389 research outputs found

    Mini PCB Input Sensor and Display Circuits

    Get PDF
    The objective of this MQP was to use analog and other design techniques to build a circuit using one of Analog Device\u27s new IC\u27s. After much thought, research, and collaboration, the project chosen was the Mini PCB Input Sensor and Display Circuits . This project has two parts: the first being a small, inexpensive, and portable circuit designed to be distributed to students who attend WPI\u27s ECE undergraduate recruitment open houses. The second phase is a more complex version of the portable circuit, and would allow the user to connect to a PC via USB and display the output of the various sensors on a computer monitor. This paper guides the reader through the design process as seen through the eyes of the designers, detailing the unique processes considered to reach the final outcome

    Mini Input Sensor Boards

    Get PDF
    The objective of this MQP was to use analog and other design techniques to build a circuit using one of Analog Device\u27s new Integrated Circuits. After much thought, research, and collaboration, the project chosen was the Mini PCB Input Sensor and Display Circuits . This project has two parts: the first being a small, inexpensive, and portable circuit designed to be distributed to high school seniors who attend WPI\u27s ECE undergraduate recruitment open houses. The second phase is a more complex version of the portable circuit, and would allow the user to connect to a PC via USB and display the output of the various sensors on a computer monitor

    Wireless temperature sensing in hostile environments using a microcontroller powered by optical fiber

    Get PDF
    Uno de los mayores riegos del mundo industrial es el fallo de las maquinarias y aparatos que los forman. Un error, provocado por la causa que sea, puede tener consecuencias fatales, no solo para la empresa sino también para todo su entorno. Estas máquinas trabajan con altas cantidades de energía, por lo que su control y monitoreo disminuye los riesgos y asegura una mayor seguridad a la hora de trabajar con ellos. Un ejemplo de este tipo de máquinas son los transformadores. Estos dispositivos trabajan con circuitos eléctricos que intercambian altas cantidades de potencia para el funcionamiento y distribución eléctrica. Existen distintos parámetros a medir para poder monitorear el estado en que se encuentran estas máquinas, pero uno de los principales es la temperatura, y en ese se va a basar este proyecto. Controlar la temperatura de un transformador supone controlar el interior del mismo, y con ello asegurarse de que funciona correctamente, y que sigue en el periodo de su vida útil, ya que el envejecimiento y desgaste de esta puede llegar a generar graves consecuencias. La temperatura se va a medir utilizando un sensor de instrumentación. Para su diseño, la principal característica a tener en cuenta es la necesidad de que se adapte al entorno hostil que rodea a los transformadores. Es por ello que se va a utilizar un sensor de fibra óptica, inmune a las interferencias electromagnéticas y de radiofrecuencia, y garantizando un bajo coste. La información del sensor se va a obtener con un microprocesador, conectado en el punto de salida de señal del sensor. Este dispositivo va a obtener la data correspondiente y la va a transmitir al módulo de comunicación, encargado de emitir los resultados a la unidad de control. Como sistema de comunicación, se va a utilizar un protocolo inalámbrico. El protocolo ZigBee asegura una robustez y rápido start-up, así como un diseño simple y sencillo. Finalmente, la interfaz de ordenador se va a diseñar con el programa LabView. Va a tener la funcionalidad de punto de control, con la capacidad de activar el funcionamiento de la red sensorial, y su casi inmediato monitoreo. Eso es, que la interfaz estará diseñada para obtener la data emitida por el sensor, y analizarla, dándole al usuario la información correspondiente, casi en tiempo inmediato. Por lo que es posible conocer, casi al momento, la temperatura a la que se encuentra el sensor, por ende la temperatura en el transformador. En caso de requerir un sistema totalmente inmune a las interferencias electromagnéticas, la alimentación del sensor se podría hacer a través de la tecnología PoF (Power over Fiber). Utilizando un sistema ya diseñado e implementado de la universidad, se van a adaptar sus parámetros a los requerimientos del sistema para observar sus resultados, tanto teórica como experimentalmente. Este proyecto consiste en el diseño e implementación de todos los distintos componentes del sensor de temperatura, es decir, la fibra óptica y sus circuitos de adaptación, la programación del microprocesador, el establecimiento de la comunicación inalámbrica, y el diseño de la interfaz. Una vez implementado todo el sistema, se van a realizar distintas pruebas, donde se va a someter al sensor a bruscas variaciones de temperaturas para estudiar su respuesta. Y una vez comprobado que todo el sistema funciona correctamente, se va a sustituir la fuente de tensión, por la tecnología PoF, observando los resultados y su posible futura inclusión en el desarrollo de sensores.One of the greatest risks of the industrial area is the failure of the machines and devices composing in. Any mistake may have fatal consequences, not only for the industry but also for its environment. These machines work with high quantities of energy, so its control and monitoring decreases the risks and guarantees a greater security when working with them The transformers are an example of these machines. These devices work with electrical circuits exchanging great amounts of energy for the electrical distribution. There are different parameters that will enable the monitoring of the machine´s state, but one of the main ones is the temperature, and it is what this project will focus on. In order to control the temperature of the transformer, the sensor must be placed inside of it. This means one of the main characteristics of the designed sensor has to be its immunity to electromagnetic and radiofrequency interferences, this is why it the selected sensor uses optical fiber. The data acquisition is going to be done with a microprocessor, which will be connected to the sensor and programed to obtain the results and transmit them to communication module, which is set to emit them to the control unit. The communication is going to use a wireless protocol. The ZigBee protocol is going to provide roughness and fast commissioning, as well as a simple and nice design. The control unit is going to be designed with the LabView program. Its programming include the acquisition of the data received from the sensor and its analysis. This means it will take the results and give the user its equivalent temperature value, almost immediately to the response of the sensor. This way it is possible to know the temperature the sensor is at, hence the temperature of the transformer. In case of requiring a system totally immune to interferences, the system will have to be powered with a PoF technology. A PoF system already designed and implemented is going to be adapted to the system, and tested to read its response. The project consists on the design and implementation of the sensor temperature, and all its components, this is the optical fiber and its adaptation circuits, the microprocessor´s programming, the communication and the interface design. Once the whole system is implemented, different tests are going to be done where the sensor is going to be submitted to abrupt temperature variations and its response studied. Once checked the system is working correctly the power source will be replaced with the PoF, analyzing its results and future inclusion on the sensors development.Ingeniería Electrónica Industrial y Automátic

    Cost-Effective and Energy-Efficient Techniques for Underwater Acoustic Communication Modems

    Get PDF
    Finally, the modem developed has been tested experimentally in laboratory (aquatic environment) showing that can communicates at different data rates (100..1200 bps) compared to state-of-the-art research modems. The software used include LabVIEW, MATLAB, Simulink, and Multisim (to test the electronic circuit built) has been employed.Underwater wireless sensor networks (UWSNs) are widely used in many applications related to ecosystem monitoring, and many more fields. Due to the absorption of electromagnetic waves in water and line-of-sight communication of optical waves, acoustic waves are the most suitable medium of communication in underwater environments. Underwater acoustic modem (UAM) is responsible for the transmission and reception of acoustic signals in an aquatic channel. Commercial modems may communicate at longer distances with reliability, but they are expensive and less power efficient. Research modems are designed by using a digital-signal-processor (DSP is expensive) and field-programmable-gate-array (FPGA is high power consuming device). In addition to, the use of a microcontroller is also a common practice (which is less expensive) but provides limited computational power. Hence, there is a need for a cost-effective and energy-efficient UAM to be used in budget limited applications. In this thesis different objectives are proposed. First, to identify the limitations of state-of-the-art commercial and research UAMs through a comprehensive survey. The second contribution has been the design of a low-cost acoustic modem for short-range underwater communications by using a single board computer (Raspberry-Pi), and a microcontroller (Atmega328P). The modulator, demodulator and amplifiers are designed with discrete components to reduce the overall cost. The third contribution is to design a web based underwater acoustic communication testbed along with a simulation platform (with underwater channel and sound propagation models), for testing modems. The fourth contribution is to integrate in a single module two important modules present in UAMs: the PSK modulator and the power amplifier

    Mobile Robot (Structure, Sensor Unit and Motor Drive)

    Get PDF
    A Mobile Robot is developed to detect and avoid obstacles during its navigation from one point to another point. The Mobile Robot system is composed of 5 (five) main parts, which is structure / mechanical part, to do the mechanical part of the robot; sensor unit part, to detect and send the received signal to the controller part; motor drive part, to navigate the robot; controller part, acts as a brain of the robot to control all action taken by the robot; and power supply part, which is used to power up the entire system of the robot. This project has been assigned to two students so that the scope of works can be divided into hardware and software implementation. This report will concentrate on the hardware implementation part including all the circuits used for the system of the robot. The methods used in this project are literature review, research via the internet and books, simulation by using certain software and testing the robot system. The model then is built and its motive is to find its own path and avoid collision in the designed maze

    From Chip-in-a-lab To Lab-on-a-chip: Towards A Single Handheld Electronic System For Multiple Application-specific Lab-on-a-chip (asloc)

    Get PDF
    We present a portable, battery-operated and application-specific lab-on-a-chip (ASLOC) system that can be easily configured for a wide range of lab-on-a-chip applications. It is based on multiplexed electrical current detection that serves as the sensing system. We demonstrate different configurations to perform most detection schemes currently in use in LOC systems, including some of the most advanced such as nanowire-based biosensing, surface plasmon resonance sensing, electrochemical detection and real-time PCR. The complete system is controlled by a single chip and the collected information is stored in situ, with the option of transferring the data to an external display by using a USB interface. In addition to providing a framework for truly portable real-life developments of LOC systems, we envisage that this system will have a significant impact on education, especially since it can easily demonstrate the benefits of integrated microanalytical systems. © the Partner Organisations 2014.141321682176Manz, A., Graber, N., Widmer, H.M., (1990) Sens. Actuators, B, 1, pp. 244-248Ríos, Á., Zougagh, M., Avila, M., (2012) Anal. Chim. Acta, 740, pp. 1-11Elvira, K.S., Solvas, X.C.I., Wootton, R.C.R., Demello, A.J., (2013) Nat. Chem., 5, pp. 905-915Nge, P.N., Rogers, C.I., Woolley, A.T., (2013) Chem. Rev., 113, pp. 2550-2583Kaushik, A., Vasudev, A., Arya, S.K., Pasha, S.K., Bhansali, S., (2014) Biosens. Bioelectron., 53, pp. 499-512Han, K.N., Li, C.A., Seong, G.H., (2013) Annu. Rev. Anal. Chem., 6, pp. 119-141Lee, J., Lee, S.-H., (2013) Biomed. Eng. Lett., 3, pp. 59-66Lewis, A.P., Cranny, A., Harris, N.R., Green, N.G., Wharton, J.A., Wood, R.J.K., Stokes, K.R., (2013) Meas. Sci. Technol., 24, p. 042001Yushan, Z., Jacquemod, C., Sawan, M., (2013) 2013 IEEE International Symposium on Circuits and Systems (ISCAS), , Beijing, China, 1071-1074Yang, J., Brooks, C., Estes, M.D., Hurth, C.M., Zenhausern, F., (2014) Forensic Sci. Int.: Genet., 8, pp. 147-158Czugala, M., Maher, D., Collins, F., Burger, R., Hopfgartner, F., Yang, Y., Zhaou, J., Diamond, D., (2013) RSC Adv., 3, pp. 15928-15938Legiret, F.-E., Sieben, V.J., Woodward, E.M.S., Abi Kaed Bey, S.K., Mowlem, M.C., Connelly, D.P., Achterberg, E.P., (2013) Talanta, 116, pp. 382-387Fernández-La-Villa, A., Sánchez-Barragán, D., Pozo-Ayuso, D.F., Castaño-Álvarez, M., (2012) Electrophoresis, 33, pp. 2733-2742Wang, S., Inci, F., Chaunzwa, T.L., Ramanujam, A., Vasudevan, A., Subramanian, S., Ip, A.C.F., Demirci, U., (2012) Int. J. Nanomed., 7, pp. 2591-2600Lillehoj, P.B., Huang, M.C., Ho, C.M., (2013) 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), , Taipei, Taiwan, 53-56Ansari, K., Ying, J.Y.S., Hauser, P.C., De Rooij, N.F., Rodriguez, I., (2013) Electrophoresis, 34, pp. 1390-1399Toumazou, C., Shepherd, L.M., Reed, S.C., Chen, G.I., Patel, A., Garner, D.M., Wang, C.J., Zhang, L., (2013) Nat. Methods, 10, pp. 641-646Fintschenko, Y., (2011) Lab Chip, 11, pp. 3394-3400Hemling, M., Crooks, J.A., Oliver, P.M., Brenner, K., Gilbertson, J., Lisensky, G.C., Weibel, D.B., (2013) J. Chem. Educ., 91, pp. 112-115Yang, C.W., Lagally, E.T., (2013) Methods Mol. Biol., 949, pp. 25-40Priye, A., Hassan, Y.A., Ugaz, V.M., (2012) Lab Chip, 12, pp. 4946-4954Neuzil, P., Pipper, J., Hsieh, T.M., (2006) Mol. BioSyst., 2, pp. 292-298Neuzil, P., Zhang, C., Pipper, J., Oh, S., Zhuo, L., (2006) Nucleic Acids Res., 34, p. 77Novak, L., Neuzil, P., Pipper, J., Zhang, Y., Lee, S., (2007) Lab Chip, 7, pp. 27-29Pipper, J., Inoue, M., Ng, L.F., Neuzil, P., Zhang, Y., Novak, L., (2007) Nat. Med., 13, pp. 1259-1263Pipper, J., Zhang, Y., Neuzil, P., Hsieh, T.M., (2008) Angew. Chem., Int. Ed., 47, pp. 3900-3904Neuzil, P., Novak, L., Pipper, J., Lee, S., Ng, L.F., Zhang, C., (2010) Lab Chip, 10, pp. 2632-2634Neuzil, P., Reboud, J., (2008) Anal. Chem., 80, pp. 6100-6103Novak, L., Neuzil, P., Woon, J.S.B., Wee, Y., (2009) IEEE Sensors 2009 Conference, , Christchurch, New Zealand, 405-407Gaydos, C.A., Van Der Pol, B., Jett-Goheen, M., Barnes, M., Quinn, N., Clark, C., Daniel, G.E., Hook III, E.W., (2013) J. Clin. Microbiol., 51, pp. 1666-1672Neuzil, P., Wong, C.C., Reboud, J., (2010) Nano Lett., 10, pp. 1248-1252Cui, Y., Wei, Q., Park, H., Lieber, C.M., (2001) Science, 293, pp. 1289-1292Zhang, G.J., Luo, Z.H., Huang, M.J., Ang, J.J., Kang, T.G., Ji, H., (2011) Biosens. Bioelectron., 28, pp. 459-463Zhang, G.J., Zhang, G., Chua, J.H., Chee, R.E., Wong, E.H., Agarwal, A., Buddharaju, K.D., Balasubramanian, N., (2008) Nano Lett., 8, pp. 1066-1070Cumyn, V.K., Fleischauer, M.D., Hatchard, T.D., Dahn, J.R., (2003) Electrochem. Solid-State Lett., 6, pp. E15-E18Drake, K.F., Van Duyne, R.P., Bond, A.M., (1978) J. Electroanal. Chem., 89, pp. 231-24

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications
    corecore