy reduction is classified into three levels, which are node, cluster head, and sink. Additionally, this paper highlights existing key issues and challenges and suggested future work in reducing data redundancy for future research

    A home automation architecture based on LoRa technology and Message Queue Telemetry Transfer protocol

    Get PDF
    none5noIn recent years, Internet of Things technologies gained momentum in various application areas, including the Smart Home field. In this view, the smart objects available in the house can communicate with each other and with the outside world by adopting solutions already proposed for Internet of Things. In fact, among the challenges to face during the design and implementation of an Internet of Things–based Smart Home infrastructure, battery usage represents a key point for the realization of an efficient solution. In this context, the communication technology chosen plays a fundamental role, since transmission is generally the most energy demanding task, and Internet of Things communication technologies are designed to reduce as much as possible the power consumption. This article describes an Internet of Things-oriented architecture for the Smart Home, based on the long-range and low-power technology LoRa. Moreover, in order to enable the devices to communicate with each other and the outside world, the Message Queue Telemetry Transfer protocol is used as a domotic middleware. We show that LoRa, designed by having in mind the typical requirements of Internet of Things (i.e. low power consumption, sporadic transmission, and robustness to interference), is well-suited to also meet the need of more established home automation systems, specifically the low latency in message delivery. Interoperability among different devices may also be obtained through the Message Queue Telemetry Transfer midlleware.openEnnio Gambi, Laura Montanini, Danny Pigini, Gianluca Ciattaglia, Susanna SpinsanteGambi, Ennio; Montanini, Laura; Pigini, Danny; Ciattaglia, Gianluca; Spinsante, Susann
    corecore