655 research outputs found

    Area- Efficient VLSI Implementation of Serial-In Parallel-Out Multiplier Using Polynomial Representation in Finite Field GF(2m)

    Full text link
    Finite field multiplier is mainly used in elliptic curve cryptography, error-correcting codes and signal processing. Finite field multiplier is regarded as the bottleneck arithmetic unit for such applications and it is the most complicated operation over finite field GF(2m) which requires a huge amount of logic resources. In this paper, a new modified serial-in parallel-out multiplication algorithm with interleaved modular reduction is suggested. The proposed method offers efficient area architecture as compared to proposed algorithms in the literature. The reduced finite field multiplier complexity is achieved by means of utilizing logic NAND gate in a particular architecture. The efficiency of the proposed architecture is evaluated based on criteria such as time (latency, critical path) and space (gate-latch number) complexity. A detailed comparative analysis indicates that, the proposed finite field multiplier based on logic NAND gate outperforms previously known resultsComment: 19 pages, 4 figure

    High speed world level finite field multipliers in F2m

    Get PDF
    Finite fields have important applications in number theory, algebraic geometry, Galois theory, cryptography, and coding theory. Recently, the use of finite field arithmetic in the area of cryptography has increasingly gained importance. Elliptic curve and El-Gamal cryptosystems are two important examples of public key cryptosystems widely used today based on finite field arithmetic. Research in this area is moving toward finding new architectures to implement the arithmetic operations more efficiently. Two types of finite fields are commonly used in practice, prime field GF(p) and the binary extension field GF(2 m). The binary extension fields are attractive for high speed cryptography applications since they are suitable for hardware implementations. Hardware implementation of finite field multipliers can usually be categorized into three categories: bit-serial, bit-parallel, and word-level architectures. The word-level multipliers provide architectural flexibility and trade-off between the performance and limitations of VLSI implementation and I/O ports, thus it is of more practical significance. In this work, different word level architectures for multiplication using binary field are proposed. It has been shown that the proposed architectures are more efficient compared to similar proposals considering area/delay complexities as a measure of performance. Practical size multipliers for cryptography applications have been realized in hardware using FPGA or standard CMOS technology, to similar proposals considering area/delay complexities as a measure of performance. Practical size multipliers for cryptography applications have been realized in hardware using FPGA or standard CMOS technology. Also different VLSI implementations for multipliers were explored which resulted in more efficient implementations for some of the regular architectures. The new implementations use a simple module designed in domino logic as the main building block for the multiplier. Significant speed improvements was achieved designing practical size multipliers using the proposed methodology

    A VLSI synthesis of a Reed-Solomon processor for digital communication systems

    Get PDF
    The Reed-Solomon codes have been widely used in digital communication systems such as computer networks, satellites, VCRs, mobile communications and high- definition television (HDTV), in order to protect digital data against erasures, random and burst errors during transmission. Since the encoding and decoding algorithms for such codes are computationally intensive, special purpose hardware implementations are often required to meet the real time requirements. -- One motivation for this thesis is to investigate and introduce reconfigurable Galois field arithmetic structures which exploit the symmetric properties of available architectures. Another is to design and implement an RS encoder/decoder ASIC which can support a wide family of RS codes. -- An m-programmable Galois field multiplier which uses the standard basis representation of the elements is first introduced. It is then demonstrated that the exponentiator can be used to implement a fast inverter which outperforms the available inverters in GF(2m). Using these basic structures, an ASIC design and synthesis of a reconfigurable Reed-Solomon encoder/decoder processor which implements a large family of RS codes is proposed. The design is parameterized in terms of the block length n, Galois field symbol size m, and error correction capability t for the various RS codes. The design has been captured using the VHDL hardware description language and mapped onto CMOS standard cells available in the 0.8-µm BiCMOS design kits for Cadence and Synopsys tools. The experimental chip contains 218,206 logic gates and supports values of the Galois field symbol size m = 3,4,5,6,7,8 and error correction capability t = 1,2,3, ..., 16. Thus, the block length n is variable from 7 to 255. Error correction t and Galois field symbol size m are pin-selectable. -- Since low design complexity and high throughput are desired in the VLSI chip, the algebraic decoding technique has been investigated instead of the time or transform domain. The encoder uses a self-reciprocal generator polynomial which structures the codewords in a systematic form. At the beginning of the decoding process, received words are initially stored in the first-in-first-out (FIFO) buffer as they enter the syndrome module. The Berlekemp-Massey algorithm is used to determine both the error locator and error evaluator polynomials. The Chien Search and Forney's algorithms operate sequentially to solve for the error locations and error values respectively. The error values are exclusive or-ed with the buffered messages in order to correct the errors, as the processed data leave the chip

    Hardware Implementations for Symmetric Key Cryptosystems

    Get PDF
    The utilization of global communications network for supporting new electronic applications is growing. Many applications provided over the global communications network involve exchange of security-sensitive information between different entities. Often, communicating entities are located at different locations around the globe. This demands deployment of certain mechanisms for providing secure communications channels between these entities. For this purpose, cryptographic algorithms are used by many of today\u27s electronic applications to maintain security. Cryptographic algorithms provide set of primitives for achieving different security goals such as: confidentiality, data integrity, authenticity, and non-repudiation. In general, two main categories of cryptographic algorithms can be used to accomplish any of these security goals, namely, asymmetric key algorithms and symmetric key algorithms. The security of asymmetric key algorithms is based on the hardness of the underlying computational problems, which usually require large overhead of space and time complexities. On the other hand, the security of symmetric key algorithms is based on non-linear transformations and permutations, which provide efficient implementations compared to the asymmetric key ones. Therefore, it is common to use asymmetric key algorithms for key exchange, while symmetric key counterparts are deployed in securing the communications sessions. This thesis focuses on finding efficient hardware implementations for symmetric key cryptosystems targeting mobile communications and resource constrained applications. First, efficient lightweight hardware implementations of two members of the Welch-Gong (WG) family of stream ciphers, the WG(29,11)\left(29,11\right) and WG-1616, are considered for the mobile communications domain. Optimizations in the WG(29,11)\left(29,11\right) stream cipher are considered when the GF(229)GF\left(2^{29}\right) elements are represented in either the Optimal normal basis type-II (ONB-II) or the Polynomial basis (PB). For WG-1616, optimizations are considered only for PB representations of the GF(216)GF\left(2^{16}\right) elements. In this regard, optimizations for both ciphers are accomplished mainly at the arithmetic level through reducing the number of field multipliers, based on novel trace properties. In addition, other optimization techniques such as serialization and pipelining, are also considered. After this, the thesis explores efficient hardware implementations for digit-level multiplication over binary extension fields GF(2m)GF\left(2^{m}\right). Efficient digit-level GF(2m)GF\left(2^{m}\right) multiplications are advantageous for ultra-lightweight implementations, not only in symmetric key algorithms, but also in asymmetric key algorithms. The thesis introduces new architectures for digit-level GF(2m)GF\left(2^{m}\right) multipliers considering the Gaussian normal basis (GNB) and PB representations of the field elements. The new digit-level GF(2m)GF\left(2^{m}\right) single multipliers do not require loading of the two input field elements in advance to computations. This feature results in high throughput fast multiplication in resource constrained applications with limited capacity of input data-paths. The new digit-level GF(2m)GF\left(2^{m}\right) single multipliers are considered for both the GNB and PB. In addition, for the GNB representation, new architectures for digit-level GF(2m)GF\left(2^{m}\right) hybrid-double and hybrid-triple multipliers are introduced. The new digit-level GF(2m)GF\left(2^{m}\right) hybrid-double and hybrid-triple GNB multipliers, respectively, accomplish the multiplication of three and four field elements using the latency required for multiplying two field elements. Furthermore, a new hardware architecture for the eight-ary exponentiation scheme is proposed by utilizing the new digit-level GF(2m)GF\left(2^{m}\right) hybrid-triple GNB multipliers

    High Speed and Low-Complexity Hardware Architectures for Elliptic Curve-Based Crypto-Processors

    Get PDF
    The elliptic curve cryptography (ECC) has been identified as an efficient scheme for public-key cryptography. This thesis studies efficient implementation of ECC crypto-processors on hardware platforms in a bottom-up approach. We first study efficient and low-complexity architectures for finite field multiplications over Gaussian normal basis (GNB). We propose three new low-complexity digit-level architectures for finite field multiplication. Architectures are modified in order to make them more suitable for hardware implementations specially focusing on reducing the area usage. Then, for the first time, we propose a hybrid digit-level multiplier architecture which performs two multiplications together (double-multiplication) with the same number of clock cycles required as the one for one multiplication. We propose a new hardware architecture for point multiplication on newly introduced binary Edwards and generalized Hessian curves. We investigate higher level parallelization and lower level scheduling for point multiplication on these curves. Also, we propose a highly parallel architecture for point multiplication on Koblitz curves by modifying the addition formulation. Several FPGA implementations exploiting these modifications are presented in this thesis. We employed the proposed hybrid multiplier architecture to reduce the latency of point multiplication in ECC crypto-processors as well as the double-exponentiation. This scheme is the first known method to increase the speed of point multiplication whenever parallelization fails due to the data dependencies amongst lower level arithmetic computations. Our comparison results show that our proposed multiplier architectures outperform the counterparts available in the literature. Furthermore, fast computation of point multiplication on different binary elliptic curves is achieved

    High-speed VLSI implementation of Digit-serial Gaussian normal basis Multiplication over GF(2m)

    Get PDF
    In this paper, by employing the logical effort technique an efficient and high-speed VLSI implementation of the digit-serial Gaussian normal basis multiplier is presented. It is constructed by using AND, XOR and XOR tree components. To have a low-cost implementation with low number of transistors, the block of AND gates are implemented by using NAND gates based on the property of the XOR gates in the XOR tree. To optimally decrease the delay and increase the drive ability of the circuit the logical effort method as an efficient method for sizing the transistors is employed. By using this method and also a 4-input XOR gate structure, the circuit is designed for minimum delay. The digit-serial Gaussian normal basis multiplier is implemented over two binary finite fields GF(2163) and GF(2233) in 0.18μm CMOS technology for three different digit sizes. The results show that the proposed structures, compared to previous structures, have been improved in terms of delay and area parameters

    Bit-parallel word-serial polynomial basis finite field multiplier in GF(2(233)).

    Get PDF
    Smart card gains extensive uses as a cryptographic hardware in security applications in daily life. The characteristics of smart card require that the cryptographic hardware inside the smart card have the trade-off between area and speed. There are two main public key cryptosystems, these are RSA cryptosystem and elliptic curve (EC) cryptosystem. EC has many advantages compared with RSA such as shorter key length and more suitable for VLSI implementation. Such advantages make EC an ideal candidate for smart card. Finite field multiplier is the key component in EC hardware. In this thesis, bit-parallel word-serial (BPWS) polynomial basis (PB) finite field multipliers are designed. Such architectures trade-off area with speed and are very useful for smart card. An ASIC chip which can perform finite field multiplication and finite field squaring using the BPWS PB finite field multiplier is designed in this thesis. The proposed circuit has been implemented using TSMC 0.18 CMOS technology. A novel 8 x 233 bit-parallel partial product generator is also designed. This new partial product generator has low circuit complexity. The design algorithm can be easily extended to w x m bit-parallel partial product generator for GF(2m).Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .T36. Source: Masters Abstracts International, Volume: 43-01, page: 0286. Advisers: H. Wu; M. Ahmadi. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Private and Public-Key Side-Channel Threats Against Hardware Accelerated Cryptosystems

    Get PDF
    Modern side-channel attacks (SCA) have the ability to reveal sensitive data from non-protected hardware implementations of cryptographic accelerators whether they be private or public-key systems. These protocols include but are not limited to symmetric, private-key encryption using AES-128, 192, 256, or public-key cryptosystems using elliptic curve cryptography (ECC). Traditionally, scalar point (SP) operations are compelled to be high-speed at any cost to reduce point multiplication latency. The majority of high-speed architectures of contemporary elliptic curve protocols rely on non-secure SP algorithms. This thesis delivers a novel design, analysis, and successful results from a custom differential power analysis attack on AES-128. The resulting SCA can break any 16-byte master key the sophisticated cipher uses and it\u27s direct applications towards public-key cryptosystems will become clear. Further, the architecture of a SCA resistant scalar point algorithm accompanied by an implementation of an optimized serial multiplier will be constructed. The optimized hardware design of the multiplier is highly modular and can use either NIST approved 233 & 283-bit Kobliz curves utilizing a polynomial basis. The proposed architecture will be implemented on Kintex-7 FPGA to later be integrated with the ARM Cortex-A9 processor on the Zynq-7000 AP SoC (XC7Z045) for seamless data transfer and analysis of the vulnerabilities SCAs can exploit
    corecore