
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

November 2017

Formal Analysis of Arithmetic Circuits using Computer Algebra - Formal Analysis of Arithmetic Circuits using Computer Algebra -

Verification, Abstraction and Reverse Engineering Verification, Abstraction and Reverse Engineering

CUNXI YU
ECE, University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Computer Engineering Commons, and the VLSI and Circuits, Embedded and Hardware

Systems Commons

Recommended Citation Recommended Citation
YU, CUNXI, "Formal Analysis of Arithmetic Circuits using Computer Algebra - Verification, Abstraction and
Reverse Engineering" (2017). Doctoral Dissertations. 1142.
https://scholarworks.umass.edu/dissertations_2/1142

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1142?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

FORMAL ANALYSIS OF ARITHMETIC CIRCUITS
USING COMPUTER ALGEBRA

- VERIFICATION, ABSTRACTION AND REVERSE ENGINEERING

A Dissertation Presented

by

CUNXI YU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2017

Electrical and Computer Engineering

c© Copyright by Cunxi Yu 2017

All Rights Reserved

FORMAL ANALYSIS OF ARITHMETIC CIRCUITS
USING COMPUTER ALGEBRA

- VERIFICATION, ABSTRACTION AND REVERSE ENGINEERING

A Dissertation Presented

by

CUNXI YU

Approved as to style and content by:

Maciej Ciesielski, Chair

George S. Avrunin, Member

Daniel Holcomb, Member

Sandip Kundu, Member

Christopher V. Hollot, Department Head
Electrical and Computer Engineering

ABSTRACT

FORMAL ANALYSIS OF ARITHMETIC CIRCUITS
USING COMPUTER ALGEBRA

- VERIFICATION, ABSTRACTION AND REVERSE ENGINEERING

SEPTEMBER 2017

CUNXI YU

B.Sc., ZHEJIANG UNIVERSITY CITY COLLEGE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Maciej Ciesielski

Despite a considerable progress in verification and abstraction of random and

control logic, advances in formal verification of arithmetic designs have been lagging.

This can be attributed mostly to the difficulty in an efficient modeling of arithmetic

circuits and datapaths without resorting to computationally expensive Boolean meth-

ods, such as Binary Decision Diagrams (BDDs) and Boolean Satisfiability (SAT), that

require, bit-blasting, i.e., flattening the design to a bit-level netlist. Approaches that

rely on computer algebra and Satisfiability Modulo Theories (SMT) methods are ei-

ther too abstract to handle the bit-level nature of arithmetic designs or require solving

computationally expensive decision or satisfiability problems.

The work proposed in this thesis aims at overcoming the limitations of analyz-

ing arithmetic circuits, specifically at the post-synthesized phase. It addresses the

verification, abstraction and reverse engineering problems of arithmetic circuits at

iv

an algebraic level, treating an arithmetic circuit and its specification as a properly

constructed algebraic system. The proposed technique solves these problems by func-

tion extraction, i.e., by deriving arithmetic function computed by the circuit from its

low-level circuit implementation using computer algebraic rewriting technique. The

proposed techniques work on large integer arithmetic circuits and finite field arith-

metic circuits, up to 512-bit wide containing millions of logic gates.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . x

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Hardware Verification . 3
1.2 Verification Techniques . 5

1.2.1 Equivalence Checking . 5
1.2.2 Model Checking . 8
1.2.3 Theorem Proving . 8
1.2.4 Symbolic Simulation . 9
1.2.5 Reverse Engineering . 10
1.2.6 Overview of the thesis . 12

2. BACKGROUND . 13

2.1 Canonical Diagrams . 13
2.2 SAT and SMT solvers . 14
2.3 Structural Minimization . 18
2.4 Computer Algebra Approaches . 19

3. FORMAL VERIFICATION OF INTEGER ARITHMETIC
CIRCUITS USING FUNCTION EXTRACTION 25

3.1 Introduction . 25
3.2 Function Extraction . 25

3.2.1 Algebraic Model . 26
3.2.2 Outline of the Approach . 28

vi

3.2.3 Function extraction vs. Polynomial Division 36
3.2.4 Properties of Computed Input Signature . 39

3.3 Experimental Results . 41

3.3.1 Comparison with SAT and SMT . 41

3.3.1.1 SAT comparison: . 42
3.3.1.2 SMT experiments . 44

3.3.2 Limitations and Proposed Solutions . 45

3.3.2.1 Circuit Boundaries . 45
3.3.2.2 Output Encoding . 46
3.3.2.3 Effects of Synthesis on Function Extraction 47

3.4 Verification of Datapaths - A Case Study . 47

3.4.1 Word-level Verification . 50
3.4.2 Bit-level Verification . 54
3.4.3 Results . 55

3.5 Conclusions . 56

4. COMPUTER ALGEBRA BASED VERIFICATION WITH
REDUNDANT POLYNOMIALS . 59

4.1 Introduction . 59
4.2 Previous Work . 60
4.3 Preliminaries . 61

4.3.1 Vanishing Polynomials . 63
4.3.2 Don’t-care Polynomials . 65

4.4 Sequential Verification . 67

4.4.1 Multiply-Accumulator (MAC) . 67
4.4.2 Serial Squarer . 69

4.5 Experimental Results . 71
4.6 Conclusions . 73

5. ADVANCED ALGEBRAIC REWRITING USING
AND-INV-GRAPH . 75

5.1 Introduction . 75
5.2 Background . 76

vii

5.2.1 Boolean Network . 76
5.2.2 Simplified Polynomial Construction . 78

5.3 Approach . 79

5.3.1 Outline of the Approach . 80
5.3.2 Detecting Redundant Polynomials . 82

5.4 Results . 84
5.5 Conclusion . 86

6. ALGEBRAIC SPECTRUM - A NEW CANONICAL
REPRESENTATION OF ARITHMETIC . 87

6.1 Introduction . 87
6.2 Related Work . 89
6.3 Algebraic Spectrum . 93

6.3.1 Uniqueness of Algebraic Spectrum . 94
6.3.2 Example - Single Spectrum Function . 97
6.3.3 Example - Multiple-Spectrum Function . 99

6.4 Polynomial-Time Spectrum Extraction . 100
6.5 Results . 104
6.6 Conclusion . 106

7. FORMAL ANALYSIS OF FINITE FIELD ARITHMETIC
CIRCUITS . 107

7.1 Introduction . 107
7.2 Background . 109

7.2.1 Galois Field Multiplication . 109
7.2.2 Irreducible Polynomials . 110

7.3 Parallel Extraction in Galois Field . 112

7.3.1 Computer Algebraic model . 113
7.3.2 Outline of the Approach . 113
7.3.3 Implementation . 117

7.4 Reverse Engineering in Galois Field . 120

7.4.1 Output encoding determination . 121
7.4.2 Input encoding determination . 122
7.4.3 Extraction of the Irreducible Polynomial . 124

viii

7.5 Results . 127

7.5.1 Parallel Verification of GF(2m) Multipliers 127

7.5.1.1 Design and Verification cost depend on P (x) 129
7.5.1.2 Runtime vs. Memory of Parallelism. 130
7.5.1.3 Effect of synthesis on verification of GF(2m)

multipliers . 131

7.5.2 Reverse Engineering of GF(2m) Multipliers 132

7.6 Conclusion . 134

BIBLIOGRAPHY . 136

ix

LIST OF TABLES

Table Page

3.1 2-bit multiplier intermedia expression size of two substitution
sequence . 30

3.2 N1, N2 are the numbers of nodes before and after fraig -v in ABC ;
N3, N4 are the numbers of clauses before and after simplification
by [12] . 43

3.3 CPU time and memory results of 256-bit (Operands A and B)
arithmetic circuits. (TO = timeout after 3600 sec; MO = memory
out of 8 GB). 45

3.4 Results for a synthesized multiplier; comparison with [32], SAT,
SMT, and commercial tools (TO = timeout after 3600 sec; UD =
undecided; MO = memory out of 8 GB). *ABC was unable to
synthesize the 512-bit CSA multiplier due to memory limit. 45

3.5 CPU time and memory results using TDS and Function
Extraction . 56

4.1 Verification results for GF(2256) Adder, MAC, and Add-shift
Multipliers . 71

4.2 Effect of Vanishing and Don’t Care Polynomials for MAC (MO =
Memory out of 8 GB) . 72

4.3 Effect of Vanishing and Don’t Care Polynomials for Serial Squarer
(MO = Memory out of 8 GB) . 72

4.4 Sequential Squarer results: comparison with SAT and SMT (TO =
Time out after 3600 sec) . 72

5.1 Results of applying AIG-based algebraic rewriting to pre- and
post-synthesized CSA multipliers compared to functional
extraction presented in Chapter 3. *t(s) is the runtime in seconds.
*mem is the memory usage in mb. 85

x

5.2 Results of applying AIG-based algebraic rewriting to post-synthesized
complex arithmetic circuits compared to functional extraction
presented in Chapter 3. *MO = Memory out of 8 GB. 85

6.1 Results of extracting the specification of pre- and post-synthesized
CSA multipliers compared to functional extraction presented in
[31]. *t(s) is the runtime in seconds. *mem is the memory usage
in mb. 103

6.2 Results of extracting the specification of the post-synthesized
complex arithmetic circuits compared to functional extraction
presented in [31]. *MO = Memory out of 8 GB. 104

6.3 Runtime of extracting the specification of the radix-4 Booth
multiplier. *MO = Memory out of 8GB. 104

6.4 Evaluation of word-level abstraction using algebraic spectrum.
Multiplications in F1 and F2 are implemented using
CSA-multiplier. F3 uses radix-4 Booth-multiplier. 105

7.1 Results of verifying Mastrovito multipliers using our parallel
approach. T is the number of threads. MO=Memory out of 32
GB. TO=Time out of 12 hours. (*T=1 shows the maximum
memory usage of a single thread.) . 126

7.2 Results of verifying Montgomery multipliers using our parallel
approach. T is the number of threads. TO=Time out of 12 hours.
MO=Memory out of 32 GB. (*T=1 shows the maximum memory
usage of a single thread.) . 126

7.3 Runtime and memory usage of synthesized Mastrovito and
Montgomery multipliers (T=20). 132

7.4 Results of reverse engineering synthesized and technology mapped
Mastrovito and Montgomery multipliers. 133

xi

LIST OF FIGURES

Figure Page

1.1 Typical industrial IC design flow. 3

1.2 Combinational equivalence checking model. 5

1.3 Sequential equivalence checking model. 6

1.4 A gate-level circuit implementing 2-input AND function with inputs
a and b. 9

1.5 Proving the function of output z in Figure 1.4 is AND(a,b) using
theorem proving. 10

2.1 Canonical diagrams - Ordered Binary Decision Diagrams (OBDD); a)
Gate-level design with output z; b) Gate-level design with output
z′. c) The truth table of z and z′; d) BDDs of z and z′ are
identical with same variable order. 14

2.2 Reduced ordered binary decision diagrams of 4-bit multiplication. 15

2.3 Example of equivalence checking using SAT solver using a Boolean
miter. 16

2.4 Half adder design with input a and b. s is the sum function and c is
the carry function. 18

2.5 Example of logic minimization. a) Original circuit; b) Circuit with
gates B and C are merged; c) Circuit with gates A and D are
merged. 19

3.1 Verifying a 2-bit signed multiplier: Gate-level circuit with output
signature Sigout = −8z3 + 4z2 + 2z1 + z0. 28

3.2 Two substitution orders for an unsigned 2-bit multiplier. 30

3.3 Substitution order analysis using 4-bit, 6-bit, and 8-bit multiplier.
Dep is dependency; Lev is levelization. 32

xii

3.4 Parallel prefix adder, hybrid model . 34

3.5 Expanding complex gates for cut rewriting. 35

3.6 Proof that x5x8 evaluates to 0 using both, the computer algebraic
and Boolean methods. 36

3.7 2-bit gate-level adder. R = r0 + 2r1 + 4r2, A = a0 + 2a1, B = b0 + b1.
R = A+ B. 37

3.8 Arithmetic function of a 2-bit multiplier extracted from the circuit
using TED in normal factored form:
Sigin = (−2a1 + a0)(−2b1 + b0). 39

3.9 Verifying combinational arithmetic circuits: CPU time. 44

3.10 Verifying combinational arithmetic circuits: Memory usage. 45

3.11 Comparing rewriting of the expression Sigout vs individual output
bits for a 4-bit multiplier. 48

3.12 Synthesis impacts on function extraction . 48

3.13 Integer ALU - initial RTL design . 49

3.14 Integer ALU - final RTL design . 50

3.15 TED representation: (a) word-level model; (b) bit-level model 52

3.16 Modeling of the word-level xor. 54

4.1 Sequential n-bit adder, Z = A+ B. 60

4.2 2-bit combinational squarer circuit. a) Gate-level netlist; b)
arithmetic squaring structure. 64

4.3 Compare the size of internal expressions with, without don’t care
polynomial x3. 66

4.4 Original MAC circuit: R =
∑

i Ai · Bi + C0. 67

4.5 MAC circuit unrolled over two cycles. 68

4.6 A 4-bit Serial Squarer. 69

xiii

4.7 Unrolled 4-bit Serial Squarer. 70

4.8 Evaluation of Don’t Care and Vanishing polynomials on a 4-bit serial
squarer. 70

5.1 Representing circuits as AIGs. a) Post-synthesized XOR3 gate-level
netlist. b) AIG of the synthesized XOR3 gate-level netlist. (c)
The extracted two XOR2 functions (nodes 6 and 9) and one
XOR3 function (node 9). 77

5.2 (a) AIG representation of a post-synthesized 2-bit multiplier
gate-level netlist; (b) The AIG of the 2-bit multiplier shown in
Figure 5.2(a); (c) Detected unobserved functions from the AIG
and the correspondences to AIG nodes. 79

5.3 Detecting {MAJ3-XOR3} pairs of a 3-bit post-synthesized
CSA-multiplier with MSB z5 deleted. 84

6.1 The spectra of 2-bit, 3-bit, 4-bit and 5-bit two-operand
multiplication. 96

6.2 Spectra of a 3-bit Booth-multiplier and CSA-multiplier of the four
recorded expressions. 97

6.3 Spectra of a 2-bit MAC of the four recorded expressions. 98

6.4 Spectra of F1=A× (B + C), F2=A×B+A×C, and F3=A×B. A,B,
and C are 3-bit unsigned words. 100

6.5 Extracting the function of 2-bit multiplier using spectral method
without algebraic rewriting. 102

7.1 Two multiplications in GF(24) constructed using P (x)1=x4 + x3 + 1 and

P (x)2=x4 + x+ 1. 111

7.2 Extracted algebraic expressions of the four output bits of a GF(24)
multiplier. P(x)=x4+x+1. 111

7.3 The gate-level netlist of post-synthesized and mapped 2-bit multiplier
over GF (22). The irreducible polynomial P (x) = x2 + x+ 1. 115

7.4 Function extraction of a 2-bit GF multiplier shown in Figure 7.3
using backward rewiring from PO to PI. 116

7.5 Overview of the parallel extraction framework. 117

xiv

7.6 Step3: parallel extraction of a GF(2m) multiplier with number of
threads T. 118

7.7 Extracting the algebraic expression of z0 and z1 separately in Figure

7.4. 120

7.8 Runtime and memory usage of our parallel verification approach as a
function of number of threads T . 130

7.9 Sing thread runtime analysis using Mastrovito multipliers. 131

7.10 Result of reverse engineering GF(2233) Mastrovito multipliers that are

implemented using different P(x). 134

7.11 Evaluation of the design cost using GF(2233) Mastrovito multipliers with

irreducible polynomials x233+x159+1 and x233+x74+1. 134

xv

CHAPTER 1

INTRODUCTION

With an almost unmanageable increase in the size and complexity of ICs and

SoCs, hardware design analysis has become a dominating factor of the overall design

flow [44]. Hardware verification is one of the essential procedures in the design flow

that checks whether the actual hardware implementation has the correct specification.

Specifically, verifying arithmetic computation units are particularly difficult due to

the “bit blasting“ issue, i.e., flattening the design specification into to a bit-level.

The importance of arithmetic verification problem grows with an increased use of

arithmetic modules in embedded systems to perform computation-intensive tasks for

multimedia, signal processing, and cryptography applications.

Formal verification techniques can benefit greatly from abstractions of the func-

tionality of the circuits being verified. Abstraction reduces the complexity of analysis

of the design and may provide a hierarchical view of the register transfer level (RTL),

which could be applied to system-level verification. Word-level abstraction specifi-

cally focuses on extracting a word-level representation of the function implemented

by a gate-level design. For example, for an n-bit gate-level multiplier, the word-level

function can be extracted as Z = AB. We can see that as the datapath size of the

multiplier grows, the bit-level representation increases exponentially, while the word-

level abstraction does not change. However, formal techniques for abstraction in

gate-level design are challenging. The abstraction problems are even harder than the

verification problem since there are no clear boundaries of the arithmetic functions

in the design.

1

This thesis aims at overcoming the limitations of analyzing large arithmetic cir-

cuits, especially of the post-synthesized circuits. The approach proposed here ad-

dresses the verification, abstraction and reverse engineering problems in the alge-

braic domain, in which both the implementation and the specification of the arith-

metic circuit are represented as pseudo-Boolean polynomials in respective variables

(circuit signals). It solves the verification problem by extracting an arithmetic func-

tion computed by the circuit directly from its gate-level circuit implementation using

computer algebraic methods, called function extraction or algebraic rewriting. This

rewriting technique transforms the polynomial representing an encoding of the pri-

mary outputs (called the output signature) into a polynomial at the primary inputs

(called the input signature). The computed arithmetic function can be used to verify

the circuit against the given specification (i.e., the expected function of the design),

or to decipher the function performed by the circuit. In the case of an incorrectly

implemented function, this method will generate a counterexample (bug trace).

Regarding abstraction, a new canonical representation of arithmetic functions,

called algebraic spectrum, is introduced in this thesis. Algebraic spectrum refers the

coefficient distribution of the polynomial expressions that are computed using the

rewriting technique. We prove that the coefficients distribution of arithmetic function

is unique depending on the arithmetic operations. Finally, the verification and reverse

engineering problems of Finite Field Arithmetic circuits are explored. For the finite

field arithmetics, the main contributions include:

• 1) computer algebraic method is approved to be applied for parallel verification

over GF(2m).

• 2) the approach of analyzing the irreducible polynomials of finite field arithmetic

is proposed.

2

Figure 1.1: Typical industrial IC design flow.

• 3) the complete reverse engineering framework of finite field arithmetic is de-

veloped.

1.1 Hardware Verification

The importance and difficulty of arithmetic circuit verification can be illustrated

by the famous FDIV bug in Intel’s Pentium processor in 1995, which cost Intel $475

million. This bug was not covered by the one trillion simulation vectors used for this

processor [27]. Verification is a critical problem in the chip industry since the cost of

hardware verification is claimed to be 70 percent of the overall hardware design effort.

Although the engineers and researchers invest a lot in hardware verification, it is still

challenging as the design complexity increases. The recent verification industry study

presented by Foster [44] showed that the average verification time in the last ten years

is around 60% (57% in 2014) over the entire chip design period. In this survey, it also

shows that there are more than 50% designs requires more than 60% project time in

verification only. Most of those designs contain large arithmetic units.

Hardware verification is a process of checking the correctness of the fabricated

hardware compared to the specification. However, it is impossible to directly check

if the fabricated hardware matches the original specification. Typically, hardware

3

verification is conducted step-by-step during the design flow. Hence, there are many

hardware verification techniques developed that apply on different representations of

hardwares, such as verification of HDL, gate-level netlist, schematic netlist, and so

on. The design flow typically starts with a high-level specification using hardware

description language (HDL) or C/C++. This specification is then compiled into

a register-transfer-level (RTL) description, which is further optimized by high-level

synthesis and logic synthesis techniques and translated into a corresponding netlist

representation. The logic-level netlist is then translated to a physical layout during

placement and routing synthesis.

Typically, equivalence checking has been applied at each step to check the equiv-

alence before and after each optimization or transformation step in the design flow.

There are many verification techniques that apply to different representations of

hardware, such as HDL code, gate-level netlist, layout, etc. This thesis focuses on

gate-level implementation of arithmetic circuits. Traditional approaches to verifying

arithmetic circuits are based on simulation or emulation, but exhaustive simulation

is not applicable to the large modern designs. Theorem proving approaches require

verification experts to manually guide the systems to complete the proof. Thus, to

automatically verify arithmetic circuits, many formal techniques have been developed

to handle large practical circuits. However, few formal techniques are applicable to

large gate-level arithmetic circuits. Those contemporary formal methods that could

be applied to arithmetic circuits verification are reviewed in Chapter 2. The limi-

tations of those formal methods for verifying arithmetic circuits are studied in the

Chapter 3.

4

1.2 Verification Techniques

1.2.1 Equivalence Checking

In recent years, many CAD vendors have offered equivalence checking tools for

design verification. Equivalence checking (EC) is one of the most widely used formal

techniques in the verification of digital circuits. Depending on the type of the target

circuits, i.e. sequential circuits or combinational circuits, equivalence checking can

be classified in two types: sequential equivalence checking (SEC) and combinational

equivalence checking (CEC).

Inputs

Design 1

Design 2

Figure 1.2: Combinational equivalence checking model.

The Combinational Equivalence Checking (CEC) model is shown in Figure 1.2.

Let Design1 be the design to be verified, and Design2 be the reference design. The

specification of the reference design is the expected specification of Design1. Given

identical inputs to Design1 and Design2, a miter is built by XORing the correspond-

ing output bits of these two designs and connecting to a wide OR gate. If the functions

represented by the two designs are identical for all input patterns, then miter always

evaluates to 0 (Boolean false) for any input pattern. In this case, the two designs are

proved to be equivalent. Otherwise, these two designs are not equivalent.

The Sequential Equivalence Checking (SEC) model is shown in Figure 1.3. SEC

checks if the corresponding outputs are equivalent for any state of the two circuits

with identical initial states. The proof of correctness of two sequential circuits re-

quires a complete state-space traversal, which is one of the bottlenecks of sequential

5

Inputs

Design 1

Design 2

Sequential States

=? =?

Figure 1.3: Sequential equivalence checking model.

equivalence checking. The complexity of sequential equivalence checking could be

significantly increased by synthesis process, such as retiming technique [120].

The most straightforward technique to prove or disprove the equivalence using

EC model is exhaustive simulation. It is obvious that exhaust simulation is not pos-

sible for design with a large number of input bits. And, random simulation does not

provide complete proof of the equivalence because of the coverage problem. Further,

formal verification methods are heavily investigated to address the equivalence check-

ing problem. The most promising formal techniques for solving equivalence checking

problem include canonical diagrams, satisfiability and computer algebra methods.

Reduced Ordered Binary Decision Diagrams (OBDDs) [20], provide the efficient

method for equivalence checking for combinational and sequential circuits [5]. OB-

DDs are canonical representation with a fixed variable ordering. Hence, equivalence

checking problem can be addressed by comparing the OBDDs of two designs. If two

OBDDs are identical, two designs are functional equivalent. However, the size of the

BDDs explodes for large designs. Specifically, it becomes large for the arithmetic

circuits. For example, for integer multiplication, it has been shown that an n-bit

multiplication requires a O(n3) size OBDD [24].

Due to the limitation of the BDDs, many techniques have been developed to reduce

the complexity of equivalence checking. Goldberg et. al [47] presented a simple

6

framework for SAT-based CEC and reported results on an ISCAS-85 benchmarks.

Paruthi et. al [88] proposed an idea that is based on a tight integration of a structural

satisfiability (SAT) solver, BDD sweeping, and random simulation. In this work,

the integral application of the SAT solver significantly enhances the capacity and

efficiency of BDD sweeping and extends its suitability for mis-comparing designs.

Further, the random simulation algorithm works on the graph that represents the

netlist and thus runs more efficiently. Mishchenko et. al [76] presented an And-Inv-

Graph (AIG) data structure that is the state-of-the-art technique for logic reduction

and synthesis. The Functional-reduced AIG (FRAIG) is able to efficiently reduced the

logic complexity [78] which has been implemented in the ABC system [80]. However,

all these techniques are not applicable to large arithmetic circuits, such as Galois field

multipliers and integer multipliers [31][72].

With significant research efforts spent on formal methods, formal verification for

hardware that combines heuristic methods, such as checking structure similarity, be-

comes more and more popular. The similarity between the two circuits is exploited

to identify the equivalences between internal nodes of the two circuits being checked

for equivalence [63]. For example, the partial list of equivalence checkers are Formal-

ity (from Synopsys), Design Verifyer (from Chrysalis) and Verity (from IBM) [64].

Similarly, identifying structural similarities for sequential equivalence checking is also

explored [120]. These tools perform logic equivalence checking of two circuits based

structural analysis and BDD techniques. Similarly to other verification techniques,

these equivalence checking techniques are limited by the memory explosion problem

for arithmetic circuits. Recently, IBM Formal Verification team showed that their

tools could automatically verify the floating point division (FDIV) unit using their

SixthSense formal engine [62].

7

1.2.2 Model Checking

Model checking performs verification by exhaustively checking whether a state-

transition graph (STGs) satisfies a given property [36]. In this approach, a circuit is

described as a state machine with transitions to describe the circuit behavior. The

specifications to be checked are described as properties that the machine should or

should not satisfy. Model checking is limited by the state-space explosion problem.

The state explosion problem refers to the fact that the number of states is exponential

in the number of Boolean variables. Explicit state model checkers are based on graph-

traversal of the model states, and must keep track of the visited states. However, this

is infeasible due to the large size of the modern designs.

BDDs [20] have traditionally been used as a symbolic representation of the sys-

tem. Model checkers based on BDDs are usually able to handle systems with hundreds

of state variables. However, for larger systems, the BDDs generated during model

checking become too large for currently available computers. Also, selecting the right

ordering of BDD variables is very important. Boolean Satisfiability (SAT) also oper-

ates on Boolean expressions but does not use canonical forms. Biere et. al proposed

a SAT procedures for symbolic model checking instead of BDDs [14][13]. They do

not suffer from potential space explosion of BDDs and can handle propositional sat-

isfiability problems with thousands of variables.

The symbolic model checking can be applied to sequential circuit verification [34].

However, due to the large size of arithmetic circuits, this technique is difficult to check

the properties. Additionally, the symbolic model checking has been applied mostly

to verifying the properties of systems instead of gate-level implementations.

1.2.3 Theorem Proving

Another class of solvers includes Theorem Provers, deductive systems for proving

that an implementation satisfies the specification, using mathematical reasoning. The

8

proof system is based on a large and strongly problem-specific database of axioms

and inference rules, such as simplification, rewriting, induction, etc. Some of the most

popular theorem proving systems are: HOL [48], PVS [84], Boyer-Moore/ACL2 [19],

and Nqthm [48][56]. These systems are characterized by high abstraction and pow-

erful logic expressiveness, but they are highly interactive, require domain knowledge,

extensive user guidance, and expertise for efficient use. The success of verification

using theorem prover depends on the set of available axioms and rewrite rules, and on

the choice and order in which the rules are applied during the proof process, with no

guarantee for a conclusive answer. Similarly, term rewriting techniques, such as [121]

or [55], are incomplete and “may fail to generate the proof because additional lemmas

are needed” [55]. Additionally, theorem proving for gate-level circuits is extremely

complex.

a

b
z

i

Figure 1.4: A gate-level circuit implementing 2-input AND function with inputs a
and b.

For example, to prove that the circuit shown in Figure 1.4 is a AND2(a, b) func-

tion, theorem proving requires ten steps. The specification of z is Fspec=a ∧ b. The

specification of the circuit is F=∃x.i NAND(a, b, x) ∧ NOT (x, z). The equivalence

checking problem using theorem proving is: ∀ a, b, z F (a, b, z) → Fspec(a,b,z). The

procedure of proving the equivalence between Fspec and F using theorem proving is

shown in Figure 1.4.

1.2.4 Symbolic Simulation

Symbolic simulation is a well know technique for simulation and verification of dig-

ital circuits and is an extension of conventional digital simulation, where a simulator

evaluates circuit behavior using symbolic Boolean variables to encode a range of cir-

9

⊢ ∃x. NAND(a,b,i) ∧ NOT(i,z)
⊢ NAND(a,b,i) ∧ NOT(i,z)
⊢ NAND(a,b,i)
⊢ i = ¬ (a ∧ b)
⊢ NOT(i,z)
⊢ z = ¬ i
⊢ z = ¬(¬(a ∧ b))
⊢ z = (a ∧ b)
⊢ AND(a,b,z)
⊢ F (a,b,z) = Fspec(a,b,z)

Figure 1.5: Proving the function of output z in Figure 1.4 is AND(a,b) using theorem
proving.

cuit operating conditions [21]. Several symbolic simulation tools were developed after

Bryant introduced BDDs [18][9]. Bose et. al presented an automated verification tool

of synchronous pipelined circuits, based on symbolic simulation [18]. The problem

for this work and symbolic simulation is that the specifications must be expressed as

Boolean functions, which can be very complex for some arithmetic circuits.

Compared with model checking, symbolic simulation technique can handle much

larger circuits, because this approach can only cover some of the input spaces in each

simulation run. However, symbolic simulation cannot be used to completely verify

arithmetic circuits such as integer multipliers, field multipliers, etc., because the input

spaces of these circuits are very large and the BDDs grow up exponentially for these

circuits. An exhaustive simulation to cover the entire input space is almost impossible

for large arithmetic circuits.

1.2.5 Reverse Engineering

Significant research effort is spent on reverse engineering for hardware security

analysis and verification. Physical-based reverse engineering works can be done by

decapsulating the chip using imaging and delayering techniques. Torrance and James

show that reverse engineering of a fabricated integrated circuit chips can be very

10

successful [119]. Li et al. presented an automatic approach that identifies high-level

components by matching a set of known components [68], and Subramanyan et al.

improve that approach to successfully operate on synthesized gate-level netlist [113].

Several logic encryption techniques have been introduced to protect the ICs against

those reverse engineering techniques, such as logic locking and gate-level camouflaging

[93] [123]. Gate-level camouflaging is a particular camouflaging technique that utilizes

the camouflaged standard cells for technology mapping against imaging-based reverse

engineering. Each camouflaged cell has several possible logic functions at the imaging

level, but only one function is physically implemented [94][65]. Alternatively, logic

encryption can be done by introducing new primary inputs as key inputs, as well as

additional logic, to the original circuits. The correct output value can be computed

only if the users are aware of the correct key values [8] [93] [123].

To evaluate the above mentioned encryption techniques, several reverse engineer-

ing techniques have been developed based on fault-analysis and formal methods, such

as Boolean Satisfiability [95][112][41][69][131]. Specifically, SAT-based reverse engi-

neering techniques have been demonstrated to be a significant threat to logic encryp-

tion. Subramanyan et. al [112] presented a decryption algorithm based on satisfiabil-

ity checking that selects distinguishable input patterns to rule out the incorrect keys.

Regarding the encrypted circuits using camouflaged cells, several oracle-guided SAT-

based decamouflaging approaches have been developed, while the true functions of the

encrypted circuits are assumed to be unknown [41][69]. The reason why SAT-based

reverse engineering techniques are very efficient is that each SAT iteration rules out

a significant portion (typically more than 99%) of ′′wrong guesses′′. In this thesis,

a reverse engineering approach of Galois Field arithmetic circuits based on computer

algebraic method is proposed. This approach can extract the function of GF mul-

tipliers and the irreducible polynomials used for constructing the finite fields, when

the binary encodings of the input and output bits are unknown. This is based on

11

analyzing the algebraic signatures (expressions) of the output bits of gate-level GF

multipliers that is described in Chapter 7.

1.2.6 Overview of the thesis

This thesis is organized as follows:

• In Chapter 2, the formal methods that could be used to address the formal

analysis problems of arithmetic circuits are reviewed. It includes the explanation

of why the contemporary formal methods are limited by analyzing arithmetic

circuits.

• Chapter 3 introduces the function extraction technique. It also includes results

of evaluating contemporary formal methods and verification of large arithmetic

circuits using function extraction.

• In Chapter 4, verification of sequential arithmetic circuits is addressed. Specif-

ically, two redundant polynomials are introduced, vanishing polynomial and

don’t care polynomial, that significantly reduce the complexity of algebraic

rewriting.

• To address the limitation of applying algebraic rewriting on heavily optimized

arithmetic circuits, an algebraic rewriting technique based on And-Inv-Graph

(AIG) is presented in Chapter 5. Specifically, this technique normalizes arbi-

trary gate-level circuits into a netlist with Boolean gates and HAs/FAs.

• The new canonical representation, algebraic spectrum, is introduced in Chapter

6. Using this representation, the word-level abstraction problem of arithmetic

datapath is addressed.

• In Chapter 7, the parallel verification and reverse engineering of finite field

arithmetic circuits have been addressed.

12

CHAPTER 2

BACKGROUND

This chapter reviews the contemporary formal methods including canonical di-

agrams, Boolean satisfiability (SAT), satisfiability modulo theories (SMT), and the

method used in this thesis, computer algebra approach.

2.1 Canonical Diagrams

Several approaches have been proposed to check an arithmetic circuit against its

functional specification. Different variants of canonical, graph-based representations

have been proposed, including Binary Decision Diagrams (BDDs) [20], Binary Mo-

ment Diagrams (BMDs) [22] [26], Taylor Expansion Diagrams (TED) [29], and other

hybrid diagrams. BDDs are the most extensively used canonical diagrams for syn-

thesis and verification. An example of equivalence checking using BDD is shown in

Figure 2.2. The Boolean function has been mapped into two different logic designs

shown in Figure 2.2 (a) and (b). Since BDD is canonical with a respect fixed variable

order, EC can be done by comparing the two BDDs of the two designs with a iden-

tical variable ordering. In this example, the variable is orders in a → b → c. If the

BDDs are identical, we say the two designs are functional equivalent. Alternatively,

equivalence checking can be done by checking if the BDD of a miter can be reduced

to zero-BDD.

While BDDs have been used extensively in logic synthesis, their application to

verification of arithmetic circuits is limited by the prohibitively high memory require-

ment for complex arithmetic circuits, such as multipliers. BDDs are being used, along

13

a

b

c

z

(a)

a

c

b

10

z = z’

(c)

a

b

c
!"

(b)

Figure 2.1: Canonical diagrams - Ordered Binary Decision Diagrams (OBDD); a)
Gate-level design with output z; b) Gate-level design with output z′. c) The truth
table of z and z′; d) BDDs of z and z′ are identical with same variable order.

with many other methods, for local reasoning, but not as monolithic data structure

[54]. BMDs and TEDs offer a better space complexity but require word-level infor-

mation of the design, which is often not available or is hard to extract from bit-level

netlists. While the canonical diagrams have been used extensively in logic synthe-

sis, high-level synthesis, and verification, their application to verify large arithmetic

circuits remains limited by the prohibitively high memory requirement of complex

arithmetic circuits [31][128][70]. For example, multiplication is one of the examples

that causes memory explosion problem. The BDD of a 4-bit integer multiplication

is shown in Figure 2.2, generated using CUDD 2.4.0 package [107]. It includes 1,022

nodes. For a 6-bit multiplication, the number of BDD nodes is 8,176 and increases

exponentially with the number of variables.

2.2 SAT and SMT solvers

Arithmetic verification problems can be modeled using Boolean satisfiability (SAT)

or satisfiability modulo theories (SMT). Several SAT solvers have been developed to

14

 a3

 a2

 a1

 a0

 b0

 b3

 b2

 b1

 m0 m1

a0

 m2

a1

 m3

a2

 m4

a3

 m5

a3

 m6

a3

 m7

a3 a3

a2

0

a2a2 a2 a2a2 a2a2 a2

a1 a1a1 a1a1 a1a1a1 a1 a1 a1a1 a1a1a1 a1 a1a1a1

a0 a0a0a0 a0a0a0 a0 a0a0 a0 a0a0a0a0 a0a0 a0 a0a0 a0 a0 a0a0a0 a0a0 a0 a0a0 a0 a0a0 a0a0a0a0

b0

b3

b2

b0

b3

b0b0 b0 b0b0 b0b0b0 b0b0

b1

b0b0 b0 b0 b0b0b0b0 b0 b0 b0b0b0

b3

b0 b0b0 b0b0 b0b0

b3b3 b3b3b3 b3b3 b3b3 b3 b3b3 b3 b3

b2

b3 b3 b3b3 b3

b1

1

b3

b2

b3

b2 b2b2 b2 b2b2b2b2

Figure 2.2: Reduced ordered binary decision diagrams of 4-bit multiplication.

solve Boolean decision problems, including ABC [75], MiniSAT [109], and others.

Some of them, such as CryptoMiniSAT [108], target specifically xor-rich circuits, but,

like all others, are based on a computationally expensive Davis-Putnam-Logemann-

Loveland (DPLL) decision procedure. Several techniques combine linear arithmetic

constraints with Boolean SAT in a unified algebraic domain [42];

SMT solvers depart from treating the problem in a strictly Boolean domain and

integrate different well-defined theories (Boolean logic, bit vectors, integer arithmetic,

etc.) into a DPLL-style SAT decision procedure [16]. Some of the most effective SMT

solvers, potentially applicable to our problem, are Boolector [82], Z3 [39], and CVC

[6]. However, SMT solvers still model the problem as a decision problem and, as

demonstrated by our experimental results, are not efficient at solving verification

problems that appear in arithmetic circuits.

Boolean satisfiability checks if a given problem has a satisfiable solution. In

Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal

form which is a conjunction of clauses, where a clause is a disjunction of literals. The

SAT solvers take a conjunction of clauses represented in a conjunction normal format

(CNF) as input. It produces UNSAT if the problem is unsatisfiable, or produces a

solution which satisfies the problem. Equivalence checking using SAT is mostly for-

mulated using miter model (Figure 2.3). If the two designs are equivalent, miter will

always evaluate to 0 (Boolean false). Hence, if two designs are equivalent, the result

15

returned by the SAT solver will be UNSAT. An example of a gate-level equivalence

checking example using SAT solver is shown in Figure 2.3.

a

b

c

a

b

c

miter

i1

i2

i3

i4

i5

Figure 2.3: Example of equivalence checking using SAT solver using a Boolean miter.

The gate-level model of miter has to be translated into CNF first. The transfor-

mation between logic gates to CNF format is shown in Equation 2.1. After converting

the model to a CNF, a unit clause (miter) will be added. The meaning of this unit

clause is that given the condition that miter always evaluates to 1, SAT solvers checks

whether there exist a satisfiable solution in this problem. If the result is UNSAT, it

means they are equivalent, which means that miter always evaluates to 0. Otherwise,

it returns a counterexample and returns Satisfiable. The same formulation can also

be solved using SMT solvers. In addition to equivalence checking, this model has

been applied to reverse engineering camouflaged circuits and solved by SAT solvers

[69][132].

16

CNF (miter) = (ā+ b̄+ i1)(a+ ī1)(b+ ī1)

∧ (i1 + c+ ī2)(ī1 + i2)(c̄+ i2)

∧ (ā+ b̄+ ī4)(a+ i4)(b+ i4)

∧ (c̄+ ī5)(c+ i+ 5)

∧ (ī4 + ī5 + ī3)(i4 + i3)(i5 + i4)

∧ (ī2 + ī3 + ¯miter)(i2 + i3 + ¯miter)(i2 + ī3 +miter)(ī2 + i3 +miter)

∧ (miter)

(2.1)

While SMT solvers support bit-vector operations, they allow formulating the logic

in pseudo-Boolean expression. In other words, SMT solvers could solve a satisfiability

problem of a word-level miter. For example, to check if a Half-adder (HA) shown

in Figure 2.4 is correct, a word-level miter equals to miter=a + b-(2c + s). The

formulation for the logic gates is the same as the CNF as shown in the SAT example.

Instead of adding a unit clause for the miter, a word-level miter with bit-vector

formulation is required in this modeling. The formulation is shown in Equation 2.2.

The last equation is the word-level miter. It models the miter as bit-vector adding

(a+ b) and (−2c− s). In the formulation, 10 is bit-vector constant 2. In Chapter III,

I evaluate several state-of-the-art SAT solvers, and SMT solvers with two models, a

Boolean model and a word-level model, using arithmetic benchmarks. It shows that

these techniques cannot efficiently solve the verification problem of large arithmetic

circuits.

17

a

b
c

s

Half Adder

Figure 2.4: Half adder design with input a and b. s is the sum function and c is the
carry function.

(ā+ b̄+ s̄)(a+ b+ s̄)(a+ b̄+ s)(ā+ b+ s)

∧ (a+ b+ c̄)(ā+ c)(b̄+ c)

∧ (bvadd (bvadd(a, b) , ¬bvadd(bvmul(10, c), s)))

(2.2)

2.3 Structural Minimization

Instead of solving the verification problem directly, there are many techniques de-

veloped to reduce the size of the problem first. Structural-based logic minimization

technique based on logic rewriting on the graphs that describe the circuit structure has

been demonstrated to be efficient in reducing the complexity of equivalence checking

problem. Mishchenko et. al [76] presented an And-Inv-Graph (AIG) data structure

that is the state-of-the-art technique for logic reduction and synthesis. Specifically,

Functionally-reduced AIG (FRAIG) was developed for reducing the logic complexity

that combines random simulation, SAT-based equivalence checking, and logic rewrit-

ing based on AIG. It is also known as equivalence nodes identification [78].

As an example, consider the circuit includes with AND gates, shown in Figure

2.5(a). First, logic minimization process identifies that the output function of gates

B and C are identical (Figure 2.5(b)). Hence, the logic function can be minimized by

eliminating the gate C and merging output z1 with z0. Note that this process aims to

find a minimum representation of the Boolean function. The actual implementation

18

A

B

C

D

i1

i2

i3
z0

z1

z2

A

B

#

$�
$�

$� (�

(�

(�
D

i1

i2

i3

z0

z1

z2

B

(a) (b) (c)

Figure 2.5: Example of logic minimization. a) Original circuit; b) Circuit with gates
B and C are merged; c) Circuit with gates A and D are merged.

is not changed. Similarly, gate A can be eliminated since the output function is the

same as gate D (Figure 2.5(c)). Hence, the original function can be represented using

two AND functions instead of four AND functions. Assume to use SAT solver, this

function is converted to CNF format with only six clauses instead of twelve clauses.

However, this technique cannot efficiently reduce the complexity of combinational

equivalence checking of non-linear arithmetic circuits. This is demonstrated in Chap-

ter III Table 3.2 using a miter of two gate-level integer multipliers. It shows that

the size of the miter is only reduced up to 0.1% using 64-bit or larger multipliers.

Similarly technique for reducing the size of the SAT problems is also evaluated in

Chapter III Table 3.2.

2.4 Computer Algebra Approaches

One of the most advanced techniques that have potential to solve the arithmetic

verification problem are those based on symbolic Computer Algebra [38]. These

methods model the arithmetic circuit specification and its hardware implementation

as polynomials [96],[103],[122],[89],[71],[91]. The verification goal is to prove that

implementation satisfies the specification by performing a series of divisions of the

specification polynomial F by the implementation polynomials B = {f1, . . . , fs},

representing components that implement the circuit. For example, the specification

19

of a multiplier circuit with word-level inputs X, Y and output Z is F = Z −X · Y .

The implementation polynomials are derived from gate equations, similar to those

shown later in Equation(7.1).

To systematically perform polynomial division, term ordering “>” is imposed on

monomials, so that each polynomial has a well defined leading term lt(). If polynomial

f contains some term t that is divisible by the leading term lt(g) of polynomial

g, then the division of f by g gives a remainder polynomial r = f − t
lt(g)
· g. In

this case, we say that f reduces to r modulo g, denoted f
g
−→ r. With this, the

verification problem is posed as the reduction of F modulo B, denoted F
B
−→+ r.

The remainder r has the property that no term in r is divisible by the leading term

of any polynomial fi in B. The sign + refers to the fact that the division process

is sequential, using polynomials of B one by one. Let B = {f1, ...fs} be a set of

polynomials representing circuit elements (logic gates, half adders, etc.) and let R be a

polynomial ring, R = F{x1, ..., xn}. The set of polynomials B = {f1, . . . , fs} generates

an ideal J = 〈f1, ..., fs〉 with fi ∈ Fq, defined as: J = 〈f1, ..., fs〉 = h1f1 + ... + hsfs

∈ Fq. The polynomials f1, ..., fs are called the bases, or generators, of the ideal J . In

the context of circuit verification, they model the implementation of the circuit.

In some cases, this test can be simplified to checking if f ∈ I(VFq
) = J+J0, which

is known in computer algebra as ideal membership testing. While an ideal J may

have many different representations, the Grobner Basis of J is unique in order to a

monomial order.

A standard procedure to test if F ∈ J is to divide polynomial F by f1, ..., fs, one

by one. The goal is to cancel, at each iteration, the leading term of F using one of the

leading terms of f1, ..., fs. If the remainder of the division is r = 0, then F vanishes on

V (J), proving that the implementation satisfies the specification. However, if r 6= 0,

such a conclusion cannot be made: B may not be sufficient to reduce F to 0, and yet

the circuit may be correct. To check if F is reducible to zero one must use a canonical

20

set of generators, G = {g1, ..., gt}, called Groebner basis. Without Groebner basis one

cannot answer the question whether F ∈ J .

Several algorithms have been developed to compute Groebner basis over the field,

including the well known Buchberger’s algorithm [23]. However, this algorithm is

computationally expensive, as it computes the so-called S-polynomials, by perform-

ing expensive division operation on all pairs of polynomials in B. Even with newer

algorithms, such as F4 [43], the computational complexity of Groebner basis compu-

tation remains prohibitively large for arithmetic circuits. Furthermore, what is the

most important, these algorithms do not apply directly to rings over integers, Z2n ,

which is needed to solve the verification problem for arithmetic circuits considered

in this work. In general, this problem cannot be solved by testing if F is a mem-

ber of an ideal J = 〈f1, ..., fs〉, i.e., if F ∈ J . Many of the results related to ideal

membership that are valid over algebraically closed fields are fundamentally unsolved

over integers Z. It has been shown that solving the problem for Z2n requires testing

if F ∈ I(V (J)), where I(V (J)) is a set of all polynomials that vanish on V (J) [1]

[71]. Unfortunately, except for some special cases (such as Galois fields, F2k), it is

not known what I(V (J)) is. Many of the results related to ideal membership that

are valid over algebraically closed fields are fundamentally unsolved over integers Z.

Wienand et. al. [122] model an arithmetic circuit as an arithmetic bit-level (ABL)

network of adders and other arithmetic operators. Both the specification and the

arithmetic operators are represented as polynomials over Z2n . They show that, the

properly ordered set G of polynomials representing logic gates automatically renders

it a Groebner basis. The verification problem is solved by testing if specification F

reduced modulo G vanishes over Z2n using a computer algebra system, singular

[40]. In [89], the solution is further restricted to variables in Z2 and the reduction

formulated directly over quotient ring Q = Z2n [X]/〈x2 − x〉. Here, the ideal 〈x2 − x〉

is the constraint restricting values of variables x to (0,1). While mathematically

21

elegant, adding this constraint for all variables makes the method computationally

expensive for gate-level circuits. For this reason, the method of [89] is limited to ABL

networks composed of half adders (ha). Unfortunately, it is not always possible to

extract adders from a gate-level circuit, especially in highly bit-optimized implemen-

tations. For this reason, this method is not applicable to gate-level implementations,

considered in this work.

Kalla, et. al [71][91][92][114], formulated the verification problem similarly, but

applied it to Galois field (GF) arithmetic circuits, which enjoy certain simplifying

properties. Specifically, for GF, the problem reduces to the ideal membership testing

over a larger ideal that includes J0 = 〈x2 − x〉 in F2. The solution uses a modified

Gaussian elimination technique. In [91], a symbolic computer algebra method is used

to derive a word level abstraction for GF circuits, where GF operators are elements

of a polynomial ring with coefficients in F2k . This work relies on the customized

computation of Groebner basis and applies only to GF networks. It does not extend

to polynomial rings in integers Z2n which is the subject of this work.

A different approach to arithmetic verification has been proposed in work of Basith

et. al. [7] and Ciesielski et. al. [30], where a bit-level network is described by a system

of linear equations. The system is then reduced to a single algebraic signature, FSig,

using standard linear algebra methods and compared to the specification polynomial

Fspec. A non-zero residual expression, RE = FSig − Fspec, determines a potential

mismatch between the implementation and the specification, indicating a potential

design error. An additional step is needed to check if RE = 0, which may be as

difficult as the original problem itself. Furthermore, this method can only handle

networks with linear signatures. An attempt to use a different model [30], by viewing

the computation performed by the circuit as a flow of binary data has not offered

particular improvement; the issue of testing if RE = 0 was replaced by checking

the relation between the fanouts and floating signals that correctly captured the

22

Boolean nature of circuit variables but still is applicable only to networks with linear

input signatures. An extension to this work has been recently presented in [32], by

computing input signature from the known output signature using a network-flow

approach. This technique also relies on the half-adder (HA) based circuit structure

and represents logic gates as elements of has. Logic gates that cannot be mapped

into adders are represented a proper combination of has, with an unused output left

as “floating”. Additional constraint relating floating signals to fanouts in the circuit

must be satisfied for the result to be trusted; however, the computation to verify this

condition can be expensive. For this reason, this method becomes inefficient if the

number of logic gates dominates the ha network. Also, the circuit would need to be

partitioned into linear and non-linear portions, which is a non-trivial task.

In contrast, the technique described in this work targets on an arbitrary, unstruc-

tured gate-level arithmetic circuit without requiring any reference to higher level

models such as adders; it can efficiently handle nonlinear circuits without a need to

distinguish between linear and nonlinear parts.

In summary, the problem of formally verifying integer arithmetic circuits over

integers Z2n remains open. Currently, there are no known mathematical solutions

to this problem in Z2n . The approaches discussed above that managed to reduce

the verification problem to testing if F ∈ J impose restrictions on the type of the

circuits that they can handle [89] [71]. Others, such as [7] cannot properly model the

inherently Boolean signals using algebraic models. To the best of our knowledge, the

techniques reviewed here cannot efficiently solve the verification problem for gate-

level arithmetic circuits in Z2n over Boolean variables Z2, which is the problem in

this work.

The technique proposed here solves the functional verification problem by devising

an alternative but equivalent method, based on polynomial substitution and elimina-

tion. It correctly implements ideal membership testing without a need for expensive

23

division process with Groebner basis. The results demonstrate that it scales better

and is more efficient than the state-of-the-art computer algebra methods.

24

CHAPTER 3

FORMAL VERIFICATION OF INTEGER ARITHMETIC
CIRCUITS USING FUNCTION EXTRACTION

3.1 Introduction

The chapter presents an algebraic approach to functional verification of gate-level,

integer arithmetic circuits, called function extraction. The arithmetic verification

is based on extracting a unique bit-level polynomial function implemented by the

circuit, directly from its gate-level implementation. The method can be used to verify

the arithmetic function computed by the circuit against its known specification, or

to extract the arithmetic function implemented by the circuit. Experiments were

performed on arithmetic circuits synthesized and mapped onto standard cells using

ABC system. The results demonstrate scalability of the method to large arithmetic

circuits, such as multipliers, multiply-accumulate, and other elements of arithmetic

datapaths with up to 512-bit operands and over 2 million logic gates. The results

show that our approach wins over the state-of-the-art SAT/SMT solvers by several

orders of magnitude of CPU time. The procedure has linear runtime and memory

complexity, measured by the number of logic gates.

3.2 Function Extraction

Function extraction is done by transforming the polynomial representing the en-

coding of the primary outputs (called the output signature) into a polynomial at the

primary inputs (the input signature). If the specification of the circuit is known,

the extracted input signature will be compared with that specification, and in case

25

of a mismatch, it will provide a counter-example (bug trace) [46]. Otherwise, the

computed signature identifies the arithmetic function implemented by the circuit.

The method uses an algebraic model of the circuit, with logic gates represented

by algebraic expressions, while correctly modeling signals as Boolean variables. In

contrast to [32], it works directly on unstructured, gate-level implementations. And,

in contrast to [89],[91] and other computer algebra methods, it is done using effi-

cient polynomial transformation, without a need for expensive Groebner Basis based

polynomial division.

To the best of our knowledge, this approach has not been attempted before in

the context of gate-level integer arithmetic in Z2n
1. It provides a practical method

for checking if the implementation satisfies the specification without resorting to the

ideal membership testing in Z2n .

3.2.1 Algebraic Model

The circuit is modeled as a network of logic elements of arbitrary complexity:

basic logic gates (and, or, xor, inv) and complex (aoi, oai, etc.) standard cell

gates obtained by synthesis and technology mapping. In fact, the proposed model

admits a hybrid network, composed of an arbitrary collection of logic gates and bit-

level arithmetic components. At one extreme, it can be a purely gate-level circuit;

at the other, a network composed of arithmetic components only. Each logic element

is modeled as a pseudo-Boolean polynomial fi, with variables from Z2 (binary) and

coefficients from Z2n (integers modulo 2n). The following algebraic equations are used

to describe basic logic gates:

1The functional abstraction technique described in [91] applies only to Galois field circuits and
is based on polynomial reduction via Groebner basis.

26

¬a = 1− a

a ∧ b = a · b

a ∨ b = a+ b− a · b

a⊕ b = a+ b− 2a · b

(3.1)

In our model, the arithmetic function computed by the circuit is specified by

two polynomials: an input signature and an output signature. The input signature,

Sigin, is a polynomial in primary input variables that uniquely represents the integer

function computed by the circuit, i.e., its specification. For example, an n-bit binary

adder with inputs {a0, · · · , an−1, b0, · · · , bn−1}, is described by Sigin =
∑n−1

i=0 2iai +
∑n−1

i=0 2ibi. Similarly, the input signature of a 2-bit signed multiplier, shown in Fig.

3.1, is Sigin = (−2a1 + a0)(−2b1 + b0) = 4a1b1 − 2a0b1 − 2a1b0 + a0b0, etc. In our

approach, the input specification need not to be known; it will be derived from the

circuit implementation as part of the verification process.

Similarly, the output signature, Sigout, of the circuit is defined as a polynomial

in the primary output signals. Such a polynomial is uniquely determined by the

n-bit encoding of the output, provided by the designer. For example, the output

signature of the 2-bit signed multiplier in Fig. 3.1 is −8z3 + 4z2 + 2z1 + z0. In

general, an output signature of an unsigned arithmetic circuit with n output bits zi is

represented as a linear polynomial, Sigout =
∑n−1

i=0 2i zi. Similar expression is derived

for signed arithmetic circuits, with its most significant bit zn−1 having a negative

coefficient −2n−1.

Our goal is to transform the output signature, Sigout, using polynomial represen-

tation of the internal logic elements, into the input signature, Sigin. By construction,

the resulting Sigin will contain only the primary inputs (PI) and will uniquely de-

termine the arithmetic function computed by the circuit (cf. Theorem 1 in Section

3.2.4).

27

a0b0a1b1

x1 x2 x3 x4

x7

F0

F1

F2

F3

F4

F5

F6

F7

x8

z3 z2 z1 z0

x5
x6

x9

Figure 3.1: Verifying a 2-bit signed multiplier: Gate-level circuit with output signa-
ture Sigout = −8z3 + 4z2 + 2z1 + z0.

3.2.2 Outline of the Approach

Algorithm 1 Verification Flow

Input: Gate-level netlist, output signature Sigout
(input signature Sigin)
Output: Pseudo−Boolean expression extracted by rewriting

1: Parse gate-level netlist; create algebraic equations for gates/modules
2: Find ordering for variable substitution (levelization, dependency)
3: i = 0; Fi = Sigout
4: while there are unused equations do
5: Rewrite: Fi+1 = Fi with variables substituted with gate equations;
6: i = i + 1
7: end while
8: return F = Fi (to be compared with Sigin)

The proposed verification flow is outlined in Algorithm 3. The inputs to the algo-

rithm are: the gate-level netlist (implementation); output signature Sigout (encoding

of the result at PO); and optionally the input signature Sigin (specification). The first

step is to translate the gate-level implementation into algebraic equations (line 1).

Then, the algebraic equations are ordered according to the circuit structure and its

28

topology by algorithms that try to keep the size of the intermediate expressions small

(line 2). Specific algorithms (levelization and dependency) are discussed in the next

section. The rewriting process is an iterative application of rewriting one pseudo-

Boolean expression into another in the predetermined order (lines 3 − 6), starting

with the output signature Sigout at the primary outputs, PO. At each iteration, all

variables in the current expression are substituted by the corresponding gate expres-

sions. Each iteration produces its own expression, Fi (line 5). The process ends

when the rewriting reaches the primary inputs, PI, (line 7), or when all equations

have been used. The resulting expression F can then be compared with Sigin, if it was

provided by the designer, to determine if the circuit correctly implements the spec-

ification. Otherwise, the computed expression F determines the arithmetic function

implemented by the circuit.

The rewriting process is illustrated with a simple 2-bit signed multiplier example,

shown in Fig. 3.1. Each equation corresponds to a cut in the circuit, i.e., a set

of signals that separate primary inputs from primary outputs; its pseudo-Boolean

expression is denoted in the Figure by Fi.

First, F0 is transformed into F1 using substitutions z3 = 1− x8 and z2 = 1− x9.

Subsequently, F2 is obtained from F1 using equations for x8 and x9, and so on,

culminating at the primary inputs with expression F7 = 4a1b1− 2a0b1− 2a1b0 + a0b0.

F0 = −8z3 + 4z2 + 2z1 + z0

F1 = 8x8 − 4x9 + 2z1 + z0 − 4

F2 = 8(x1 + x7 − x1x7)− 4(x1 + x7 − 2x1x7) + 2z1 + z0 − 4

F3 = 4x1 + 4x7 + 2z1 + z0 − 4

F4 = 4x1 + 4x5x6 + 2(x5 + x6 − 2x5x6) + z0 − 4

F5 = 4x1 + 2(x5 + x6) + z0 − 4

F6 = 4x1 − 2x2 − 2x3 + x4

F7 = 4a1b1 − 2a0b1 − 2a1b0 + a0b0

= (−2a1 + a0)(−2b1 + b0)

29

Note the local increase in the polynomial size (at F2 or F4) known as “fat belly”

effect, before it is eventually reduced to the expression in PIs only. The choice of the

cuts and the order in which the variables are eliminated by substitution has a big

influence on the size of the fat belly and the efficiency of the method. The following

heuristics are used to keep the size of the intermediate expressions as small as possible.

z
3

z
2

z
1
z
0

x
1

x
2

x
3 x

4

x
5

a
1

a
0b

1
b
0

6

(a) (b)

x
1

x
2

x
3 x

4

x
5

a
1

a
0b

1
b
0

z
3

z
2

z
1
z
0

7 8 4

5

2

3

1

25

1876

34

Figure 3.2: Two substitution orders for an unsigned 2-bit multiplier.

Table 3.1: 2-bit multiplier intermedia expression size of two substitution sequence

#.iteration 1 2 3 4 5 6 7 8
Exp. size(a) 4 4 4 6 6 4 4 4
Exp. size(b) 4 4 6 8 6 4 4 4

• Substitution order: The substitution order has the greatest influence on

the intermediate expression size (the number of monomials). Even for a small

difference between two orders, the maximum intermediate expression size may

differ by several orders of magnitude larger in a large design. We illustrate the

impact of the substitution order using a 2-bit multiplier (Figure 3.2). Orders

(a) and (b) are two different substitution solutions which the first four iterations

are different. We record the intermediate expression size step by step during

rewriting (TABLE 3.1). We can see that order (b) experiences a larger peak

30

than order (a). We present two methods to find the efficient substitution order:

Dependency and Levelization.

– Dependency: Substitution must follow the reversed-topological order;

once a given variable (output of a gate) is substituted by an algebraic ex-

pression of the gate inputs, it will be eliminated from the current expression

and will never be considered again. That is, a variable is substituted for

only after substituting all signals in its logical cone. For example, in Figure

3.1, before substituting for x6, one must substitute for x7 and z1, since they

both depend on x6. Otherwise, one will be forced to substitute again for

the same variable(s) (in this case x6) again later after substituting the sig-

nals in the cone below. Then, opportunity for early cancellations would be

missed, leading to a potential computational explosion. Since the circuit is

acyclic, there always exists an ordering of substitutions that satisfies this

condition. We refer to this topological constraint informally as “vertical”,

since it orders variables upwards from POs to PIs.

– Levelization: To further increase the efficiency of substitution, a ”hori-

zontal” constraint is also imposed on the ordering of the candidate variables

at a given transformation step. Specifically, the variables that are at the

same logic level (from PIs) and have transitive fanin to common variables

should be eliminated together, as this will maximize a chance of the re-

duction of common terms. It is these variables that define the best cut at

each step of the procedure.

We demonstrate why substitution order greatly impacts the rewriting process

using larger examples (Figure 3.3). We compare the rewriting process of 4-bit,

6-bit, and 8-bit CSA multipliers using dependency and levelization. In Figure

3.3, the x -axis represents the rewriting process in percentage of computation.

31

The y-axis represents the size of intermediate expression, i.e. the number of

monomials in the expressions. We can see that the difference of the size of the

intermediate expression using dependency and levelization increases when the

size of the design is increasing. This means that the substitution order has

greater impact on the rewriting process if the designs are more complex.

 10

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#.
 m

on
om

ia
ls

Rewriting process

4-bit Dep
4-bit Lev
6-bit Dep
6-bit Lev
8-bit Dep
8-bit Lev

Figure 3.3: Substitution order analysis using 4-bit, 6-bit, and 8-bit multiplier. Dep
is dependency; Lev is levelization.

• Fanouts: The size of the intermediate polynomial generated during rewriting

can be reduced by identifying variables that depend on common inputs (fanouts

of some variables). In this case, the substitution of such variables can be done

simultaneously as this increases a chance for eliminating common subexpres-

sions. For example, in Fig. 3.1 variables x8, x9 in subexpression (8x8 − 4x9)

of F1 depend on common fanout variables x1 and x7. As a result, the subex-

pression (8x8− 4x9) = 4(2x8− x9) reduces to 4(x1 + x7), without introducing a

nonlinear term 8x1x7, so F1 can be directly transformed into F3. Such nonlinear

32

terms are particularly harmful if their variables continue to be substituted by

other variables, potentially leading to an exponential explosion.

Another simplification that can be applied during rewriting relies on recognizing

some pre-defined multiple-input modules with known I/O signatures, such as

half adder or full adder. Adders are particularly useful, since they exhibit linear

relationship between their inputs and outputs. For example, the circuit in Fig.

3.1 contains a half adder with inputs x5, x6 and outputs x7, z1, with a linear I/O

relationship described by (x5 + x6 = 2x7 + z1). In this case, the subexpression

4x7+2z1 in F3 can be directly translated into 2(x5+x6), avoiding an intermediate

nonlinear term 4x5x6 of F4. As a result, cut F3 can be directly transformed into

F5.

In order to perform an efficient rewriting, we must analyze circuit topology

to find the order will maximize the number of cancellations. The ordering

algorithm must recognize reconvergent fanouts that can offer simplification of

internal logic. For example, in the parallel prefix adder circuit, Fig. 3.4, both

inputs of each or gate are coming as reconvergent fanouts from a half adder.

This effectively reduces the algebraic equation for or from a∨ b = a+ b− ab to

just a+ b. For example, signals x5 = a3 ∧ b3 and x8 = (a3⊕ b3)∧ x3 are coming

from the carry (C) and sum (S) outputs of ha3, so that x5x8 = 0. As a result,

x11 at the output of or1 gate simplifies to x5 + x8.

• Vanishing Polynomials: In some arithmetic circuits a particular output bit

may always evaluate to zero. This is typically associated with MSB, but this is

not the only case. For example, in the squarer circuit (Z = A2) the output bit

z1 is always 0. For this reason one may want to exclude bit z1 from the output

signature, Sigout =
∑n−1

i=0 2i zi. However, the set of algebraic expressions associ-

ated with the term 2z1 offers some early simplification during the computation

33

FA0

FA1

HA2HA3

HA4

AND1AND2

AND3OR1

OR2OR3

XOR

a0b0c0a1b1a2 b2a3 b3

Cout S0S1S2S3

x1

x2

x3

x4x5

x7x8
x6

x11 x9x10

x12

Figure 3.4: Parallel prefix adder, hybrid model

of the signature, before it reaches the primary inputs. Obviously, the logic cone

of z1 itself will reduce to 0 at the PI, but the terms of its intermediate cuts (at

internal signals) help reduce the size of the intermediate cuts of the rest of the

circuit. We refer to such a redundant expression as the vanishing polynomial,

as it vanishes (evaluates to 0) for all possible values of its input variables. Note

that the term vanishing polynomial has been used in [103] in a slightly different

context.

• Complex gates: Our signature transformation algorithm works on a fabric of

basic Boolean gates; this offers high logic granularity and the greatest choice

of signals for the selection of the smallest cut. For the design with complex

gates (standard cells aoi, oai, etc.), algebraic equations are written for each

internal signal of the gate, rather than only for its output. As confirmed by

our experiments, this offers a richer set of cuts to choose from and increases a

chance of an earlier simplification of the cut expression.

34

logic

logic

logic

AOI21

logic

Figure 3.5: Expanding complex gates for cut rewriting.

• Binary signals: During elimination, the expensive division by the ideal 〈x2 −

x〉, employed by [89], is replaced by lowering xk to x every time variable x

is raised to higher degree during the substitution process. For example, if at

any point an expression contains a term xyx or x2y, it will be replaced by xy.

With this, an expression, such as xyx−yxy, will immediately reduce to 0. This

significantly simplifies the procedure, compared to the division by 〈x2−x〉. This

approach has also been used in recent works [71, 91] that targeted GF circuits.

The lack of this kind of simplification was the main reason for the existence of

residual expression in earlier works that advocated algebraic approach [7].

• Efficient Datastructure: Our algorithm uses an efficient data structure to

support these simplifications and efficiently implement an iterative substitu-

tion and elimination process. Specifically: a data structure is maintained that

records the terms in the expression that contain the variable to be substituted.

It reduces the cost of finding what terms will have their coefficients changed

during the substitution. The expression data structure is a C++ object that

represents a pseudo-Boolean expression. It supports both fast addition and fast

substitution with two C++ maps, implemented as binary search trees, a terms

map and a substitution map.

35

It is essential to guarantee that the algebraic expressions of logic gates (eq.

7.1) correctly model Boolean signal variables. That is, the internal signal vari-

ables computed using those algebraic models must evaluate to exactly the same

Boolean values as when using strictly Boolean methods, for all possible binary

input combinations. With this, many potentially large algebraic subexpressions

produced during the substitution will reduce to zero. This point can be illus-

trated with an example of the or1 gate with output x11 in the 3-bit adder in

Fig. 3.4, now written in algebraic rather than Boolean form (Figure 3.6). As

one can see, the value of x11 is exactly the same as the one obtained above using

strictly Boolean methods (where x5x8 was also shown to reduce to 0).

}
}Boolean

Algebraic

 x
11
= x

5
+ x

8
−(x

5
x
8
)

 x
5
= a

3
b
3

 x
8
= a

3
+b

3
−2a

3
b
3

x
5
x
8
= (a

3

2
b
3
+a

3
b
3

2
−2a

3

2
b
3

2
)x
3

 = (a
3
b
3
+a

3
b
3
 − 2a

3
b
3
)x
3
= 0

 x
11
= x

5
+ x

8

 x
5
x
8
⇒ x

5
∧x

8

= (a
3
∧b

3
)∧[(¬a

3
∧b

3
)∨(a

3
∧¬b

3
)]

= [(a
3
∧b

3
)∧(¬a

3
∧b

3
)]∨[(a

3
∧b

3
)∧(a

3
∧¬b

3
)]

= [(a
3
∧¬a

3
∧b

3
)]∨[(a

3
∧b

3
∧¬b

3
)]

= 0

Figure 3.6: Proof that x5x8 evaluates to 0 using both, the computer algebraic and
Boolean methods.

3.2.3 Function extraction vs. Polynomial Division

As mentioned in Chapter II, the standard polynomial division based method is

limited to the high complex mathematic computation if the remainder of the division

r 6= 0, i.e., B may not be sufficient to reduce F to 0, and yet the circuit may be

correct. This is also called a non-zero residual expression. To check if this type of

36

polynomial is reducible to zero, Groebner basis has to be applied. One of the main

advantages of function extraction technique is that, residual expression never appears

during the rewriting process.

0
a

c

d

e

f

0
r

1
r

2
r

0
b

1
a

1
b

Figure 3.7: 2-bit gate-level adder. R = r0 + 2r1 + 4r2, A = a0 + 2a1, B = b0 + b1. R
= A+ B.

g1 : r0 − (a0 + b0 − 2a0b0)

g2 : c− (a0b0)

g3 : d− (a1 + b1 − 2a1b1)

g4 : r1 − (c+ d− 2cd)

g5 : f − (cd)

g6 : e− (a1b1)

g7 : r2 − (e+ f − ef)

(3.2)

To demonstrate the non-zero remainder issue of polynomial division method, a

complete polynomial division process of a 2-bit gate-level adder is provided. The

gate-level implementation is shown in Figure 3.7. The specification is defined as

Fspec = (A+B)−R. The set of polynomials, B, which describe the implementation

is shown in Equation 3.2.

37

F0 = (a0 + b0 + 2a1 + 2b1)− (4r2 + 2r1 + r0)

F0
g1
−→= F1 = 2a0b0 + 2a1 + 2b1 − 4r2 − 2r1

F1
g2
−→= F2 = 2c+ 2a1 + 2b1 − 4r2 − 2r1

F2
g3
−→= F3 = 4a1b1 + 2d+ 2c− 4r2 − 2r1

F3
g4
−→= F4 = 4cd+ 4a1b1 − 4r2

F4
g5
−→= F5 = 4f + 4a1b1 − 4r2

F5
g6
−→= F6 = 4e+ 4f − 4r2

F6
g7
−→= F7 = 4ef

(3.3)

If the circuit is correct, then F should be reduced to 0 after dividing all the

polynomials in B. The complete polynomial division process is shown in Equation

3.3. First, F0=Fspec is divided using polynomial g1 (see Equation 3.2), resulting in

the intermediate specification F1 = 2c + 2a1 + 2b1 − 4r2 − 2r1. The intermediate

specification will be divided using all the polynomials in B. At each division step, we

can see that there are new monomials introduced, and some monomials are eliminated.

However, after dividing g7, monomial 4ef is returned as the remainder.

To check whether the remainder 4ef can be reduced to zero, polynomial division

has to be applied on the remainder. This process is shown in Equation 3.4. At the

fifth step of this division process, this remainder can be proved to be zero since all the

variables in the polynomials are Boolean signals. Hence, (a1b1a1+a1b1b1−2a1b1a1b1)

can be reduced to (a1b1+a1b1−2a1b1), where a
2
1 equals to a1 in Boolean domain. How-

ever, this process requires complex mathematic computations for computing Groner-

ber Basis. For example, several vanishing polynomials have to be added in B to make

sure that all the signals in the circuit are in Boolean domain, such as a21 − a1 = 0

and a20 − a0 = 0. Alternatively, 4ef = 0 can be proved by rewriting the algebraic

38

or Boolean equations by subsituting the variables. For example, by rewriting the

Boolean equations, we can prove e ∧ f is always false, which indicates that ef is

false. Hence, 4ef is 0.

R = 4ef

= 4e(cd)

= 4(a1b1)(cd)

= 4(a1b1)(a1 + b1 − 2a1b1)(a0b0)

= 4(a1b1a1 + a1b1b1 − 2a1b1a1b1)(a0b0)

= 4(0)(a0b0)

= 0

(3.4)

3.2.4 Properties of Computed Input Signature

Figure 3.8: Arithmetic function of a 2-bit multiplier extracted from the circuit using
TED in normal factored form: Sigin = (−2a1 + a0)(−2b1 + b0).

Once Sigin has been computed, it is analyzed to see if it matches the expected

specification. The comparison between the two expressions can be done using canoni-

cal data structures, such as BMD [22] or TED [29] that can check equivalence between

39

two word-level outputs expressed in bit-level inputs. In the case of a buggy circuit,

if the specification is given and the system can successfully compute input signature,

then any mismatch between the specification and input signature can be used to

generate a counter-example (bug trace). This can be done by solving a SAT/SMT

problem on that mismatch polynomial. Any satisfying solution will provide a test

vector for the counter-example.

If the specification is not given, TED can provide the function implemented by

the circuit in normal factored form to help identify the type of arithmetic function

obtained. TED has a capability of finding the ordering of variables from which such

a form can be obtained [28]. In large arithmetic circuits, additional variable ordering

directives may be given by the designer if the bit-level composition of input words

is known. For example, for the circuit in Fig. 3.1, the input signature computed by

our method is Sigin = 4a1b1 − 2a0b1 − 2a1b0 + a0b0. Its TED representation shown

in Fig. 3.8 reveals the canonical factored form, Sigin = (−2a1 + a0)(−2b1 + b0). This

indicates that the function computed by the circuit is a two-bit signed multiplier,

A · B, where the variables (a1, a0) and (b1, b0) form the two-bit input words, A and

B.

Essential part of the described approach is the following theoretical result about

the correctness and uniqueness of the computed input signature.

Theorem 1: Given a combinational circuit composed of basic logic gates, the input

signature Sigin computed by the proposed procedure is unique and correctly represents

the arithmetic function implemented by the circuit.

Proof: The proof of correctness hinges on the fact that each internal signal is correctly

represented by an algebraic expression, i.e., such an expression evaluates to a correct

Boolean value. Specifically, it can be easily verified that equations (7.1) are the

correct algebraic representations of basic Boolean functions. Hence, any logic function

that is expressed recursively by Eq. (7.1) must evaluate to a correct Boolean value;

40

and once the polynomial is reduced by removing redundant terms, the algebraic

representation is unique. Example: xor function, f = a ⊕ b = a′b + ab′, can be

written as f = (1− a)b + a(1− b)− ((1− a)b)(a(1− b)), which reduces to a unique

form, a+ b− 2ab. Hence, a PO signal is correctly represented by variables in its logic

cone, up to the primary inputs. Therefore, Sigout, which is the weighted sum of the

output signals, is eventually replaced by Sigin. For this reason such computed Sigin

is a correct algebraic representation of the circuit.

The proof of uniqueness is done by induction on i, the step when polynomial Fi

is transformed into Fi+1. Base case: polynomial F0 = Sigout is unique. Also, as

discussed above, algebraic representation of each logic gate is unique.

Induction phase: Assuming that Fi is unique, we prove that Fi+1 is unique. Recall

that each variable in Fi represents output of some logic gate; during the transforma-

tion process it is substituted by a unique polynomial of that gate. Since the circuit

is combinational (there are no loops) and the substitution is done in reversed topo-

logical order, at each step i a variable in Fi is replaced by a unique polynomial in

new variables. Hence, polynomial Fi+1 derived from Fi by such substitution is also

unique. �

This theorem applies to combinational circuits, but it can be readily extended to

sequential circuits by unrolling the circuit over a fixed number of time frames into a

combinational circuit (bounded model).

3.3 Experimental Results

3.3.1 Comparison with SAT and SMT

The function extraction technique described in this chapter was implemented in

C++. It performs rudimentary variable substitution and elimination, using the order-

ing strategy and implementation discussed in Section 3.2.2. The program was tested

on a number of gate-level combinational arithmetic circuits, taken from [61]: CSA

41

multipliers, add-multiply, matrix multipliers, squaring, etc., with operands ranging

from 64 to 512 bits. The results are shown in Tables 3.3 and 3.4. The experiments

were conducted on a PC with Intel Processor Core i5-3470 CPU 3.20GHz x4 with 15.6

GB memory. The gate-level structures were obtained by direct translation of stan-

dard implementation of the designs onto basic logic gates [61]. The designs labeled

with extension .syn were synthesized and mapped using ABC system [75] (commands:

strash; logic; map) onto mcnc.genlib standard cell library. The plot for CPU runtime

in Fig. 3.10 a) shows an approximately linear runtime complexity of the program

in the number of gates for all the tested circuits. This should be contrasted with

quadratic runtime complexity of [32] (col. 5) and the exponential time complexity of

other tools.

As proposed in Section 3.2.2, the reason why our technique is efficient is that

rewriting the Sigout provides significant internal expression elimination. We demon-

strate this by measuring the size of the internal expressions of Sigout and the individual

output bit expressions (Figure 3.11). We can see that the expressions for z5, z6, z7 are

more than 100 times larger than the Sigout in the middle of the rewriting process.

However, each output bit expression contains many common monomials which can

be eliminated by weighted addition (i.e. Sigout).

3.3.1.1 SAT comparison:

We tested the applicability of SAT tools to the the type of arithmetic verification

problems described in this chapter. The functional verification problem was modeled

as a combinational equivalence checking problem, generated with a miter using ABC

(command miter)[75], with the reference design generated by ABC using [gen -N -m]

command. Then, we check if the miter is unsatisfiable. The state-of-the-art SAT

solvers were tested using the CNF files created by ABC. ABC was also tested using

the combinational equivalence checking cec (Table 3.4).

42

The CEC approach in ABC is based on AIG rewriting via structural hashing,

simulation and the state-of-the-art SAT [79]. This technique reduces the overall com-

plexity of checking equivalence between two designs by finding equivalent internal

AIG nodes. However, finding internal equivalent nodes in non-linear arithmetic de-

signs is very difficult. In Table 3.2, N1, N2 are the numbers of AIG nodes before

and after function reduction [fraig − v] [75]). ∆1 shows the percentage of reduced

nodes. The reference design is generated by ABC [gen -N -m] command. We can see

that fraig is unable to identify and merge the internal equivalent nodes. Additionally,

we evaluate the complexity of checking Satisfiability using SAT solver lingeling [12].

N3, N4 are the numbers of clauses before and after simplification by [12]. ∆2 shows

the percentage of reduced clauses. We can see that both fraig and SAT solver cannot

simplify the integer multiplier CEC problem. For this reason, such techniques are

inefficient to verify non-linear arithmetic gate-level designs.

We also tested the SAT-based pseudo-Boolean solvers MiniSat+ [110] and PB-

Sugar [81] that have been applied to problems dealing with large pseudo-Boolean ex-

pressions. The specification is modeled as a pseudo-Boolean expression (Sigout−Sigin)

and the gate-level implementation using the algebraic model, as in Eq. (1). If such

constructed problem is unSAT, the implementation is bug-free. Both solvers success-

fully verified a 4-bit CSA multiplier, but were unable to solve the problem for a CSA

multiplier circuit greater than six bits in 24 hours.

Table 3.2: N1, N2 are the numbers of nodes before and after fraig -v in ABC ; N3, N4

are the numbers of clauses before and after simplification by [12]

Size k 8-bit 16-bit 32-bit 64-bit 96-bit 128-bit

AIG
N1 1173 5180 21641 88365 200140 356973
N2 1142 5140 21577 88278 200020 356822
∆1 2.6% 0.7% 0.29% 0.09% 0.06% 0.08%

SAT
N3 1655 7317 30543 124613 282159 503215
N4 1566 7133 30120 123758 280672 501512
∆2 5.4% 2.5% 1.4% 0.07% 0.05% 0.03%

43

3.3.1.2 SMT experiments

Given the specification Sigin and output encoding Sigout, the goal was to prove

that (Sigout − Sigin) is unsatisfiable (unSAT). Two types of modeling of the gate

equations were tested:

• SMT Model 1: We directly translated the algebraic equations of the gate-level

implementations into SMT2 format and modeled the specification (Sigout-Sigin)

as a Pseudo-Boolean polynomial using Boolean vector operations.

• SMT Model 2: The product circuit (miter) was translated directly into SAT

by converting the CNF model into SMT2 format. The CNF files used in this ex-

periment were the same as input to the SAT experiments. The second approach

showed better performance; it is the one shown in Table 3.4.

Table 3.4 gives comparison of our results for the synthesized multipliers with

winners of 2015 SMT competitions and evaluation, including Boolector [82], Z3 [39],

CVC4 [6]; minisat blbd [11], lingeling [12] and the ABC system [75]; with the symbolic

algebra tool, singular [40]; and Synopsys’ Formality system. It shows that our

technique surpasses those tools in CPU time by several orders of magnitude.

 0

 10

 20

 30

 40

 50

 60

 70

 0 200000 400000 600000

C
P

U
 T

im
e

(s
ec

)

#. gates

multiplier
multiplier_3

mixAdd_Mult
Matrix_Mult

sq_compl

Figure 3.9: Verifying combinational arithmetic circuits: CPU time.

44

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200000 400000 600000
M

em
or

y
us

ag
e

(M
B

)

#. gates

multiplier
multiplier_3

mixAdd_Mult
Matrix_Mult

sq_compl

Figure 3.10: Verifying combinational arithmetic circuits: Memory usage.

Table 3.3: CPU time and memory results of 256-bit (Operands A and B) arithmetic
circuits. (TO = timeout after 3600 sec; MO = memory out of 8 GB).

Benchmark 256-bit
Name Function # Gates CPU [sec] MEM

adder F = A + B 1.8K 0.10 5.7 MB
adder syn F = A + B 1.8K 0.19 6.4 MB
shift add F = A + A/2 7.7K 0.44 18.2 MB
multiplier F = A×B 521K 32.26 1.15 GB
multiplier syn F = A×B 663K 285.22 1.25 GB
mixAddMult F = A×(B+C) 525K 70.18 1.18 GB
mixAddMult syn F = A×(B+C) 650K 209.31 1.12 GN
multiplier 3 F = A1 ×B1 +A2 ×B2 +A3 ×B3 1,571K - MO
sq comp F = A2+2A+1 527K 48.84 1.13 GB
cube comp F = 1 +A+A2 +A3 1,576K TO -
Matrix Mult F = A[3×3] × B[3×1] 4,712K - MO

Table 3.4: Results for a synthesized multiplier; comparison with [32], SAT, SMT, and
commercial tools (TO = timeout after 3600 sec; UD = undecided; MO = memory out
of 8 GB). *ABC was unable to synthesize the 512-bit CSA multiplier due to memory
limit.

multiplier synthesized

Statistics This work [32]
[sec]

SAT [sec] SMT [sec] Commercial
Size #Gates CPU Mem [12] [25] ABC [82] [39] CVC4 [116]
4 86 0.01 2.2MB 0.45 0.00 0.00 0.01 0.00 0.03 0.09 0.81
8 481 0.04 2.9MB 1.72 4.40 62.75 11.66 7.18 16.55 42.63 3.19
12 1.2K 0.08 4.3MB 5.21 TO 1615.47 UD 2030.19 TO TO 108.1
16 2.1K 0.14 6.1MB 7.34 TO TO UD TO TO TO 111.2
64 41.4K 5.50 76MB TO TO TO UD TO TO TO 675.4
128 164K 39.64 299MB TO TO TO UD TO TO TO TO
256 663K 285.22 1.3GB TO TO TO UD TO TO TO TO
512∗ 2,091K 130.22 4.4GB TO TO TO UD TO TO TO TO

3.3.2 Limitations and Proposed Solutions

3.3.2.1 Circuit Boundaries

Currently, the described method of functional verification by signature rewriting

requires knowledge of the I/O boundary of the circuit. Specifically, we need to know

45

the output bits and their position (to be discussed in the next section), in order to

generate the starting polynomial, Sigout. We also need to know when to stop the

rewriting process to correctly reason about the computed signature, Sigin, and to

determine if the circuit implements the expected arithmetic function. This seems

to be a reasonable requirement for the functional verification of the given circuit,

where the circuit has a well defined I/O boundary. However, if the method is used to

extract an arithmetic function from a larger circuit, the exact I/O boundary may not

be known. Presence of additional logic blocks at the inputs or outputs of the circuit

clearly complicate the rewriting process. Future research will concentrate on relaxing

the problem to the one with unknown I/O boundaries.

3.3.2.2 Output Encoding

As mentioned above, to obtain Sigout, we need to know the correct encoding of

the output bits. However, the encoding of the output bits may not be known. Hence,

we propose a method by studying the intermediate expression of individual output

bits to correctly assign the encoding position for the output bits.

The results shown in Figure 3.11 represent the intermediate expression size of

individual output bit of a 4-bit multiplier. The horizontal axis represents the iteration

number of rewriting process; the vertical axis represents the size of the expression at

each point of the computation. We can see that the complexity of rewriting individual

bits is different. The intermediate expression size of the 2nd MSB is characterized by

the highest complexity and LSB is the lowest one. The complexity of the individual

output bits increases from z0 to z5. Based on this observation, we can determine the

output encoding by monitoring the intermediate expression. The output bits close to

MSB are very difficult to be extracted individually by our technique. The reason is

that the intermediate expression is too large since there are few cancellations without

the expressions from other outputs. However, to determine the output encoding, it is

46

not necessary to rewrite the signature all the way to the primary inputs. The output

encoding can be determined earlier in the process and the process will be terminated

immediately. For example, in Figure 3.11, all the output bits can be recognized before

iteration #35.

3.3.2.3 Effects of Synthesis on Function Extraction

The performance of our technique is sensitive to logic synthesis and technology

mapping. In Figure 3.12, we compare the rewriting process with different logic synthe-

sis techniques using 8-bit CSA Multiplier. The horizontal axis represents the rewriting

process as percentage of the complete run; the vertical axis represents the size of the

expression at each point of the computation. Original presents the rewriting process

of 8-bit multiplier without any optimization. In Figure 3.12, curves resyn and resyn3

are two different logic synthesis commands provided by ABC; curve complex refers

to the mapping library includes the complex gates (e.g. AOI21, OAI221, etc.); curve

”no-complex” refers to the library contains only 2 input logic gates.

We can see that the original 8-bit multiplier provides a much lower intermediate

expression size, which means that it is the easiest one to be verified. Synthesized

multipliers mapped into complex gates are more difficult to verify than those with

the simple gates. The reason why the intermediate expression size is larger is that

the logic synthesis technique and technology mapping techniques re-construct the

circuits. This creates fewer possible cancellations in our rewriting technique. Using

the heuristics proposed in Section 3.2.2, we can verify a lightly-synthesized multiplier

up to 256 (TABLE 3.4). However, the bit-optimized arithmetic design produced by

DesignCompiler or ABC dch remains challenge for this method.

3.4 Verification of Datapaths - A Case Study

This technique has been applied on datapath verification. Most of the work in

RTL verification concentrates on verifying translation from high level specification

47

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90

#.
 m

on
om

ia
ls

#. rewriting iterations

z0
z1
z2
z3
z4
z5
z6
z7

Sigout

Figure 3.11: Comparing rewriting of the expression Sigout vs individual output bits
for a 4-bit multiplier.

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#.
 m

on
om

ia
ls

Rewriting process

Original
resyn(complex)

resyn(no-complex)
resyn3(complex)

resyn3(no-complex)

Figure 3.12: Synthesis impacts on function extraction

(such as C) to RTL [59]; some use DFG as a formal model for high-level specification

[60]. Others use RTL to TLM abstraction for redesign and verification of RTL IPs

[17]. Assertion-based verification technique (ABV) is also used for system-level design

[106]. Industrial work in RTL verification typically addresses verification of RTL

protocol implementation against its specification and uses TLC or TLA specification

languages [10]. In this section, a case study of datapath verification using both word-

level and bit-level verification method. Note that we consider all the datapaths are

designed without truncation [111].

Consider an integer arithmetic logic unit (ALU), shown in Figure 3.13, taken from

[117]. This architecture is used often in implementing integer operations for standard

graphics APIs. The design consists of three word-level n-bit inputs, A, B, C, repre-

senting unsigned integers. Each of the operands can be optionally negated under the

control of single-bit signals, negA, negB, negC . These bits, together with other config-

uration bits (enab, enc and a negation bit negy of one of the local outputs), provide

48

control for various arithmetic functions, namely: A ·B, −A ·B, A ·B+C, A ·B−C,

etc.

Figure 3.13: Integer ALU - initial RTL design

In [117] the integer ALU design was subjected to a number of algebraic and

Boolean transformations resulting in the modified design shown in Figure 3.14. While

the applied transformations can be shown to be mathematically correct, it is impor-

tant to formally verify if the resulting RTL hardware implementation is indeed equiv-

alent to the original one. This must be done to ensure that some unexpected bugs,

typically related to finite bit-widths, sign extension, or two’s complement implemen-

tation of subtraction, did not creep up into the final implementation. In [117] this

problem was solved for n = 16 using Hector, a formal equivalence checking tool from

Synopsys. The approach taken there required case-splitting and separately solving a

number of individual cases, determined by the combination of the control signals.

We approach this problem differently and perform verification using symbolic

representation for both RTL designs to verify if they are equivalent. Two versions

of the proof are considered here: 1) In the first method the symbolic equations are

derived for each design and a canonical TED representation [29] is used to show

49

Figure 3.14: Integer ALU - final RTL design

that the two RTL implementations are equivalent for arbitrary bit-width, while still

considering two’s complement representation for negative numbers; and 2) A more

convincing method considers a bit-level composition of the RTL structure and shows

that the equivalence can be proven for large operand bit-widths [124]. Note: The

bit-level RTL structure should not be confused with a gate-level model, since the

arithmetic and logic operators are still defined on the register transfer level. In a

separate model we can also demonstrate the correctness of our approach to gate-level

designs.

3.4.1 Word-level Verification

In this model, the unsigned word-level operand X is represented simply as variable

X (positive number) or as −X (negative number), regardless of the number of bits

(assuming no overflow).

• Original Design (FY 1): The first level includes three identical modules, each

composed of a negator (neg) and a multiplexer (mux) to select the operand in

50

a positive or in a negated form. The output of the first mux, associated with

operand A, is

FA1 = (1− negA)A+ negA(−A) = A · (1− 2 · negA)

Note that for negA = 0, FA1 = A; and for negA = 1, FA1 = −A, as required.

Similar expressions are derived for modules with inputs B and C, and outputs

FB1 and FC1. Next design level includes a multiplier followed by an enable

signal enAB, producing FABen1 = enAB(FA1 · FB1) and FCen1 = enC · FC1.

The next level has an adder with inputs FAB1, FC1

FABC1 = FAB1 + FC1

The lowest level has a negator gate for FABC1, controlled by negY

FY 1 = FABC1(1− 2 · negY)

The entire set of such equations is written into the TDS system [28] and repre-

sented by a canonical, word-level diagram, TED [29]. The diagram automati-

cally represents the function in terms of the primary input variables, as shown

in Figure 3.15(a). Note that Figure 3.15(a) also contains the diagram of the

final design FY 2, which is functionally the same as FY 1. We can see that the

equivalence has been proved by TED by constructing two functions in the same

diagram. However, to prove the equivalence using rewriting method, we need

to extract the polynomial expression of FY 2 from PO to PI.

• Final Design (FY 2): The transformed design is shown in Figure 3.14, where

51

FY1

e n _ a b

-1

A

neg_y

-1

FY2

-1

B

n e g _ a

neg_y

-1 2

C

n e g _ c

ONE

-1 2

e n _ c

-1 2

n e g _ b

-1 2

-1 2

FY1

e n _ c

c 0

neg_y

-1

FY2

a 0

a 1

2

b 0

b 1

2

n e g _ a

n e g _ b

-1 2

c 1

2

neg_y

n e g _ c

-1 2

e n _ a b

-12

ONE

-1 2-1 2

(a) (b)

Figure 3.15: TED representation: (a) word-level model; (b) bit-level model

negABC = negA ⊕ negB ⊕ negC

negABY = negA ⊕ negB ⊕ negY

Translation of the Boolean operator ⊕ (xor) into an algebraic expression can

be done using the following, well known relation:

x⊕ y = x+ y − 2 · x · y (3.5)

By applying this formula to the above equations, we obtain:

negAB = negA + negB − 2 · negA · negB

negABC = negAB + negC − 2 · negAB · negC

52

negABY = negAB + negY − 2 · negAB · negY

With this, the remaining part of the design can described by the following set

of expressions:

FAen2 = enAB · A

FAB2 = FAen2 ·B

FCen2 = enC · C

FC2 = C · (1− 2 · negABC)

FABC2 = FAB2 + FC2 − negABY

where negABY is an integer binary variable. The same signal is then applied as

a Boolean signal to an xor to conditionally flip the bits of the word-level signal

FABC2 computed by the adder. The algebraic model for xor shown in (3.5)

does not apply to such bit-wise operation on a word-level signal, and needs

to be suitably modified. Specifically, it can be modeled as a mux, shown in

Figure 3.16. When negABY = 0, the output of the adder, (FABC2 = FAB2 +

FC2 − 0), is passed directly to the output FY 1; and when negABY = 1, the

adder’s output, (FAB2 + FC2 − 1), is bit-wise complemented. To model this,

we use the standard relation between the bit-wise complement and a word-level

complement/negation, −X = X + 1. This, as already shown in [117], can be

rewritten as −(X − 1) = X − 1 + 1, which, in turn, implies that

−X = X − 1

With this we can now model the xor and a mux with inputs X and −X, where

X = FAB2 + FC2, as follows:

FY 2 = (1− negABY)X + negABY (−X) = X(1− 2 · negABY)

53

which is similar to the negator developed earlier.

Substituting X = FAB2 + FC2 in the above equation gives the following model

for the resulting mux (c.f. Figure 3.16).

FY 2 = (FAB2 + FC2)(1− 2 · negABY)

Figure 3.16: Modeling of the word-level xor.

As mentioned in Item 1, the proof of equivalence between FY 1 and FY 2 using TED

is shown in Figure 3.15. We can also prove that they are equivalent by comparing

the extracted polynomial expressions. FY 1 = FAB(1−2 ·negY)+FC(1−2 ·negY), and

FY 2=(FAB +FC)(1− 2 · negY). It is obvious that the expressions of FY 1 and FY 2 are

the same.

3.4.2 Bit-level Verification

To perform RTL verification on a bit-level, we must consider the bit composition

of each of the word-level signals. This is done by expressing each n-bit unsigned

number X by its binary encoding: X =
∑n−1

i=0 2ixi. The negative number (−X) is

represented using two’s complement model as −X = 2n−X. Specifically, we express

the word-level input A using binary encoding

A = 2n−1an−1 + · · ·+ 2a1 + a0

54

and similarly for inputs B and C. The system of equations derived in Section 3.4.1,

together with the binary-encoded inputs (and intermediate signals, as needed) is then

used to generate the final canonical TED representation.

Figure 3.15(b) illustrates this approach for a simple case of 2-bit operands, and

demonstrates that both designs represent the same function, hence are equivalent.

The 2-bit case is used here for illustration only, since the generated TED diagrams

for larger would be too big to show here. However, the results shown in the previous

section clearly demonstrate that this approach can be used to solve the equivalence

verification problem for this design with up to (or even beyond) 256-bit operands.

3.4.3 Results

In this section, the TED representation was used simply to illustrate the concept

of symbolic RTL verification rather than as a robust method to solve the equivalence

verification problem. Nevertheless, TED, in addition to providing the word-level sym-

bolic solution, can easily handle the Integer ALU design with up to 26-bit operands

(beyond which the internal memory management is not efficient). The CPU runtime

for such solutions is shown in Table 3.5. As we can see, the solution can be obtained

in a matter of fractions of seconds. The experiments were run on a PC with Intel

Processor Core i5-3470 CPU 3.20GHz x4 with 15.6 GB memory.

An alternative, and a more efficient solution is based on an approach that com-

putes (i.e., extracts) the function performed by the design by rewriting the symbolic

expressions of a design from the primary outputs to primary inputs. Such an approach

has been used in our earlier work [32] in the context of arithmetic bit-level (ABL)

networks, but applies verbatim here. In this approach, the specification polynomial

(input signature) for a given design is computed from the word-level outputs (output

signature) and expressed in terms of all the input variables: the operands A,B,C,

control signals negi, and other configuration signals. Such computed signature is then

55

compared to the input signature obtained in a similar manner from the other design.

The proof that such generated polynomials are identical is actually performed by

running both designs in the same process and checking if FY 1 − FY 2 = 0. As shown

in the Table (column Function-Extract), this approach is highly scalable: it can solve

the bit-level Integer ALU for operands with at least 256 bits in a matter of seconds.

In comparison, in[117] a commercial combinational RTL equivalence tool, Hector,

was used to formally verify equivalence of a 16-bit instance of this ALU design. Solv-

ing this problem with Hector required 16-way case splitting (performed by hand) and

solving the 16 simpler problems corresponding to some combinations of the configu-

ration bits. The CPU time of 8 seconds reported in [117] cannot be used to compare

to our results since the parameters of the computing platform were not given. Larger

design were not attempted in there, claiming increased difficulty experienced by the

solver.

Table 3.5: CPU time and memory results using TDS and Function Extraction

Op-size
TDS Function-Extract

CPU (sec) Mem (kB) CPU (sec) Mem(kB)
4 0.01 3400 0.01 2420
8 0.03 4470 0.03 4020
16 0.06 8904 0.11 9628
26 0.19 18160 0.32 21972
32 - - 0.48 32280
64 - - 1.93 124776
128 - - 8.07 494304
256 - - 34.66 1984464

3.5 Conclusions

This chapter presented the function extraction technique that derives the func-

tion computed by an integer arithmetic circuit from its gate-level implementation. It

demonstrated that such function extraction and the test if the implementation sat-

isfies the specification can be efficiently implemented in the algebraic domain using

signature rewriting concept.

56

This approach uses an advanced data structure and a set of efficient heuristics

to effect this extraction. The results show that the approach can handle gate-level

integer multiplier circuits up to 512 bits and contain over 2 million gates. It should be

noted that the experiments were conducted on circuits synthesized with ABC onto a

relatively simple set of complex gates (mcnc.genlib). It seems that the synthesis tool

which retains a certain degree of redundancy in the circuit, in the form of a vanishing

polynomial, may be useful in verification. This type of redundancy is helpful in re-

ducing the size of the intermediate polynomial expressions, which could significantly

reduce the complexity of function extraction. Another observation is that solving the

verification problem for highly optimized bit-level circuits, synthesized with commer-

cial tools, remains a challenge. There are two possible reasons: 1) the synthesis tools

are more aggressive in removing such redundancy; 2) the best ordering of rewriting

is very difficult to identify, which causes memory explosion problem. This, together

with the need to know the circuit I/O boundary is currently the main limitation of

the method presented in this chapter.

We should also note that the verification of more structured circuits, containing

larger pre-verified blocks will, in general, be easier. This is shown in the datapath

verification case study. This is because it requires fewer polynomials to be processed,

which lowers the overall size of the problem, and there are fewer rewriting iterations.

This is especially true if the relationship between the inputs and outputs of such a

block is simpler than those of the internal gates. The case study of datapath verifica-

tion demonstrates that the high-level components significantly reduce the complexity

of rewriting. The early work on verification of arithmetic circuits mapped into a

combination of half- and full adders and logic gates demonstrate an almost linear

computational complexity [7] [30]. However, as experimentally confirmed, sometimes

the rewriting process benefits from breaking the aggregated complex gates into smaller

ones to increase the chance of term cancellation during rewriting (Figure 3.5).

57

Based on those observations of the advantages and disadvantages of the function

extraction technique, the next two chapters focus on improving its performance by

introducing redundant polynomials (Chapter 4) and identifying the best ordering of

rewriting for heavily optimized circuits (Chapter 5).

58

CHAPTER 4

COMPUTER ALGEBRA BASED VERIFICATION WITH
REDUNDANT POLYNOMIALS

4.1 Introduction

Sequential circuits are composed of combinational arithmetic logic and memory

components that are used to improve the throughput and energy efficiency of in-

tegrated circuits. In such circuits, the input is provided serially and the result is

accumulated over a number of cycles to produce an n-bit (or word-level) result. The

goal is to prove that the circuit computes the required arithmetic function collected

sequentially at the primary outputs. Compared to combinational arithmetic circuits,

the verification problem of sequential arithmetic circuits is much more complex, as

it usually requires a complete exploration of the state space of the circuits. Even

though functional verification of such arithmetic circuits can be cast as a combina-

tional bounded model checking (BMC) problem, it is still challenging due to a large

number of bits in practical arithmetic circuits. Boolean logic techniques, based on

binary decision diagrams (BDDs) and satisfiability (SAT) solvers, have limited ap-

plication to arithmetic circuits as they require flattening of the design into bit-level

netlists. This chapter addresses the verification problem by modeling the sequential

circuit as an algebraic system similar to that presented in Chapter 3, and proving that

the polynomial word computed by the circuit matches the design specification, ex-

pressed in terms of the primary inputs. Specifically, it targets synchronous sequential

arithmetic circuits with known required latency.

An example of the type of circuits considered here is shown in Figure 4.1. It is

an n-bit serial adder built out of a single-bit adder, which operates for n clock cycles

59

to produce an (n+1)-bit result. An equivalent combinational model is obtained by

unrolling the adder n times. The proof of functional correctness consists in trans-

forming the polynomial associated with the result Z = zo + 21z1 + · · · 2
nzn into a

polynomial expressed in primary inputs, {ai}, {bi}, applied to the circuit serially; and

checking if this polynomial indeed represents the addition of two input operands:

Z = A + B = (ao + 21a1 + · · · 2
n−1an−1) + (bo + 21b1 + · · · 2

n−1bn−1). However, as

demonstrated in this chapter, such a straightforward unrolling may be inefficient from

the verification point of view, and special techniques are needed to make it effective

and scalable. Those techniques are the main focus of this chapter.

A[n-1:0]

B[n-1:0]
+

Z[n:0]

FA

D

a0, a1,… an-1,

z0, z1,…zn-1b0, b1,… bn-1,

zn

Figure 4.1: Sequential n-bit adder, Z = A+ B.

4.2 Previous Work

A lot of research has been done in sequential equivalence checking, reachabil-

ity analysis, state traversal, etc., applied to control logic, but relatively little has

been published on functional verification of arithmetic circuits. Boolean satisfiability

(SAT), which is an effective platform for encoding many CAD problems [14], [2], [53],

has been used in verification of both control logic and arithmetic designs. SAT models

for sequential designs typically rely on an Iterative Logic Array (ILA) representation

by unrolling the combinational circuit component over a bounded number of cycles.

Unfortunately, this technique when applied to modern industrial designs over a large

number of cycles often exceeds the available memory resources [15].

60

A method for reducing sequential equivalence checking (SEC) of sequential logic

into an equivalent combinational equivalence checking (CEC) is presented in [99].

That paper theoretically investigates when SEC can be reduced to CEC. It addresses

the control part of large industrial designs, including pipelines but does not discuss

the sequential arithmetic circuit verification. The work of [87] compares ATPG and

SAT for checking safety properties and shows that, for relatively small circuits, two

approaches are equally viable. Other analysis shows that sequential ATPG-based

bounded model checkers outperform traditional SAT-based techniques, particularly

for large designs [97].

4.3 Preliminaries

The functional verification method described in this chapter extends the combina-

tional verification technique proposed in Chapter 3 to sequential arithmetic circuits.

As we know that, it computes a unique bit-level polynomial function implemented

by the circuit directly from its gate-level implementation. The difference between

sequential and combinational arithmetic circuits is the signature. For combinational

circuits, the output signature and input signature can be derived directly from the

circuits using their binary encodings. However, for sequential circuits, the signatures

are determined by the binary encoding of the bits, and the sequential behavior. To

address this problem, the sequential arithmetic circuits are converted into combina-

tional models by unrolling the circuit over k steps, where k is the required latency.

Hence, the verification problem is converted into a combinational verification prob-

lem, which can be solved by rewriting the polynomial representing encoding of the

primary outputs (the output signature) into a polynomial expressed in terms of the

primary inputs (the input signature), using algebraic model of the internal gates. Note

that the signatures derived from the unrolled model are not the sequential signatures

61

(introduced in next section) of the original implementations. The algebraic model is

the same as shown in Chapter 3.

Input signature (sequential), denoted by Sigin, is a pseudo-Boolean polynomial in

primary input (PI) variables that uniquely represents an integer function computed

by the circuit, i.e., its specification. Unlike the combination circuits, this input sig-

nature is derived based on the sequential behavior of the circuits. For example, input

signature for a sequential adder shown in Figure 4.1 is Sigin (at i cycle) = Sigin (at

i − 1 cycle) + (
∑n−1

i=0 2iai +
∑n−1

i=0 2ibi), where sumi−1 is the intermediate result at

i− 1 cycle.

Output signature (sequential), Sigout, of the sequential circuit is defined as a

pseudo-Boolean polynomial in the primary output (PO) signals in i cycles. Such

a polynomial is uniquely determined by the binary encoding of the output. For ex-

ample, the output signature of the serial adder shown in Figure 4.1 with output bits

zi is Sigout =
∑n−1

i=0 2izi, where i is the clock step.

The proof of functional correctness is based on successively rewriting the out-

put signature Sigout into a signature in the primary inputs and comparing it with

the expected input signature Sigin. At each step of the procedure, an intermediate

polynomial generated by the rewriting corresponds to some cut in the circuit, a set

of signals separating primary inputs from primary outputs. The rewriting process

recursively applies algebraic models of logic gates, followed by an algebraic simplifi-

cation of polynomial terms to arrive at a unique algebraic expression. It also applies a

Boolean reduction by reducing any occurrence of a nonlinear term xk, to a single vari-

able x. During rewriting of nonlinear terms, the size of an intermediate polynomial

representing a cut in the circuit may increase exponentially, which seriously impacts

the efficiency of the procedure. The size of the peak polynomial, commonly called

the “fat belly”, is a bottleneck for both the performance (CPU time) and memory

used by the procedure.

62

The choice of the cuts (or, equivalently, the order in which the variables are

eliminated by substitution) has big influence on the size of the fat belly and the

efficiency of the rewriting process. A number of heuristics can be used to improve the

efficiency, including: efficient data structure in the search of substituted variables; fast

elimination of redundant terms; and other heuristics to minimize the size of the fat

belly [31]. These techniques alone are not sufficient to avoid potential polynomial size

explosion and additional techniques are needed. Some of them, specific to sequential

arithmetic circuits, are discussed in the remainder of this chapter.

4.3.1 Vanishing Polynomials

Definition 1 Vanishing Polynomial (VP): Starting with a Boolean signal v, the

rewriting process generates a set of pseudo-Boolean polynomials P = {p1, p2, ..., pi} (pi

is the polynomial when rewriting reaches PIs). If there is a subset P ′={p1, p2, ..., pi}

(2 < i < n) such that each p is non-zero polynomial, and pi+1=pi+2=...=pn=0,

evaluated to 0 for all values, then P ′ are vanishing polynomials.

Vanishing polynomials have been used to test if two fixed-size datapaths F1, F2

are equivalent by testing whether or not a difference polynomial, F1-F2, reduces to 0

over Zm
2 for the given bit-width [104]. Vanishing polynomials over Zm

2 have also been

used as an optimization technique in high-level synthesis [45] by adding redundancy

to the fixed bit-width polynomial computation in order to minimize the implementa-

tion. The vanishing polynomials in our work are similar to those used in high-level

synthesis, but serve a different purpose. They are pseudo-Boolean expressions that

always evaluate to 0 and insertion of such polynomials into the design will reduce the

complexity of the verification process.

The use of vanishing polynomial in our work is illustrated with a 2-bit squarer

circuit in Figure 4.2(a), with mathematical computation done by the circuit shown

in Fig. 4.2(b).

63

z
3

z
2

z
1

z
0

a
1

a
0

x
1

x
2

x
3 x

4

f
1

f
2

f
3

f
0

x
5

a
1

a
0

z
3

z" z� z
0

a
0
a�

a
1
a
0
a
0

a
1

a
1

a
0

a
1

a
0

(a) (b)

Figure 4.2: 2-bit combinational squarer circuit. a) Gate-level netlist; b) arithmetic
squaring structure.

Close examination of the result shows that bit z1 = 0, as it is a sum bit of two

identical terms, a1a0 and a0a1. The resulting carry out bit (if any) is shifted one bit

to the left and added to a1 to produce z2. Hence, with z1 = 0, the initial starting

point is Sigout = f0 = 8z3+4z2+z0 (without z1). It is then transformed into f1 using

substitutions z3 = x1x5 and z2 = x1+x5−2x1x5 (c.f. Eq. 7.1). Subsequent rewriting,

using equation for x5 = x2x3, results in f2 = 4x1 +4x2x3 + z0. It is then transformed

(using equations for the and gates), to produce Sigin = f3 = 4a1 + 4a1a0 + a0.

Comparing this result with the expected specification, Fspec = (2a1 + a0)
2 = 4a1 +

4a0a1 + a0, shows that the circuit correctly computes the square function.

Now let us include the vanishing polynomial for z1, which in terms of the imme-

diate signal variables can be written as z1 = x2 + x3 − 2x2x3. In the first step, f0 is

transformed into f1 as before. Then, f2 is obtained from f1 using equations for x5

and z1, resulting in f2 = 4x1 +2(x2 + x3) + z0. Finally f3 is obtained by substituting

variables x1, x2, x3, x4 with the corresponding equations for and gates in terms of the

primary inputs, a0, a1. The result is the input signature Sigin = f3 = 4a1+4a1a0+a0.

It also demonstrates that this is a correct arithmetic function. However, note that

64

the intermediate form, f2 = 4x1 + 2(x2 + x3) + z0, is simpler than the one computed

without z1, as it does not contain any nonlinear terms.

In general, vanishing polynomials contain terms that cancel other monomials dur-

ing the cut rewriting and keep them smaller, especially for sequential arithmetic ver-

ification. This is because that many internal signals evaluate to zero iff the rewriting

process reaches the PIs. These internal signals exist in the cascade arithmetic func-

tions which are created by unrolling process. We demonstrate this using a Multiply-

Accumulator (MAC) in Section IV-I in this chapter.

4.3.2 Don’t-care Polynomials

Definition 2 Don’t-care Polynomial (DCP): Assuming d is a Boolean signal

and P={p1, p2, ..., pn} is a set of polynomials of d which are generated by rewriting,

if d is included in the arithmetic algorithm but excluded in the design, d and P are

Don’t-care Polynomials.

Don’t-cares are critical in verification because they can reduce the complexity of

the netlist to be analyzed by equivalence checking. For example, in [133],[90] it is

demonstrated that generating observability don’t-cares for node merging, followed

by SAT-based verification, greatly improves scalability and performance over other

solutions. The don’t-cares in our work are similar to those in [133], [90]. In our

case, however, the role of don’t-cares is to minimize the size of polynomials in each

substitution step, rather than to minimize the computational complexity of SAT

solving.

For example, let’s assume that there is a 3-bit 2’s complement adder, which the

three LSBs x[2 : 0] are used in the design. The MSB x3 is the sign bit of the result

of this addition. Based on Definition 2, x3 can be used as a don’t care polynomial.

According to [31], the output signature should be x0 + 2x1 + 4x2. However, we

observe that the internal expressions explode in the rewriting process without don’t

care signal, x3. We compare the internal expressions with/without x3 in Figure

65

4.3. We can see that the peak size (i.e. the number of monomials) of the internal

expressions without x3 is 2× larger for a 3-bit adder. For larger designs, without

the don’t cares, the rewriting process will contain a 100x larger peak of internal

expressions which causes memory explosion problem. Including this bit as part of

the arithmetic algorithm can simplify the verification process because it contains

potentially cancelable monomials. Similarly, we are able to verify a n-bit comparator

by including the output bits [n− 2, 0] of a n-bit subtractor.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

!" %" '" (")" $!" $%" $'" $(" $)" %!"

!
"
#
$
%
&'
(
)'
#
(
*
(
#
+,
-.
!

/%0&+1*2'.3%4!

05'6(*73'8,&%'

05('6(*73'8,&%'

Figure 4.3: Compare the size of internal expressions with, without don’t care polyno-
mial x3.

Another type of don’t-care polynomials can be generated in unbounded sequential

circuits. They can be obtained by expanding the reachable states to those that are

not actually reached during the computation within the given range of input vectors

[99] (in our case, within the given number of serial bits). A bit-serial squarer circuit,

described in Section 4.2, will demonstrate this type of don’t-care polynomial.

Including the vanishing and don’t-care polynomials amounts to introducing redun-

dancy into the original design, with the goal to improve the verification performance

and scalability. This technique can be applied verbatim to formal verification of hard-

66

ware for cryptography applications, e.g., extension fields arithmetic circuits, used in

Advanced Encryption Standard (AES).

4.4 Sequential Verification

In this section we show the application of VP and DCP to several types of se-

quential arithmetic circuits.

4.4.1 Multiply-Accumulator (MAC)

Consider an n-bit unsigned MAC circuit shown in Figure 4.4. The circuit should

compute the result R =
∑k

i=1 AiBi + C0 in k cycles, for k sets of n-bit inputs,

Ai[0...n− 1], Bi[0...n− 1], where i = 1, ..., k, and with some carry input vector C0.

X

+

A0, A1,…

B0, B1,…

init

Accumulator

R

Figure 4.4: Original MAC circuit: R =
∑

i Ai ·Bi + C0.

Figure 4.5 shows the unrolled version of the circuit for n = 4 bits and k = 2 cycles.

The proof of functional correctness is obtained by transforming Sigout =
∑9

i=0 2
iri

using algebraic equations of internal gates of the circuit into an input signature,

using the rewriting technique discussed earlier. The resulting input signature Sigin

is a function of the 4-bit primary inputs A0, B0, A1, B1 and C0.

Note that the bit-widths of the two inputs to the first adder circuit in the unrolled

model are different: they are 4-bit and 8-bit wide. Similarly, the bit-widths of the

second adder are different (8 and 9 bits). This bit-width mismatch can be adjusted

by the sign extension applied at the shorter inputs. Since the extension bits are all

67

+

X X

+

8 8

9
4

8-bit Adder 9-bit Adder

4

4

4

4

4-bit mult

A0

B0 B1

A1

init

4-bit mult

8

vanishing

9

vanishing

R [8:0]

MSB

MSB

Figure 4.5: MAC circuit unrolled over two cycles.

”0”, the most significant bit, i.e., the carry-out of the first adder, always evaluates

to 0 (it is a Vanishing Polynomial). This, combined with the mismatch between the

inputs to the second adder, cause the two MSBs of the output to evaluate to 0 as

well. Therefore, it may seems logical to exclude the two most significant bits from

the computation to simplify the model.

However, such a straightforward application of the signature rewriting scheme to

this circuit is not efficient, as it may result in a large number of product terms of

the intermediate signature before reaching the PIs. As a result, the CPU time and

memory consumption can be prohibitive. For example, it takes more than 190 seconds

of the CPU time and requires 2 GB memory to verify a 4-bit MAC circuit on our

computing platform (see the Results section).

To simplify and speed up the verification procedure, we take advantage of the

structure of the unrolled model by identifying the Vanishing Polynomials associated

with the 0-function bits and adding them to the output signature Sigout. As men-

tioned before, adding such a redundancy can simplify the elimination and substitu-

tion procedure during signature rewriting. Specifically, many cancellations will occur

between the terms of the vanishing polynomial and other terms of the computed sig-

nature during the elimination and substitution process. After adding the vanishing

polynomials, we could verify a 64-bit MAC in just 4 seconds, with only 142 MB mem-

68

ory – compared to 190 seconds and 2 GB memory for the 4-bit version of the circuit

(see Tables 4.2 and 4.3).

4.4.2 Serial Squarer

+

4D

D

+

6D

D

D D

+

2D

D

D

+

D

D

D D D

a3, 0, a2, 0, a1, 0, a0
2D 2D2D

2D

2D

Figure 4.6: A 4-bit Serial Squarer.

Another type of redundancy encountered in bit-serial arithmetic circuits appears

in a serial squarer circuit [37] which computes a square value of an n-bit integer

input. An example of a 4-bit serial squarer is shown in Figure 4.6. The input bits

of an integer number are provided serially over a single line, interleaved with 3 zeros,

and outputs bits of the result are collected serially at the single output line. The

proof of functional correctness is obtained by transforming the Sigout using algebraic

equations of internal gates of the circuit into an input signature. The delay elements

D are modeled by unrolling each module 2n times. The fully unrolled model is too

large to be shown in this section; a simplified model is shown in Figure 4.7.

To make the verification efficient, we extend bit-widths of the adder in the serial

squarer circuit. Each of the four 1-bit adders is expanded over eight cycles, using

standard techniques, into a combinational 8-bit adder. The resulting 8-bit adders as

shown in Figure 4.7. The 8-bit input, B2, to the second stage adder requires sign

extension, while the other input is already 9-bit wide, as generated by the previous

69

+ +
A1

B1 B2

8

88

+

B3

8

+

B4

8

12

8
Z [7:0]

VPs

DP

DP=Don’t-care polynomial , VPs=Vanishing polynomials

9 1110

3

Figure 4.7: Unrolled 4-bit Serial Squarer.

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

 o
f m

on
om

ia
ls

Rewritting process (%)

Number of monomials

All included
POs Only

POs+Don’t-care
POs+Vanishing

Figure 4.8: Evaluation of Don’t Care and Vanishing polynomials on a 4-bit serial
squarer.

adder. Similarly, the inputs to the remaining two adders, B3 and B4 are sign-extended

by 2 and 3 bits, respectively. As a result, the 12-bit output is composed of extra

four bits. The most significant three of those bits are always 0 because of the sign-

extension; they can be represented by vanishing polynomials. The other bit however,

is not a 0-functions, but a Don’t Care, providing the two’s complement corrector to

the remaining 8-bit adder. This represents a reachable state that is unreached in the

design.

By including both types of polynomials (vanishing and don’t cares), the computa-

tion of the input signature can be greatly simplified. Specifically, it is used to simplify

the algebraic equations during the rewriting process in order to minimize the size of

the “fat belly”.

70

4.5 Experimental Results

The sequential verification method described in this chapter has been implemented

as a C++ program and tested on a number of sequential, serial arithmetic circuits,

taken from [37] and [61]. The experiments were run on a PC with Intel Processor

Core i5-3470 CPU 3.20GHz ×4 and 15.6 GB memory. Table 4.1 includes the CPU

time and memory results for integer multiply-accumulator and add-shift multiplier

circuits (an instance of the s344/s349 circuit from ISCAS-89 benchmarks, without

the counter), extended to 256 bits.

Tables 4.2 and 4.3 summarizes the benefit of using vanishing polynomials and

don’t care polynomials in computing the input signature, and its effect on solving

the sequential arithmetic verification problem. The table shows that using both,

don’t care and vanishing polynomials, gives best solution in CPU time and memory

usage. The reason why using the don’t care polynomials only is better than using

the vanishing polynomials only is that the don’t care bit, which is the first unreached

state in the serial squarer design, contains more information and can produce more

cancellation of intermediate terms.

Table 4.1: Verification results for GF(2256) Adder, MAC, and Add-shift Multipliers

Circuit
256-bit

Gates (Unrolled) CPU [sec] Mem
GF (2256) Adder 3.5 K 0.21 1.1 MB
Add-Shift-Mult 587K 31.81 1.2 GB
2-Cycle MAC 1,049K 66.71 2.3 GB
6-Cycle MAC 3,148K 203.63 6.9 GB

To further analyze the effect of vanishing and don’t care polynomials, we mon-

itored the largest-size polynomial during rewriting (the fat-belly). The results are

shown in Figure 4.8. The horizontal axis represents the time-line of the rewriting

process as percentage of the complete run; the vertical axis represents the size of

the expression at each point of the computation. We can see that the worst case

71

corresponds to the case when output signature contains only PO signals (without

vanishing or don’t care polynomials). Including both types of redundant polynomials

significantly reduces the size of fat belly and of the largest monomial. In summary,

including don’t-care and vanishing polynomials can improve efficiency and scalability

of arithmetic verification.

Table 4.2: Effect of Vanishing and Don’t Care Polynomials for MAC (MO = Memory
out of 8 GB)

n-bit
2-Cycle Integer MAC

Vanishing Poly POs Only
CPU (sec) Mem (MB) CPU (sec) Mem (MB)

4 0.01 2.2 190.86 2.1 GB

6 0.02 3.0 - MO

8 0.06 3.9 - MO

64 4.24 142.1 - MO

Table 4.3: Effect of Vanishing and Don’t Care Polynomials for Serial Squarer (MO =
Memory out of 8 GB)

n-bit
Serial Squarer

Vanishing+Don’t Cares Don’t Cares Only Vanishing Only POs Only
CPU (sec) Mem (MB) CPU (sec) Mem (MB) CPU Mem (MB) CPU Mem (MB)

4 0.01 2.3 0.13 11.3 - MO - MO
6 0.04 3.1 3.94 205.2 - MO - MO
8 0.06 4.2 - MO - MO - MO
64 4.71 161.8 - MO - MO - MO

Table 4.4: Sequential Squarer results: comparison with SAT and SMT (TO =
Time out after 3600 sec)

Serial Squarer Our SAT [sec] SMT [sec]
Size Clk Cycles #.Gates CPU [sec] Mem minisat ABC lingeling minisat blbd Boolector Z3 CVC4

4 11 255 0.01 2.32 MB 0.00 0.01 0.00 0.00 0.00 0.00 0.01
16 59 4.33K 0.26 11.7 MB 35.96 61.99 18.34 12.45 19.87 20.86 92.56
20 75 6.87K 0.42 17.3 MB 1698.53 TO 720.33 549.41 533.59 1045.18 TO
24 91 9.92K 0.62 24.1 MB TO TO TO TO TO TO TO
64 251 71.2K 4.71 161.8 MB TO TO TO TO TO TO TO
128 507 285K 18.63 667.3 MB TO TO TO TO TO TO TO
256 1019 1.14M 77.12 2.63 GB TO TO TO TO TO TO TO
512 2043 4.58M 331.64 10.5 GB TO TO TO TO TO TO TO

Our verification method was also compared to SAT and SMT techniques for a bit-

serial squarer circuit, ranging from 4 to 512 bits. The results, showing CPU runtime

and memory usage, are given in Table 4.4.

72

SAT comparison: The functional verification problem was modeled as Boolean

satisfiability (SAT) on a product circuit, generated with a miter, and solved using

the ABC system [75]. A miter was created between the unrolled serial squarer circuit

and the reference design (a multiplier with two inputs tied together), and the miter’s

output was tested for unSAT. Several SAT tools were tested, including ABC (cec

command) [75], miniSAT [110] , lingeling [12], and minisat blbd, the winners of 2014

SAT competition [98].

For SMT comparison, we tested Boolector 2.0.0 (first place in SMT Competition

2014) [82], as well as Z3, and CVC4 tools. We tried two models: 1) We directly

translated the algebraic equations of the unrolled serial squarer into SMT2 format

and modeled the specification (Sigout-Sigin) as a Pseudo-Boolean polynomial using

Boolean vector operations. Among the SMT solvers, Boolector produced the best

result for the serial squarer circuit, but it was only able to solve up to an 8-bit version

of the circuit in 3,000 seconds of CPU time. 2) The product circuit (miter) was

translated directly into SAT by converting the CNF model into SMT2 format. This

approach showed better performance; it is the one shown in Table 4.4. As shown in the

tables, our method has approximately linear CPU time complexity for all the tested

circuits, and wins with the best SAT and SMT tools by several orders of magnitude

of CPU times for designs above 16 bits.

4.6 Conclusions

In this chapter, two redundant polynomials are introduced to reduce the com-

plexity of extracting the polynomial expressions from the gate-level implementations.

This has been demonstrated with several case studies of functional verification of

gate-level sequential arithmetic circuits. This method goes beyond simple unrolling

to a sequential circuit into a combinational one, as it applies vanishing polynomial

(VP) and don’t-care polynomial (DP) that are specific to sequential circuit operation.

73

In addition to arithmetic verification, the proposed procedure can also be used to de-

rive (i.e., extract) an arithmetic function implemented by the circuit by computing

its input signature from the known output signature. It is shown that inserting a

useful type of redundancy, the VP and DP, can greatly improve the verification time

and scalability. One limitation of this approach is that, generation of VP or DP

during unrolling requires certain account of domain knowledge of the circuit under

verification, and is difficult to be automated. The next chapter will introduce how to

identify the redundant polynomial automatically using And-Inv-Graphs.

74

CHAPTER 5

ADVANCED ALGEBRAIC REWRITING USING
AND-INV-GRAPH

5.1 Introduction

Chapters 3 and 4 demonstrate that computer algebra techniques, which construct

the polynomial representation of a gate-level arithmetic circuit, offer significant ad-

vantages for verifying arithmetic circuits. The main reason why computer algebra

techniques can verify arithmetic circuits so efficiently is that it substantially reduces

the polynomials by eliminating non-linear terms when constructing polynomials from

the gate-level representation. For example, let a polynomial expression be E = 2x1 +

a+b−2ab, where x1 is an output of an AND2 gate with inputs a and b. After rewriting

the algebraic model of AND2(a, b) = ab, we have E = 2ab+ a+ b− 2ab = a+ b. As a

result, the non-linear term ab has been eliminated. However, it is shown that directly

extracting the polynomial expressions of heavily optimized circuits is very difficult.

This is because the intermediate polynomials can explode during rewriting. The main

reason is that the ordering that provides a large number of non-linear monomial elim-

inations is difficult to be identified in synthesized and heavily optimized circuits. This

is because the logic synthesis and technology mapping process destroy the original

structure in order to minimize the delay and area cost. Note that non-linear terms

could explode exponentially after rewriting the variables present in these terms if they

are not eliminated at the right time, i.e., the rewriting is not properly ordered.

The order of rewriting or performing polynomial divisions has a significant impact

on performance of the computer algebra techniques [100][125]. However, computer

75

algebra techniques may fail to find an efficient order of nodes in the gate-level arith-

metic circuits. The main reason is that these techniques, such as function extraction

presented in Chapter 3, are are restricted to the actually netlist. We compared the

performance of algebraic methods on combinational gate-level multipliers when dif-

ferent reversed topological orders are used in Chapter 3. It shows that an efficient

reversed topological order may not exist in the post-synthesized gate-level netlist.

Even if such an order exists, it may be difficult to identify because complex stan-

dard cells obscure the possibility of reducing the polynomial under construction. In

addition, redundant polynomials detected from combinational and sequential arith-

metic circuits can provide significant polynomial reductions as shown in Chapter 4.

However, detecting such polynomials is often impossible after the circuit has been

restructured during automated or manual synthesis.

The approach presented in this chapter aims at improving the efficiency of alge-

braic rewriting in the context of arithmetic verification. It addresses the problem

by using a compact and uniform representation of the Boolean network called the

And-Inverter Graph (AIG) [77]. Instead of directly applying algebraic rewriting to

the gate-level netlist, it is applied to an AIG, which offers a more functional view

of the ordering of rewriting on the particular structure. Additionally, this approach

allows for automatic handling of redundant polynomials, which significantly reduces

the complexity of algebraic rewriting.

5.2 Background

5.2.1 Boolean Network

A Boolean network is a directed acyclic graph (DAG) with nodes representing

logic gates and directed edges representing wires connecting the gates. And-Inverter

Graph (AIG) is a combinational Boolean network composed of two-input AND-gates

and inverters [77][63]. In an AIG, each node has at most two incoming edges. Each

76

1 2

4 5

6

7 8

9

3

XOR3

(a) (b)

!
1

!
2

!
3

i
9

i
6

… …

inv1 g0(.a(i3),.O(n5));

nand2 g1(.a(i2),.b(i1),.O(n6));

inv1 g2(.a(i1),.O(n7));

inv1 g3(.a(i2),.O(n8));

nand2 g4(.a(n8),.b(n7),.O(n9));

nand2 g5(.a(n9),.b(n6),.O(n10));

aoi21 g6(.a(n9),.b(n6),.c(i3),.O(n12));

nor3 g7(.a(n5),.b(n11),.c(n12).O(i9));

……

(c)

Figure 5.1: Representing circuits as AIGs. a) Post-synthesized XOR3 gate-level
netlist. b) AIG of the synthesized XOR3 gate-level netlist. (c) The extracted two
XOR2 functions (nodes 6 and 9) and one XOR3 function (node 9).

internal node in the AIG represents a two-input AND function. A node with no

incoming edges is a primary input (PI). Primary outputs are represented using specific

output nodes. Using DeMorgan’s rule, the combinational logic of an arbitrary Boolean

network can be transformed into an AIG [80], with the edges labeled properly to

indicate the inversion of some signals. AIGs have been extensively used in logic

synthesis, technology mapping [80] and formal verification [79].

AIGs have been used to detect unobserved Boolean functions such as Multiplexers

[130][126] in an arbitrary gate-level circuits. This is done by computing a Cut in the

AIG. A cut C of node n is a set of nodes of the network called leaves, such that each

path from PIs to n passes through the leaf nodes. Node n is the root of a Cut. A

Cut is K-feasible if the number of leaves does not exceed K. The cut function is the

function of node n in terms of the cut leaves. An AIG node n in an AIG structure

that represents a Boolean function F , is called an F -node. Each node is an AND

function and the edges indicate the inversions of Boolean signals1. An example of

1In Fig.1, the dash edges are inversion signals, e.g. i4 = i1 i2, i5 = i1i2.

77

identifying XOR functions embedded in the AIG is shown in Figure 5.1. The AIG

shown in Figure 5.1(b) represents a sub-circuit described in Figure 5.1(a). It includes

a 3-feasible Cut of node 9 and a 2-feasible Cut of node 6, among other possible 3-

feasible cuts. Let the function of an AIG node be ix, and x be the index value of

the node. The function of node 6 is i1 ⊕ i2, and the function of node 9 is i1 ⊕ i2 ⊕

i3. Hence, node 6 is an XOR2 -node, and node 9 is an XOR3 -node. This means that

an embedded XOR3 function consisting of two XOR2s exists and can be detected in

the sub-circuit shown in Figure 5.1(a). Similarly, an AIG can be applied to identify

embedded MAJ functions.

¬a = 1− a

a ∧ b = ab

MAJ3(a, b, c) = ab+ ac+ bc− 2abc

XOR3(a, b, c) = a⊕ b⊕ c = a+ b+ c− 2ab− 2ac− 2bc+ 4abc

(5.1)

5.2.2 Simplified Polynomial Construction

According to Chapter 3, efficiency of algebraic rewriting of Sigout is determined by

the amount of simplification during polynomial construction. This is because there

is a large number of non-linear terms generated by carry-out (MAJ) and sum (XOR)

functions, since the multiplication is performed by a series of additions. Finding the

maximum polynomial cancellations has been previously addressed by improving the

topological order of the gates [125]. For example, let a sub-polynomial expression

be Nx1+2Nx2+..., where x1 = XOR3(a, b, c), x2 = MAJ3(a, b, c), where a, b, c

are the inputs of XOR3 and MAJ3 functions. According to Equation 5.1, rewriting

x1 and x2 together, four non-linear terms, namely 2Nab, 2Nbc, 2Nac and 4Nabc,

generated by the algebraic models of XOR3 and MAJ3 are eliminated. However, if

rewriting is applied directly to the gate-level netlist, its efficiency is restricted when

78

m0 m1 m2 m3

9 14 18

16

a0 b0

13

12

17

1011

15

a1b1 a0 b0 a1
b1

m1
m2 m3m0

1618

1214

1511109

 NAND2 g0(.a(a0), .b(b0), .y(n9));

 NOT g1(.a(n9), .y(m0));

 NAND2 g2(.a(a1), .b(b0), .y(n11));

 NAND2 g3(.a(a0), .b(b1), .y(n12));

 XOR2 g4(.a(n11), .b(n12), .y(m1));

 NAND4 g5(.a(a1), .b(b1), .c(b0), .d(a0), .y(n14));

 NAND2 g6(.a(a1), .b(b1), .y(n15));

 XOR2 g7(.a(n14), .b(n15), .y(m2));

 NAND4 g8(.a(a1), .b(b1), .c(b0), .d(a0), .y(n17));

 NOT g9(.a(n17), .y(m3));

(a) (b) (c)

Figure 5.2: (a) AIG representation of a post-synthesized 2-bit multiplier gate-level
netlist; (b) The AIG of the 2-bit multiplier shown in Figure 5.2(a); (c) Detected
unobserved functions from the AIG and the correspondences to AIG nodes.

the MAJ3 and XOR3 functions are mapped into other standard cells by logic synthesis

and technology mapping. For example, the XOR3 function mapped using standard

cells is shown in Figure 5.1(a). In this case, there is no ordering that provides the

maximum polynomial reductions.

5.3 Approach

This section presents the algebraic rewriting approach based on AIGs. Similarly

to the approach presented in Chapter 3, the algebraic rewriting process rewrites the

output signature for all AIG nodes in a reversed topological order. As discussed in

Section III-E, the rewriting order that provides a large number of polynomial reduc-

tions, has significant impact on the performance of rewriting. However, there are

many reversed topological orders available in an AIG, since many nodes can have the

same topological depth. This approach detects a reversed topological order for alge-

braic rewriting that provides the maximum polynomial reduction. This is achieved

by detecting pairs of MAJ3 and XOR3 nodes using AIG-based cut enumeration, and

rewriting across the entire MAJ3 and XOR3 functions.

79

Algorithm 2 Algebraic Rewriting in AIG

Input: Gate-level netlist, output signature Sigout
Output: Pseudo-Boolean expression extracted by rewriting

1: Structural hashing the gate-level netlist into AIG, denoted G(V, E).
2: Detect all XOR3 and MAJ3 nodes in G(V, E).
3: Pair the XOR3 and MAJ3 if they have identical signals, denoted as P .
4: Topological sort G(V,E) considering each element in P as one node.
5: i = 0; Fi = Sigout
6: while there are no elements remained in the reversed topological order do
7: Rewrite: Fi+1 = Fi by substituting the variables with algebraic equations;
8: i = i + 1
9: end while

10: return F = Fi (to be compared with Sigin)

5.3.1 Outline of the Approach

The proposed flow is outlined in Algorithm 1. The inputs to the algorithm are: the

gate-level netlist and the output signature Sigout. The flow includes three basic steps:

1) converting the gate-level implementation into AIG; 2) detecting all pairs of XOR3

and MAJ3 functions with identical inputs in the AIG; topological sorting the AIG

nodes while considering the detected pairs as one element; and 3) applying algebraic

rewriting from POs to PIs following the reversed topological order determined in step

2). Note that XOR2 and MAJ2(AND2) are the special cases of XOR3 and MAJ3,

where one of the inputs is constant zero. The second step is performed as follows:

• Step 1: converting the gate-level implementation into AIG.

• Step 2: detecting all pairs of XOR3 and MAJ3 nodes with identical inputs;

topological sorting the AIG nodes while considering the detected pairs as one

element. The second step is performed as follows:

– Computing all 3-feasible (3-input) cuts of all AIG nodes.

– Computing truth tables of all cuts.

– Storing cuts in the hash table by their ordered set of inputs.

80

• Detecting pairs of 3-input cuts with identical inputs belonging to different nodes,

such that the Boolean functions of the two cuts with the shared inputs belong

to the NPN classes of XOR3 and MAJ3, respectively.

• Step 3: applying algebraic rewriting from POs to PIs following the reversed

topological order determined in step 2). Note that XOR2 and MAJ2(AND2)

are the special cases of XOR3 and MAJ3, where one of the inputs is constant

zero.

Note that, in this approach, matching the XOR3 and MAJ3 nodes does not require

the inputs and outputs polarity to be the same. Instead, all the cut-points are matched

without considering their complemented attributes. For example, instead of being

an exact XOR3, the function of a 3-feasible cut can be either XOR3 or XNOR3.

Similarly, instead of being exactly MAJ3, the MAJ3 function can be one of the eight

functions forming the NPN class of MAJ3 [51]. To compute the cuts, the 3-input cut

enumeration is performed in a topological order as described in [86]. The truth tables

of the cuts are obtained as a by-product of the cut enumeration. Thus, when two fanin

cuts are merged during the cut computation and the resulting cut is 3-feasible, the

truth tables of fanin cuts are permuted to match the fanin order of the resulting cut.

These truth tables are then ANDed or XORed, depending on the node type, to get

the resulting truth table. For the case of 3-input cuts, a dedicated pre-computation

reduces the runtime of truth table computation to a small fraction of that of cut

enumeration.

As soon as the XOR3 and MAJ3 pairs are detected, algebraic rewriting will be

applied to the AIG network in a constrained reversed topological order, in which

each XOR3 and MAJ3 pair is considered as one element. This means that at one

topological depth, whenever either XOR3 or MAJ3 node of a pair (or its complement)

is rewritten, the node of the other type is subsequently rewritten. The AIG nodes

with the same topological depth that do not belong to any pair are ordered in the

81

decreasing order of their integer IDs. The algebraic rewriting ends when all elements

in AIG network have been rewritten. The algorithm returns the extracted input

signature.

Example 1 (2-bit CSA-multiplier): The mapped gate-level netlist of a 2-bit

CSA-multiplier is shown in Figure 5.2(a). First, the gate-level netlist is converted to

an AIG (Figure 5.2(b)). Next, a set of XOR3 nodes X, and a set of MAJ3 nodes M

are detected: X = {14, 18}, M = {12, 16}. Node 14 is XOR3 (10, 11, 1’b0) and

node 12 is MAJ3 (10, 11, 1’b0), where node 10, node 11 and constant zero (1’b0)

are the inputs; node 18 is XOR3 (12, 15, 1’b0) and node 16 is MAJ3 (12, 15, 1’b0);

1’b0 denotes Boolean false. Hence, two pairs of XOR3 and MAJ3 are generated, (14,

12) and (18, 16). The order of rewriting is determined as follows: 1) node 18 is the

node with highest depth; it is detected as XOR3 and paired with MAJ3 node 16 ;

hence, the first rewriting starts from node 18 and 16, and ends at node 12 and 15; 2)

similarly to the first rewriting, the second rewriting starts from nodes 14 and 12, and

ends at nodes 11 and 10; 3) the remaining AIG nodes are ordered by their index value

in decreasing order. The logic network after detecting all XOR3 and MAJ3 node is

shown in Figure 5.2(c).

5.3.2 Detecting Redundant Polynomials

Significant simplification of polynomial construction can be achieved not only by

performing algebraic rewriting using a reversed topological order, as discussed above,

but also by detecting redundant polynomials, such as don’t-care polynomials and van-

ishing polynomials [100][127]. Vanishing polynomials are those that always evaluate

to zero; vanishing monomials used in the work of [100] are examples of such polyno-

mials. Don’t care polynomials can be identified in circuits (such as multipliers) with

truncated outputs. Arithmetic operators are often truncated to reduce power con-

sumption or speed up the critical path. The removed signals in those circuits contain

82

algebraic information needed to cancel algebraic terms of the remaining output bits.

Polynomial associated with the most significant bit (MSB) of an adder or a multiplier

is an example of such a polynomial.

To efficiently apply algebraic rewriting to the multipliers with output bits trun-

cated, an approach that generates don’t-care polynomials is presented. This approach

is based on an observation that the logic obtained by removing output bits is either

a carry-out function or a sum function of a full adder. It is known that MAJ3 and

XOR3 with the same inputs are the components of a full adder. Hence, using the

approach of detecting pairs of XOR3 and MAJ3, the XOR3 and MAJ3 nodes that do

not belong to any such pairs are also identified. For example, a n-bit CSA-multiplier

with 2n-1 output bits (with MSB removed), there is a missing MAJ3, i.e., the MAJ3

nodes with identical inputs of an unpaired XOR3. Since one pair of XOR3 and MAJ3

is a full adder, removing the carry bit (MAJ3) makes the function an addition modulo

2. In this case, the algebraic model of XOR3 (Equation 5.1) is reduced to a ⊕ b ⊕ c

= a+b+c mod 2.

Example 2 (3-bit CSA-multiplier with MSB z5 deleted): The AIG after

detecting XOR3 and MAJ3 pairs of a 3-bit post-synthesized CSA-multiplier with

MSB deleted is shown in Figure 5.3. The detected {XOR3 and MAJ3} pairs are

represented using the ID of the root node of the XOR3 and MAJ3 nodes. We can see

that there is one XOR3 (composed of two XOR2 nodes, 41 and 44) with inputs i36,37,

i27,29 and i38, that cannot be paired with any MAJ3. This is because synthesis process

removed the redundant logic (last carry out) when the MSB has been removed. In

this case, the algebraic model of that XOR3 is reduced to 24·z4(i49) = 24·(i36,37 +

i27,29 + i38).

83

45 46 47 48 49

7

12_10

24_22

36_37

44

41

29_27

30 38

20_25

21 26131489

1 42 53 6

Figure 5.3: Detecting {MAJ3-XOR3} pairs of a 3-bit post-synthesized CSA-multiplier
with MSB z5 deleted.

5.4 Results

The technique described in this paper has been implemented in ABC [80]. It

applies algebraic rewriting to the AIG and generates the polynomial input signature.

The experiments include of Carry-Save-Adder (CSA) multipliers up to 512 bits. The

results are compared with functional extraction presented in Chapter 3. The results

show that the proposed technique is more efficient than the state-of-the-art technique

for extracting the polynomial expressions for the CSA multipliers. The experiments

were conducted on a PC with Intel(R) Xeon CPU E5-2420 v2 2.20 GHz x12 with 32

GB memory.

Evaluation of the proposed AIG-based algebraic rewriting for pre-synthesized and

post-synthesized CSA multipliers is shown in Table 6.1. The same results for post-

synthesized complex unsigned arithmetic circuits are conducted with the same bench-

marks used in Chapter 3 are shown in Table 6.2. The runtime and memory usage

84

Table 5.1: Results of applying AIG-based algebraic rewriting to pre- and post-
synthesized CSA multipliers compared to functional extraction presented in Chapter
3. *t(s) is the runtime in seconds. *mem is the memory usage in mb.

#bits
Pre-synthesized Post-synthesized

Function extraction This approach Function extraction This approach
t(s) mem t(s) mem t(s) mem t(s) mem

64 1.89 74 0.04 34 5.50 76 0.04 34

128 8.12 288 0.15 117 39.64 299 0.16 120

256 32.65 1157 0.82 441 285.22 1250 0.82 439

5122 130.22 4427 3.76 1695 - - - -

Table 5.2: Results of applying AIG-based algebraic rewriting to post-synthesized
complex arithmetic circuits compared to functional extraction presented in Chapter
3. *MO = Memory out of 8 GB.

Benchmarks
(256-bit)

Function extraction This approach
runtime(s) mem(MB) runtime(s) mem(MB)

F=A×B+C 179.1 1182 5.1 447

F=A×(B+C) 209.3 1120 5.1 451

F=A×B×C - MO 37.5 2871

F=1+A+A2+A3 - MO 47.1 3331

are compared to functional extraction. In Table 6.2, the functions of the arithmetic

circuits are shown in the first column.

We can see that the runtime of the proposed approach is less than a second for

both the pre- and post-synthesized CSA multipliers of any bit-width. The memory

usage has been reduced on average by 60%, compared to functional extraction. Note

that the complexity of extracting polynomial expressions using functional extraction

is increased when the multipliers are synthesized. For example, extracting post-

synthesized 256-bit multiplier using functional extraction requires 9× more runtime

and more memory. However, using the proposed AIG-based approach, the runtimes

of extracting pre- or post-synthesized multipliers are almost the same. More impor-

tantly, we can see that our approach outperforms functional extraction on complex

arithmetic circuits (Table 6.2).

85

5.5 Conclusion

In this chapter, a method of significantly improving the efficiency of algebraic

rewriting used in arithmetic verification, has been proposed. The method is based

on the AIG representation of the Boolean network. This approach can formally

verify practical multipliers that are heavily optimized and mapped using 14nm CMOS

technology library. Additionally, we introduce a technique to automatically handling

redundant polynomials. At this point, the function extraction technique is well tuned

and is shown to be applicable to large industrial designs.

86

CHAPTER 6

ALGEBRAIC SPECTRUM - A NEW CANONICAL
REPRESENTATION OF ARITHMETIC

6.1 Introduction

With an ever increasing complexity of integrated circuits and systems on chip

contemporary designs are built from predesigned modules and IP blocks. While in

principle such blocks are pre-verified and should be secure, they may come from un-

trusted sources and require additional verification. Furthermore, those circuits are

often modified, resynthesized and retimed for one of several reasons: i) added security

(using elaborate obfuscation techniques); or ii) to further bit-optimize the design in

the context of the surrounding logic. As a result the hierarchy structure is destroyed

and high-level module information is lost, resulting in increased fanouts and sharing

between logic. The verification of such resynthesized circuits poses a serious chal-

lenge to the verification problem. This problem is particularly acute for arithmetic

circuits and datapaths, which by definition are characterized by large bit-widths and

cannot be efficiently solved using Boolean methods. Many high-level verification tech-

niques have been developed for high-level descriptions, such as Register transfer level

(RTL), or system-level, using SystemC, SystemVerilog description languages. How-

ever, as argued above, hardware verification still needs to be done on low-level design

representations with gate-level netlists. Boolean logic techniques based on Binary

Decision Diagrams (BDDs) or Binary Moment Diagrams (BMDs) and satisfiability

(SAT) solvers cannot handle complex arithmetic designs flattened to bit-level netlists

on which these tools operate.

87

One possible (and in our view, most promising) way to solve this verification

problem is to abstract the low-level design to a higher-level representation at which

one can reliably and efficiently reason about the underlying design. This offers in-

sight into the internal structures of the designs, which is important from the security

point of view; it enables a more comprehensive analysis of the circuit that can be

used for understanding the actual functioning of the (possibly maliciously modified

circuit), or for adding security (creating obfuscation). Again, this problem is par-

ticularly challenging for arithmetic circuits and datapaths due to the inherent high

bit-level complexity. Abstracting the word-level information from gate-level netlists,

while maintaining the useful information about the control and connecting logic is a

well known method that enables the high-level formulation. This approach, typically

referred to as reverse engineering [66], can provide significant improvement in perfor-

mance and scalability. However, the work on abstracting the designs from gate-level

implementations is rather scarce (to be reviewed in the Related Work section).

In summary, abstracting word-level information from gate-level designs is impor-

tant for several reasons: a) In formal verification of complex arithmetic designs by

bringing the design representation to a higher level in order to simplify the verification

process; b) In reverse engineering, when the higher level model of the design (such as

RTL) is not available or when the circuit was build bottom-up; c) In hardware trust

and security applications, where the circuit needs to be analyzed to properly isolate

maliciously inserted hardware; or d) To understand the general structure of the de-

sign. Identifying higher-level blocks can also be viewed as a generalized technology

mapping by grouping lower-level components into higher level blocks from the library

of complex arithmetic operators.

This chapter addresses the abstraction problem for arithmetic circuits and data-

paths. In particular, it presents a systematic way to abstract word-level structures

from gate-level implementations of combinational integer arithmetic circuits. The

88

proposed method represents the gate-level circuit in algebraic domain by represent-

ing the circuit components as pseudo-Boolean polynomials; it then uses a recently

developed polynomial rewriting technique to extract arithmetic function(s) embed-

ded in the circuit. During the rewriting the intermediate pseudo-Boolean expressions

are examined in order to identify possible word-level structures. The identification is

done using a novel spectral analysis technique, which matches the parsed polynomial

expressions against the reference spectra of basic arithmetic blocks, such as multipli-

ers, adders, and multiply-and-accumulate operators. Each arithmetic operator has

its own, unique spectrum representation, which helps in identifying its presence in

the design, regardless of its internal representation. The proposed approach is able

to abstract the word components from polynomial expressions and reason about the

word-level structure from the internal expressions. By representing logic and arith-

metic functions as pseudo-Boolean polynomials, it is possible to mitigate the size

explosion typically encountered in Boolean domain.

Specifically, the abstraction problem is solved in three steps:

1. Parse the expressions to identify the word candidates during the polynomial

rewriting process;

2. Classify the word candidates as linear and non-linear components and extract

the word information by lexicographical (structural) matching of the terms.

3. Generate the correspondence between the words and gate-level netlist and use

it to reason about the word-level arithmetic operations.

6.2 Related Work

One of the most successful and cited abstraction techniques is Counterexample-

Guided Abstraction Refinement (CEGAR) [35]. It has been shown to be an effective

paradigm in a variety of hardware and software verification scenarios. Clarke et. al.

89

[35] successfully demonstrated how to automate abstraction and refinement in the

context of model checking for safety properties of hardware and software systems.

In particular, these approaches create a smaller abstract transition system from the

underlying concrete transition system and iteratively refine it with the spurious coun-

terexamples produced by the model checker. Additional CEGAR approaches based

on the extraction of unsatisfiability explanations derived from the unfeasible coun-

terexamples that provides stronger refinement of the abstract model and significantly

reduce the number of refinement iterations [52][3]. However, all these works target

model checking with a given property, instead of extracting the actual function. Most

importantly, they are only applicable to bit-vector behavioral RTL implementations.

Andraus et. al. [4] describe a methodology for datapath abstraction that is partic-

ularly suited for equivalence checking. In their approach, datapath components are

automatically abstracted to uninterpreted functions using the ACL2 theorem prover.

However, this work also considers only behavioral Verilog models.

Recently some interesting research has been done in programming (software) ab-

straction, including verification of out-of-order microprocessors, term-level abstrac-

tion useful in microprocessor design verification, term-level bounded model checking,

correspondence checking, refinement verification, predicate abstraction, etc. [73][52][50].

However, these techniques apply to bit-vector behavioral RTL and software abstrac-

tion and are not discussed here as not relevant to our work.

Abstracting the word-level information from gate-level netlists is often referred

in literature as reverse engineering. One of the first works on reverse engineering is

credited to Hansen et al. [49]; it presents several strategies of reverse engineering

circuit functionality from a gate-level schematics using ISCAS-85 combinational cir-

cuits. The proposed methods are mostly manual and include searching for common

library components and repetitive structures. They relay on canonical truth tables of

90

smaller blocks but can also identify some bus structures and control signals. However,

they do not formally characterize the abstraction problem.

Torrance et al. [118] describe the practice of reverse engineering of the manu-

factured products, including product tear-downs, identifying components on a board

and performing functional analysis through probing, eventually deriving a schematic

from a stripped IC. Our work starts at this point, assuming knowledge of gate-level

schematic.

In [113], the authors propose techniques to identify high-level components such as

register files, counters, adders and subtractors.

In [67], the authors formalize the problem of reverse engineering as mining tempo-

ral properties and graph matching against the logical specification. This method uses

pattern mining, a technique of mining interesting behavioral patterns from the simula-

tion or execution traces applied to a gate-level netlist. The components of the library

and the behavioral patterns are represented as pattern graphs. The input-output sig-

nal correspondences of the abstract components are found by matching sub-circuits

against a library of abstract components using subgraph isomorphism between the

pattern graphs. The maximum common subgraph (MCS) between the pattern graphs

defines candidate signal correspondence mappings. The function of the sub-circuit is

then determined by finding the closest match in the component library. This step is

similar to the traditional DAG-based technology mapping technique [57] used in logic

synthesis. It is followed by formal model checking, to verify correctness of the match-

ing of a given extracted component against each logical specification. The matched

sub-circuits are combined to generate the final high-level description.

A more comprehensive approach, described in [66], is based on analyzing an un-

structured netlist as opposed to effecting sub-circuit matching.It is not based on

simulation traces and instead models the problem in a combination of functional and

91

structural domain. Together with [113], this work is probably the most relevant to

ours. The authors present a variety of techniques to identify high-level components,

such as adders and subtractors, applicable to arithmetic datapath extraction. The

first stage identifies candidate words using two complementary techniques: struc-

tural shape hashing and functional bitslice aggregations. Shape hashing represents

the backward reachable gates in a feasible depth from a given wire, while the bit-

slice aggregation technique additionally finds similar wires by functional matching

and groups equivalent wires into words. They also addressed the reverse engineering

problem in the context of extensive logic sharing in an optimized flattened netlist, by

solving the problem using Quantified Boolean Formula (QBF). The next stage infers

more words by iteratively propagating candidate words across gates in the netlist

using symbolic evaluation. The final stage looks for word-level operations, such as

addition and rotation. It is simply done by “cutting out the portion of the netlist that

lies between words”, and then check if this structure implements a particular word

operation. However, this technique is not efficient for large non-linear arithmetic op-

erations since it requires extensive bit-blasting. Additionally, for long cascaded word

operation such as Multiply-Accumulator (MAC), it requires many word propagate

iterations that limit its applicability. Our work aims at overcoming these limitations.

A recent reverse engineering techniques, proposed in [105], relies on simulation

to identify candidates for a given arithmetic operation. First, it identifies a set of

candidate blocks that contain the expected word-level operations. Then it finds the

word-level blocks among the candidates that match some components in a given li-

brary. A set of permutation-invariant simulation vectors are used to construct the

simulation-graphs (SGs), and the matching problem is solved by subgraph isomor-

phism. However, this technique is not applicable to a design that contains serial

arithmetic operations, such as multiply-and-accumulate (MAC). To demonstrate this

point, we tested a simple 2-bit MAC design F = A · B + C using the tool provided

92

in the paper [105]. This design includes one 2x2-bit multiplier which feeds into a

4-bit adder. The goal was to search for a 2x2-bit multiplier in the design. The adder

and multiplier are generated using ABC tool and the entire design is synthesized and

mapped by ABC [74]. The given library component contains a 2x2-bit multiplier

and a 4-bit adder. Then, we tested that if the tool is able to identify if there is a

2-bit multiplier. Unfortunately, the tool was unable to identify the multiplier, always

returning the prompt “no pattern contained in the target” with multiple options.

Another limitation of this work is that it is only able to identify the multiplier up

to 8-bit wide. As demonstrated in the Results section of the proposal, our method

can identify the presence of both operators (multiplier and the adder) up to 128-bits,

using our novel and original technique of spectral analysis. The spectrum of each

operator is obtained at the end of the process, indicating that this is a MAC.

6.3 Algebraic Spectrum

This section introduces a novel concept of algebraic spectrum. We prove its unique-

ness, and illustrate its application to arithmetic combinational equivalence checking

problem, and word-level abstraction.

Given an algebraic polynomial expression P of function F , each monomial that

has k variables is called k-variable monomial, or k-var monomial for short, where

1 ≤ k ≤ n, and n is the total number of variables in F . We define Mk as an ordered

set of k-var monomials {mi} in increasing order of their coefficient value ci. Ck is

the set of coefficients of {mi ∈ Mk} with the same order as Mk. Let Nk(ci) be the

number of k-var monomials of P with coefficient ci.

Definition 1 (Algebraic Spectrum): A k-var spectrum is defined as a vector

of integers, Sk(P)={Nk(ci), ∀ ci ∈ Ck}, ordered by increasing value of ci.

Example 2: Given a polynomial expression P=x + 2z + 4xy + 4xz + 5xyz. We

have

93

M1 = {x, 2z};C1 = {1, 2}, S1 = {1, 1}

M2 = {4xy, 4xz};C2 = {4, 4}, S2 = {2}

M3 = {5xyz};C3 = {5}, S3 = {1}

Note that the sum of all k-var spectra represent the entire polynomial expression.

In this example, algebraic spectrum of P is S1+S2+S3.

6.3.1 Uniqueness of Algebraic Spectrum

Theorem 1 (Uniqueness): An arithmetic function composed of basic operations

of addition and/or multiplication has a unique algebraic spectrum.

Proof: The proof is based on the fact that such arithmetic functions have unique

polynomial representation, where each monomial is a single variable or a product of

variables and coefficients are integer. It then suffices to show that such a polynomial

has unique algebraic spectrum. While this is not true for arbitrary polynomial, we

will demonstrate that this holds true for arithmetic functions involving addition and

multiplication. The proof is achieved in four basic steps:

• Prove that the spectrum of additions with m operands is always a linear 1-var

spectrum.

• Prove that there is a unique spectrum for multiplication with two operands.

• Prove that there is a unique spectrum of multiplication with m operands.

• Since the sum of all k-var spectra represents the function, if statements 2 and 3

hold, the spectrum of any combination of addition and multiplication is unique.

Addition with m operands: An m-operand n-bit arithmetic addition is the

sum of a set of bit-vector words, W1+W1+...Wm. Polynomial expression of each word

is Wi = w0
i+21w1

i+· · ·+2n−1wn−1
i , where n is the bit-width of word Wi, and wj

i is the

94

bit of word Wi at j
th position with coefficient 2j . Hence, the polynomial expression

of arithmetic addition is:

PAdd =
m
∑

i=1

n−1
∑

j=0

2jwj
i (6.1)

We can see that all the monomials in PAdd are 1-var monomials. Additionally, we

can see that the number of monomials with coefficients 2j, j={0,1,2,...n−1}, is always

m. That is, for an m-operand n-bit arithmetic addition, N1(ci)={m, ∀ci ∈ C1}.

Hence, the spectrum of this arithmetic addition S=S1={m,m,· · · ,m} (m repeated n

times), is unique.

Multiplication with 2 operands: Similarly, the polynomial expression of a

2-operand multiplication A × B is the product of polynomial expressions of A and

B, where A =
∑n−1

i=0 2ai, B =
∑n−1

i=0 2bi, and n is the bit-width. The polynomial

expression PMult of F = A×B is:

PMult =
n−1
∑

i=0

n−1
∑

j=0

2i+jaibj (6.2)

• Each monomial of PMult is a 2-var monomial, so the spectrum is composed

entirely of S2.

• Note that the coefficients ci in C2 are generated by multiplying all pairs of

coefficients of expressions A, and B, i.e., of two identical sets of integers,

{20, 21, 22, ..., 2n−1)}. Hence, C2={2
0, 21+0, 20+1, ..., 2i+j , ..., 2n−1+n−1}, where i, j

∈ [0, n− 1].

• The number of 2-var monomials aibj for i, j ∈ [0, n-1], is fixed and unique, but

some of them may have the same coefficients.

95

• The number of unique coefficients, N2(k) with value k=2i+j for i, j ∈ [0, n-1],

is also fixed and unique. This can be represented by Equation 6.3. Hence, the

spectrum of 2-operand multiplication is unique.

Examples of 2-operand multiplication spectra with n = {2, 3, 4, 5} are shown in

Figure 6.1.

S2 =















c+ 1 0 ≤ c ≤ 2n−1

(2n− 1)− c 2n−1 < c ≤ 22n−2

(6.3)

 1

 2

 3

 4

 5

 1 2 4 8 16 32 64 128 256

N
2(

c i
)

ci

2-operand Multiplication Spectra

2-bit
3-bit
4-bit
5-bit

Figure 6.1: The spectra of 2-bit, 3-bit, 4-bit and 5-bit two-operand multiplication.

Multiplication with m operands: For an n-bit multiplication withm operands,

the coefficients are generated in the same way as in two-operand multiplication, but

cascaded in m-1 levels. The polynomial expression of an m-operand multiplications

Pm
Mult = A1 × A2 × ...Am can be represented using Equation 6.4. Each word Ai (i =

{1, 2, ...,m}) is an n-bit word. Each term aji is the bit in word Ai at j
th position. Based

on Equation 6.4, we can see that all the monomials in Pm
Mult are m-var monomials.

This means that the spectrum of an m-operand, n-bit multiplication is S=Sm. Then,

Cm={2
0, 21, 21, ..., 2i1+i1+...+im , ..., 2m·(n−1)}, for i ∈ {0,1,2,...,n-1}. We can see that

96

i

N(i)

1

C(i) 1 2 4 8 16 32

0

3

i

N(i)

1

C(i) 1 2 4 8 16 32

0

�

i

N(i)

%

C(i) 1 2 4 8 16 32

0

3

1

CSA

Multiplier

i

N(i)

1

C(i) 1 2 4 8 16 32

0

%
i

N(i)

1

C(i) 1 2 4 8 16 32

0

%
i

N(i)

%

C(i) 1 2 4 8 16 32

0

&
Booth

Multiplier

0 1 % 3 ' & 0 1 % 3 ' & 0 1 % 3 ' &

0 1 % 3 ' & 0 1 % 3 ' & 0 1 % 3 ' &

a First recorded spectrum.

i

N(i)

1

C(i) 1 2 4 8 16 32

0
i

N(i)

1

C(i) 1 2 4 8 16 32

0

2

i

N(i)

C(i) 1 2 4 8 16 32

0

6

i

N(i)

1

C(i) 1 2 4 8 16 32

0

2

i

N(i)

1

C(i) 1 2 4 8 16 32

0

2

i

N(i)

2

C(i) 1 2 4 8 16 32

0

5

Booth

Multiplier

CSA

Multiplier

3

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5

b Second recorded spectrum.

i

N(i)

1

C(i) 1 2 4 8 16 32

0
i

N(i)

1

C(i) 1 2 4 8 16 32

0

2

i

N(i)

C(i) 1 2 4 8 16 32

0

3

3

i

N(i)

1

C(i) 1 2 4 8 16 32

0

2

i

N(i)

1

C(i) 1 2 4 8 16 32

0

2

i

N(i)

2

C(i) 1 2 4 8 16 32

0

�
Booth

Multiplier

3

1

CSA

Multiplier

0 1 2 3 � � 0 1 2 3 � �0 1 2 3 � �

0 1 2 3 � � 0 1 2 3 � � 0 1 2 3 � �

c Third recorded spectrum.

i

N(i)

0 1 2 3 4

C(i) 1 2 4 8 16 32

0

5

i

N(i)

1

C(i) 1 2 4 8 16 32

0

2

i

N(i)

C(i) 1 2 4 8 16 32

0

3

Booth

Multiplier
i

N(i)

C(i) 1 2 4 8 16 32

0
i

N(i)

1

C(i) 1 2 4 8 16 32

0

2

i

N(i)

C(i) 1 2 4 8 16 32

0

3

CSA

Multiplier

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

d Final recorded spectrum.

Figure 6.2: Spectra of a 3-bit Booth-multiplier and CSA-multiplier of the four
recorded expressions.

for fixed m and n, Cm is unique and so is Nm(ci). Hence, S=Sm is unique for given

m and n.

Pm
Mult =

m
∑

in−1=1

...
m
∑

i1=1

m
∑

i0=1

2i1+i1+...+im(ai10 a
i2
1 ...a

im
n−1) (6.4)

�

6.3.2 Example - Single Spectrum Function

Using the spectral method, the equivalence checking problem can be solved by

comparing k-spectrum of two different arithmetic designs, with k = 1 for linear

arithmetic functions, k ≥ 2 for non-linear arithmetic functions. If a reference design

is not provided, the function will be abstracted by comparing the extracted spectrum

to a set of known spectra. Parameter k is determined depending on the expected

arithmetic function. For example, to solve a combinational equivalence checking or

97

i

N(i)

1

1 2 3 4 5

C(i) 1 2 4 8

0

2

i

N(i)

1

0

2

1 2 3 4 5

C(i) 8 16

3

4

i

N(i)

1

0

2

1 2 3 4 5

C(i) 8 16 32

3

4

6

a First recorded spectrum.

i

N(i)

1

1 2 3 4 5

C(i) 1 2 4 8

0

2

i

N(i)

1

0

2

1 2 3 4 5

C(i) 4 8

3

4

ii

N(i)

1

0

2

1 2 3 4 5

C(i) 8

3

4

6

b Second recorded spectrum.

i

N(i)

1

1 2 3 4 5

C(i) 1 2 4 8

0

2

i

N(i)

1

0

2

1 2 3 4 5

C(i) 4 8

3

4

i

N(i)

1

0

2

1 2 3 4 5

C(i) 4

3

4

c Third recorded spectrum.

i

N(i)

1

1 2 3 4 5

C(i) 1 2 4 8

0

2

i

N(i)

1

0

2

1 2 3 4 5

3

4

i

N(i)

1

0

2

1 2 3 4 5

3

4

C(i) 1 2 4 8

d Final recorded spectrum.

Figure 6.3: Spectra of a 2-bit MAC of the four recorded expressions.

word-level abstraction problem of integer adders, k is equal to one. For multiplication

with two (three) operands, k is equal to two (three).

To illustrate the uniqueness of the spectra, we record four intermediate expressions

obtained by our function extraction tool [31] of a Booth multiplier and a CSA multi-

plier, shown in Figures 6.2(a) - (d). Initial spectrum of two multipliers are identical 1-

var spectrum, since the polynomial expressions are both z0+2z1+4z2+8z3+16z4+32z5,

corresponding to the word of the results. We can see that the intermediate spectra

are different even thought the circuits are functionally equivalent. This is because

the multiplication is implemented using a different algorithm and the intermediate

expressions are different. However, the spectra of two designs at the primary inputs

will match the spectrum of multiplication. For combinational equivalence checking

(CEC) purpose, we can compare the spectra of two designs to check whether they

are equivalent. For word-level abstraction, the spectrum at a cut that represents an

arithmetic function is the point at which the abstraction process terminates. This

means that, although the function of the circuits is unknown, the equivalence check-

ing problem and the abstraction problem can be solved using this approach. Note

that function extraction is only used for illustration purposes. The polynomial-time

algorithm for extracting the spectrum is given in the next section.

98

6.3.3 Example - Multiple-Spectrum Function

An example of using multiple spectra to abstract the arithmetic function with

multiple arithmetic operations is shown in Figure 6.3 for a 2-bit MAC (F = A×B+C).

The design was synthesized and mapped by the ABC system using command strash;

dch -v; map. In this example, 1-var, 2-var and 3-var spectra are used for abstraction.

The three algebraic spectra at each step represent the coefficient distribution of the

1-var, 2-var, and 3-var monomials, respectively. The initial expression is the output

signature, i.e. z0 + 2z1 + 4z2 + 8z3 + 16z4, which is a linear word.

To show how the multiplication and addition are identified, four intermediate

expressions are recorded during the function extraction process. These are recorded

during the abstraction process sequentially. As we can see, Figures 6.3(a) - (b) do

not provide any evidence of identifying arithmetic operation, but Figure 6.3(c) and

(d) do. A linear function is identified in the third expression in Figure 6.3(c). An

additional non-linear arithmetic function is identified in Figure 6.3(d), by observing

the spectrum of arithmetic multiplication. Since the entire function of the design is

represented as the sum of k-var spectra, i.e., S1+S2, it indicates that its arithmetic

function is adding one 4-bit number to the result of a 2-bit multiplication.

One important property of algebraic spectrum is overridability. Let the degree of

m operands multiplication to be m, and the degree of addition to be 1. The spectrum

of a given arithmetic function is always overridden by the highest degree arithmetic

function. For example, given an arithmetic function F1=A×(B+C), the spectrum

S=S2 since S1 is empty. This means that the spectrum of arithmetic addition has

been overridden by the highest degree F1, which is 2. This can be seen by flattening

the factor form A× (B +C) into a polynomial form F2=A×B+A×C. As mentioned

earlier, the sum of all k-var spectra represent the polynomial expression P . Since

F1=F2, and F2=SA×B
2 +SA×C

2 , the spectrum of F1 S=S2, which has been overridden

by F2. The spectra of F1 and F2, and the spectrum of a 2-operand 3-bit multiplication

99

F0, are shown in Figure 6.4. We can see that the spectra of F1 and F2 is 2 · S(F0),

i.e., N2(c
i
2) = N2(c

i
2) = 2·N2(c

i
0).

2(ci)

1

0

2

3

1 2 4 	 16

4

5

6

F1,F2

F0

Figure 6.4: Spectra of F1=A× (B+C), F2=A×B+A×C, and F3=A×B. A,B, and C
are 3-bit unsigned words.

6.4 Polynomial-Time Spectrum Extraction

In the previous section we demonstrated that algebraic spectrum can be used to

identify arithmetic functions, and that such a spectrum of arithmetic circuits can

be obtained by function extraction. However, this approach is not efficient because

its complexity is the same as the complexity of extracting the polynomial specifica-

tion of the circuits. In this section, we introduce a new algorithm that extracts the

algebraic spectrum of the gate-level arithmetic circuit from its AIG representation.

The adder-tree constructed by HAs/FAs can be detected by identifying the pairs of

XOR and MAJ functions from post-synthesized gate-level arithmetic circuits using

AIG (see Chapter 5). In other words, any post-synthesized arithmetic circuit can be

transformed into a netlist with HAs, FAs, and connecting logic gates. The weight

of the carry bit of HA/FA is always double of the weights of the inputs, and the

weight of the sum bit is the same as the inputs. Hence, the output weight of the

linear blocks, such as HAs and FAs, can be propagated directly. Then, the algebraic

100

spectrum can be extracted without even performing algebraic rewriting from POs to

PIs.

This approach is described in Algorithm 1. It takes the gate-level netlist of arith-

metic function and the binary encoding of the output bits and produces the corre-

sponding algebraic spectrum by propagating the weights using AIG. Using the ap-

proach described in Chapter 5, we first convert the gate-level netlist into AIG and

detect all possible HAs and FAs. Then, the netlist only includes HAs, FAs, and

ANDs in the AIG, sorted in reversed topological order (line 1-3). We initialize k-var

spectra, k={1,2,3,...,n}, where n is determined based on the expected function degree

of the circuit (line 4). For example, if the expected function is a two(three)-operand

multiplication, then n = 2(3). Then, we propagate the weights of all the signals from

POs to PIs, through HAs, FAs and the AND gates. One important observation is

that arithmetic multipliers are always implemented with an adder-tree and a partial

product generator. This means that the weights of the signals can be propagated

until they reach the partial product generator logic.

Algorithm 3 Spectrum Extraction with AIG
Input: Gate-level netlist; binary encoding of output bits
Output: Algebraic spectrum

1: Convert gate-level netlist to AIG G(V, E).
2: Detect HAs/FAs in G(V, E), sorted in topological order
3: m← number of HAs/FAs detected; i = 1
4: Initialize spectra at PO, denoted S0

1 , S
0
2 , ..., S

0
n

5: while i ≤ m do
6: Si+1

1,2,...,n ← Si
1,2,...,n using ith HA/FA; i++

7: end while
8: return S1, S2, ..., Sn

Example 3 (2-bit CSA-multiplier): We illustrate our algorithm using the

example of a 2-bit multiplier shown in Figure 6.5. The extracted logic, with gates

(18, 16), and gates (14, 12), forms two HAs where the outputs of 16 and 12 are the

carry bits, and outputs of 18 and 14 are the sum bits. Assume that the weights

wi (encoding) of the output bits are known, i.e., wi=2i. Then, the weights of all

101

0 1 2

0

1

2

a
0

b
0

a
1

b
1

m
1

m
2

m
3

m
0

1618

1214

1511109

HA

HA

2
3

2
2

2
1

2
0

f
2

f
1

f
0

2
2

2
2

2
1

2
0

2
2

2
1

2
1

2
0

x

S
2

Figure 6.5: Extracting the function of 2-bit multiplier using spectral method without
algebraic rewriting.

the signals in the netlist will be propagated from PO to PI in a reversed topological

order. First, Algorithm 1 propagates the weights of the HA consisting of gates 18

and 16 to cut f1 (Figure 6.5). The weight of gate 16 is 23, and weight of gate 18

is 22. This means that gate 18 produces the sum function. Since the input weights

of an HA is the same as its sum bit, the two inputs of gates 18 and 16 must have

weight 22. Similarly, at cut f0, the weights of inputs of gates 14 and 12 are 21. Our

algorithm terminates at this point since there are no more HA or FA nodes. While

all the remaining logic gates are two-input ANDs, the 2-var spectrum is the only

spectrum extracted (other spectra are empty). We can see that such an extracted

spectrum matches the spectrum of a 2-bit multiplication.

Notice that the partial product generators differ depending on the multiplication

algorithm used in constructing the multiplier circuits. For example, CSA-multiplier

uses an AND-array, while Booth-multiplier requires implementing recoded partial

products. But, regardless of the multiplier type, as soon as the adder-tree is detected,

the algebraic spectrum can always be extracted using Algorithm 1. We illustrate our

approach for Booth-encoded multiplier using a 3-bit radix-4 Booth-multiplier.

Example 4 (3-bit radix-4 Booth-multiplier): Because of the encodings of the

partial products are encoded, the partial product generator logic includes more logic

102

functions than just AND function. Hence, the intermediate polynomial expressions of

the partial products may be presented with more than one monomial. For example,

the polynomial expressions of all the partial products of 3-bit radix-4 Booth multiplier

are shown in Equation 6.5. After applying Algorithm 1, we can get the weights of

all the partial products, but the spectrum cannot be extracted directly. However,

we observe that, the monomials that are not 2-var monomials can be considered as

redundant. This is because they can be canceled according to their weights. For

example, a2b1b2 exists in pp31 and pp21. Since the function of the design is the sum

of all the partial products with correct weights, 24a2b1b2+23(−2a2b1b2)=0. Note that

this is not the assumption of our approach. This information is obtained since the

adder-tree has been detected. Hence, the algebraic spectrum can be extracted by just

collecting all the 2-var monomials, which matches the multiplication spectrum.

24 : pp31 = a2b1b2

23 : pp21 = −2a2b1b2 + a1b1b2 + a2b1 + a2b2

22 : pp11 = −2a1b1b2 + a0b1b2 + a1b1 + a1b2

21 : pp01 = −2a0b1b2 + a0b1 + a0b2

23 : pp30 = a2b0b1 − a2b1

22 : pp20 = −2a2b0b1 + a1b0b1 − a1b1 + a2b0

21 : pp10 = −2a1b0b1 + a0b0b1 − a0b1 + a1b0

20 : pp00 = −2a0b0b1 + a0b0

(6.5)

Table 6.1: Results of extracting the specification of pre- and post-synthesized CSA
multipliers compared to functional extraction presented in [31]. *t(s) is the runtime
in seconds. *mem is the memory usage in mb.

#bits
Pre-synthesized Post-synthesized

[31] This approach [31] This approach
t(s) mem t(s) mem t(s) mem t(s) mem

64 1.89 74 0.04 34 33.50* MO 0.08 34
128 8.12 288 0.15 117 - MO 0.46 120
256 32.65 1157 0.82 441 - MO 6.96 439
512 130.22 4427 3.76 1695 - MO 28.70 1876

103

6.5 Results

The technique described in this paper has been implemented in C++ integrated

with ABC [80]. It takes the gate-level netlist (Verilog or BLIF files) and produces an

algebraic spectrum. The experiments include extracting the arithmetic function from

the gate-level netlist, and abstracting the word-level operations. The experiments

are obtained using a set of arithmetic circuits synthesized by ABC. We use two

multiplication algorithms for implementing those circuits, namely Carry-Save-Adder

(CSA) multiplier and Radix-4 Booth multiplier. The verification results are compared

with the state-of-the-art rewriting-based approach [31]. We will add the comparison

with the Grobner Basis based approach [100] if we get the tool from the authors.

For word-level abstraction, we compare our approach with simulation graph based

approach [105] and our function extraction approach [129]. The comparison with the

contemporary formal methods such as SAT, SMT, ABC(cec), and the commercial

tools, are not directly provided in this paper. The computer algebraic methods have

been demonstrated to be magnitude orders faster than those techniques [31][100].

Table 6.2: Results of extracting the specification of the post-synthesized complex
arithmetic circuits compared to functional extraction presented in [31]. *MO = Mem-
ory out of 8 GB.

Benchmarks
(256-bit)

[31] This approach
runtime(s) mem(MB) runtime(s) mem(MB)

F=A×B+C - MO 10.3 447
F=A×(B+C) - MO 11.1 451
F=A×B×C - MO 67.5 2871
F=1+A+A2+A3 - MO 77.1 3331

Table 6.3: Runtime of extracting the specification of the radix-4 Booth multiplier.
*MO = Memory out of 8GB.

bits
[31] This approach

Pre-syn (s) Post-syn (s) Pre-syn (s) Post-syn (s)
64 MO MO 0.05 0.06
128 - - 0.51 6.97
256 - - 1.95 22.70
512 - - 5.50 -

104

Table 6.4: Evaluation of word-level abstraction using algebraic spectrum. Multipli-
cations in F1 and F2 are implemented using CSA-multiplier. F3 uses radix-4 Booth-
multiplier.

Benchmarks
128-bit

This Approach [129] [105]

Function (128-bit) Mult Add Runtime Mult Add Runtime Mult Add Runtime
F1=A×B+C (CSA) 1 1 0.45 s 1 1 23760 s 0 0 -
F2=A×B+A×C (CSA) 2 1 1.03 s 2 1 48560 s 0 0 -
F3=A×B+C (Booth) - - - - - - 0 0 -

The experiments were conducted on a PC with Intel(R) Xeon CPU E5-2420 v2 2.20

GHz x12 with 32 GB memory.

Evaluations of verifying pre-synthesized and post-synthesized CSA multipliers are

shown in Tables 6.1, 6.2 and 6.3. The same results for post-synthesized complex

unsigned arithmetic circuits taken from [31] are shown in Table 6.2. Note that the

circuits in Table 6.1 are optimized using (resyn, resyn2; dch; map) with complex

standard cell library. The runtime and memory usage are compared to functional

extraction [31]. Synthesis was shown to have significant impact on function extrac-

tion approach [125]. That approach can only extract the specification of the pre-

synthesized and slightly synthesized (with reduced simple technology library), but

cannot be applied to heavily optimized circuits. The reason for that is the lack

of sufficient in heavily optimized circuits, which caused memory explosion. This is

shown in Tables 6.1 and 6.2. In Table 6.2, the functions of the arithmetic circuits

are shown in the first column. The bit-width varies between 64 and 512 bits. We

can see that the runtime of the proposed approach is less than 30 seconds for both

the pre- and post-synthesized CSA multipliers of any bit-width. For example, ex-

tracting post-synthesized 64-bit multiplier using functional extraction reaches the 8

GB memory limit (MO=8GB) in 33 seconds. However, extracting the specification

using the algebraic spectrum of the 512-bit post-synthesized multipliers requires only

1.8 GB memory and produces the result within 30 seconds. Additionally, our ap-

105

proach outperforms functional extraction on complex arithmetic circuits (Table 6.2)

and Booth-multipliers (Table 6.3).

Results of abstracting word-level operations from gate-level arithmetic circuits are

shown in Table 6.4. We use three types of circuits that are constructed with mul-

tiplication and addition. The multiplications are implemented using CSA-multiplier

(F1 and F2) and Booth-multiplier (F3). We can see that our approach can identify

the word-level operations in just one second for F1 and F2. In contrast, the approach

of [105] cannot tell whether there exists multiplication or addition in the circuits.

Currently, our approach can extract the entire spectrum of F3, but it cannot identify

if there is one multiplier and one adder in the circuit of F3. The reason for this is

that the detected adders of the Booth-multiplier are not clearly separated with the

detected adders of the adder.

6.6 Conclusion

This chapter presented a novel computer algebraic approach to abstract the word-

level information from the gate-level netlist. In contrast to [66][113][105], it can

address the problem of abstracting words from a large non-linear gate-level arithmetic

circuit (MAC). This approach is based on a new canonical representation of arithmetic

functions, called algebraic spectrum. that uses coefficient distribution of a polynomial

expression to describes the arithmetic function. Such defined algebraic spectrum

has been proved to be canonical if the arithmetic function is constructed with any

combination of addition and multiplication in Section 6.4.1.

106

CHAPTER 7

FORMAL ANALYSIS OF FINITE FIELD ARITHMETIC
CIRCUITS

7.1 Introduction

Galois field (GF) is a number system with a finite number of elements and two

main arithmetic operations, addition and multiplication; other operations can be

derived from those two [85]. It has been extensively applied in many digital signal

processing and security applications, such as Elliptic Curve Cryptography (ECC),

Advanced Encryption Standard (AES). For example, the S-BOX and MixColumn

transforms are treated as field GF(28) and the internal data is performed by arithmetic

operations in GF(28), including addition and multiplication in field. Finite field

multiplication is the most complex operation in circuit design and verification, and is

widely used in many applications. Specifically, in cryptography systems, the size of

Galois field circuits can be very large. Therefore, developing general formal analysis

techniques of Galois field arithmetic HW/SW implementations becomes critical.

The elements in field GF(2m) can be represented using polynomial rings. The field

of size m is constructed using irreducible polynomial P (x), which includes terms of

degree d with coefficients in GF(2), with d ∈ [0, m]. For example, P (x)=x4+x+1 is an

irreducible polynomial in GF(24). The multiplication in the field is performed modulo

P (x). Theoretically, there is a large number of irreducible polynomials available for

constructing the field arithmetic operations in GF(2m). However, the irreducible

polynomial has great impact on the actual implementation of the resulting GF circuits

and the performance of field arithmetic operations. It differs in the number of bit-

level XOR operations. It is believed that, in general, the irreducible polynomial with

107

minimum number of elements gives the best performance [33]. However, recently some

work [102] demonstrate that the best irreducible polynomial from circuit performance

point of view varies depending on computer architecture in which it is used, such

as ARM vs. Intel-Pentium. In other words, 1) for GF(2m) multiplication, each

irreducible polynomial corresponds to a unique implementation; 2) for a fixed field

size, there exist many irreducible polynomials that could be used for constructing the

field in different applications.

Due to the rising number of threats in hardware security, analyzing finite field

circuits becomes very important. Computer algebra techniques with polynomial

representations is believed to offer best solution for analyzing arithmetic circuits

[70][89][100][31]. These works address the verification problems and abstraction prob-

lems of Galois field arithmetic and integer arithmetic implementations [89][100][31].

Specifically, symbolic computer algebra methods have also been used to reverse engi-

neer the word-level operations for GF circuits and integer arithmetic circuits to speed

up the verification performance [129][101][91]. In Chapter 6, we proposed an origi-

nal spectral method based on analyzing the internal algebraic expressions during the

rewriting procedure. A. Sayed-Ahmed et. al [101] introduced a reverse engineering

technique in Algebraic Combinational Equivalence Checking (ACEC) process using

Gröbner Basis by converting the function into canonical polynomials. However, both

techniques are applicable to integer arithmetic only. An abstraction technique over

GF(2m) is introduced by analyzing the polynomial representation[91].

However, there are two limitations of the above mentioned algebraic techniques:

• 1) They are all restricted to the implementation with known binary encoding

of the inputs and output.

• 2) None of those algebraic techniques can be applied in parallel. Addition-

ally, the abstraction and verification techniques for GF(2m) arithmetic circuits,

requires a known irreducible polynomial P (x) [70][91].

108

In this chapter, we present a formal approach that can reverse engineer the gate-

level finite field arithmetic circuits and extract the polynomial signature of the circuits

simultaneously. Specifically, this chapter first introduces a parallel algebraic rewriting

approach for extracting the polynomial signature of finite field arithmetic circuit

(Section 7.3). Second, using the parallel verification framework, we present a reverse

engineering approach (Section 7.4) that extracts the polynomial specification of a

gate-level GF(2m) multiplier, when the bit positions of input and output bits and the

irreducible polynomial used for constructing the multiplication are unknown. The

verification and reverse engineering approaches are demonstrated using bit-blasted

GF(2m) Mastrovito and Montgomery multipliers up to 571-bit width, implemented

using various irreducible polynomials.

7.2 Background

7.2.1 Galois Field Multiplication

Galois field (GF) is a number system with finite number of elements and two

main arithmetic operations, addition and multiplication; other operations such as

division can be derived from those two [85]. Galois field with p elements is denoted

as GF(p). Prime field, denoted GF(p), is a finite field consisting of finite number of

integers {1, 2,, p−1}, where p is a prime number, with additions and multiplication

performed modulo p. Binary extension field, denoted GF(2m) (or F2m), is a finite

field with 2m elements. Unlike in prime fields, however, the operations in extension

fields are not computed modulo 2m. Instead, in one possible representation (called

polynomial basis). Multiplication of field elements is performed modulo irreducible

polynomial P (x) of degree m and coefficients in GF(2). The irreducible polynomial

P (x) is analog to the prime number p in prime fields GF (p). Extension fields are

used in many cryptography applications, such as AES and ECC. In this work, we

focus on the verification problem of GF(2m) multipliers.

109

Two different GF multiplication structures, constructed using different irreducible

polynomials P1(x) and P2(x), are shown in Figure 7.1. The integer multiplication

takes two n-bit operands as input and generates a 2n-bit word, where the values

computed at lower significant bits ripple through the carry chain all the way to the

most significant bit (MSB). In contrast, in GF(2m) implementations there is no carry

chain, and the number of outputs is reduced to n using irreducible polynomial P(x).

For example, to represent the result in GF(24), with only four output bits, the four

most significant bits in the result of the integer multiplication have to be reduced to

GF(24). The result of such a reduction is shown in Figure 7.1. In GF(24), the input

and output operands are represented using polynomials A(x), B(x) and Z(x), where

A(x)=
∑n=3

n=0 anx
n, B(x)=

∑n=3
n=0 bnx

n, and Z(x)=
∑n=3

n=0 znx
n, respectively.

Example 1: The functions of si (i ∈ [0, 6]) are represented using polynomials

in GF(2), namely: s0=a0b0, s1=a1b0+a0b1, ..., up to s6=a3b3
1. The outputs zn (n ∈

[0, 3]) are computed modulo the irreducible polynomial P (x). Using P2(x)=x4+x+1,

we obtain : z0=s0 + s4, z1=s1 + s4 + s5, z2=a0b2+a1b1+a2b0+a2b3+a3b2+a3b3, and

z3=a0b3+a1b2+a2b1+a3b0+a3b3. The coefficients of the multiplication results are

shown in Figure 7.2. In digital circuits, partial products are implemented using and

gates, and addition modulo 2 is done using xor gates. Note that, unlike in integer

multiplication, in GF(2m) circuits there is no carry out to the next bit. For this

reason, as we can see in Figure 7.1, the function of each output bit can be computed

independently of other bits.

7.2.2 Irreducible Polynomials

For constructing the field GF(2m), the irreducible polynomial can be either a

trinomial, xm+xa+1, or a pentanomial xm+xa+xb+xc+1 [83]. Typically, the pen-

tanomial is chosen as irreducible polynomial only if an irreducible trinomial doesn’t

1For polynomials in GF(2), ”+” is computed as modulo 2.

110

a3 a2 a1 a0
b3 b2 b1 b0
a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1
a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3
s6 s5 s4 s3 s2 s1 s0

P (x)1=x4 + x3 + 1
s3 s2 s1 s0
s4 0 0 s4
s5 0 s5 s5
s6 s6 s6 s6
z3 z2 z1 z0

P (x)2=x4 + x+ 1
s3 s2 s1 s0
0 0 s4 s4
0 s5 s5 0
s6 s6 0 0
z3 z2 z1 z0

Figure 7.1: Two multiplications in GF(24) constructed using P (x)1=x4 + x3 + 1 and
P (x)2=x4 + x+ 1.

output polynomial expression
z0 (a0b0)+a1b3+a2b2+a3b1
z1 (a0b1+a1b0)+a1b3+a2b2+a2b3+a3b1+a3b2
z2 (a0b2+a1b1+a2b0)+a2b3+a3b2+a3b3
z3 (a0b3+a1b2+a2b1+a3b0)+a3b3

Figure 7.2: Extracted algebraic expressions of the four output bits of a GF(24) mul-
tiplier. P(x)=x4+x+1.

exist [83]. In order to obtain efficient GF multiplication algorithm, it is required that

m - a ≥ w. However, as demonstrated in [102], the trinomials are not always better

than pentanomials. It means that for a given field size, there are various irreducible

polynomials that can be used.

An example of constructing GF(24) multiplication using two different irreducible

polynomials is shown in Figure 7.1. We can see that each polynomial corresponds

to a unique multiplication result. The performance difference can be evaluated by

counting the number of XOR operations in each multiplication. Since the number

of AND and XOR operations for generating partial products (variables si in Figure

7.1) is the same, the difference is only caused by the reduction of the corresponding

111

polynomials modulo P (x). The number of XOR operations introduced by reduction

process can be counted as the number of terms in each column minus one. For

example, the number of XORs using P1(x) is 3+1+2+3=9; and using P2(x), the

number of XORs is 1+2+2+1=6.

As will be shown in the next section, given the structure of the GF(2m) multipli-

cation, such as the one shown in Figure 7.1, one can readily identify the irreducible

polynomial P (x). This can be done by extracting the terms sk corresponding to the

entry sm (here s4) in the table and generating the irreducible polynomial beyond

xm. We know that P (x) must contain xm, and the remaining terms xk of P (x) are

obtained from the non-zero terms corresponding to the entry sm. For example, for

the irreducible polynomial P1(x) = x4+x3+x0, the terms x3 and x0 are obtained by

noticing the placement of s4 in columns z3 and z0. Similarly, for P2(x) = x4+x1+x0,

the terms x1 and x0 are obtained by noticing that s4 is placed in columns z1 and

z0. The reason for it and the details of this procedure will be explained in the next

section.

7.3 Parallel Extraction in Galois Field

In this section, we introduce our method for extracting the unique algebraic ex-

pressions of the output bits (e.g. Figure 7.2) using computer algebraic method. This

can be used to verify the GF(2m) multipliers when the binary encoding of inputs and

output and the irreducible polynomial are given. We introduce a parallel function

extraction framework in GF(2m), which allows us to individually extract the algebraic

expression of each output bit. This framework is used for reverse engineering, since

our reverse engineering approach is based on analyzing the algebraic expression of

output bits in GF(2), as introduced in Section I.

112

7.3.1 Computer Algebraic model

The circuit is modeled as a network of logic elements of arbitrary complexity

including: basic logic gates (AND, OR, XOR, INV) and complex standard cell gates

(AOI, OAI, etc.) obtained by synthesis and technology mapping. Instead of modeling

Boolean operators using pseudo-Boolean equations, we use the algebraic models in

GF (2), i.e. modulo 2. For example, the pseudo-Boolean model of XOR(a, b)=a + b

−2ab is reduced to (a + b + 2ab) mod 2 = (a + b) mod 2. The following algebraic

equations are used to describe basic logic gates in GF (2m), according to [70]:

¬a = 1 + a

a ∧ b = a · b

a ∨ b = a+ b+ a · b

a⊕ b = a+ b

(7.1)

7.3.2 Outline of the Approach

Similarly to function extraction presented in Chapter 3, the computed function

of the circuits is specified by two polynomials. The output signature of a GF (2m)

multiplier, Sigout =
∑m−1

i=0 zix
i, with zi ∈ GF (2). The input signature of a GF (2m)

multiplier, Sigin =
∑m−1

i=0 Pix
i, with coefficients Pi ∈ GF (2) being product terms, and

addition operation performed modulo 2 (e.g. (a0b0 + a1b1) mod 2). Note that Pi is a

partial product set, which is a series of XOR operations with partial products pi as

inputs, e.g., in GF(24), P1=p10⊕p01, p10=a1b0, p01=a0b1. For a GF (2m) multiplier, if

the irreducible polynomial P (x) is provided, Sigin is known. Our goal is to transform

the output signature, Sigout, using polynomial representation of the internal logic

elements, into the input signature Sigin in GF (2m). The the goal of the verification

problem is then to check if Sigin = Sigout, expressed in the primary inputs.

113

Theorem 1: Given a combinational arithmetic circuit in GF (2m), composed of

logic gates, described by Eq. 1, input signature Sigin computed by backward rewriting

is unique and correctly represents the function implemented by the circuit in GF (2m).

Proof: The proof of correctness relies on the fact that each transformation step

(rewriting iteration) is correct. That is, each internal signal is represented by an

algebraic expression, which always evaluates to a correct value in GF (2m). This is

guaranteed by the correctness of the algebraic model in Eq. (7.1), which can be

proved easily by inspection. For example, the algebraic expression of XOR(a,b) in

Z2m is a+ b− 2ab. When implemented in GF (2m), the coefficients in the expression

must be in GF (2). Hence, XOR(a,b) in GF2m is represented by a + b. The proof

of uniqueness is done by induction on i, the step of transforming polynomial Fi into

Fi+1. A detailed induction proof for expressions in Z2m is provided in Chapter 3.

�

Algorithm 4 Backward Rewriting in GF (2m)

Input: Gate-level netlist of GF (2m) multiplier
Input: Output signature Sigout, and (optionally) input signature, Sigin
Output: GF function of the design, and answer whether Sigout==Sigin

1: P={p0, p1, ..., pn}: polynomials representing gate-level netlist
2: F0=Sigout
3: for each polynomial pi ∈ P do
4: for output variable v of pi in Fi do
5: replace every variable v in Fi by the expression of pi
6: Fi → Fi+1

7: for each element/monomial M in Fi+1 do
8: if the coefficient of M%2==0
9: or M is constant, M%2==0 then

10: remove M from Fi+1

11: end if
12: end for
13: end for
14: end for
15: return Fn and Fn =?Sigin

Theorems 1, together with the algebraic model in Eq. (1), provide the basis

for polynomial reduction in backward rewriting in this work. This is described by

114

a0 b1
a1 b0 a1 b1 a0 b0

i

�
3

�
2

�1

i
5

i*

+1
+
0

123

5
6

,-

Sigout

Sigin

Figure 7.3: The gate-level netlist of post-synthesized and mapped 2-bit multiplier
over GF (22). The irreducible polynomial P (x) = x2 + x+ 1.

Algorithm 4. Our method takes the gate-level netlist of a GF (2m) multiplier as input

and first converts each logic gate into equations using Eq. (1). The output signature

Sigout is required to initialize the backward rewriting. The rewriting process starts

with F0 = Sigout, and ends when all the variables in Fi are primary inputs. This is

done by rewriting the polynomials representing logic elements in the netlist in reversed

topological order as discussed in Chapter 3. Each iteration includes two steps:

• Step 1: substitute the variable of the gate output using the expression in the

inputs of the gate (Eq.1), and name the new expression Fi+1 (lines 3 - 6).

• Step 2: simplify the new expression (modulo 2) by removing all the monomials

(including constants) that evaluate to 0 in GF (2) (line 3 and lines 7 - 10).

The algorithm outputs the function of the design in GF (2m) after n iterations,

where n is the number of gates in the netlist. The final expression Fn can be used

for functional verification, by checking if it matches the expected input signature (if

provided).

Example 2 (Figure 7.3): We illustrate our method using a post-synthesized 2-

bit multiplier in GF (22), shown in Figure 7.3. The irreducible polynomial is P (x)

115

Sigout: Finit=z0+xz1 Eliminating terms

G8: F8=z0+x(i5+i6) -

G7: F7=i1+i2+x(i5+i6) -

G6: F6=i1+i2+x(i3+i4+i5) -

G5: F5=i1+i2+x(i3+i4+i2+1) -

G4: F4=i1+i2+x(i2+i3+a0b1)+2x 2x

G3: F3=i1+i2+x(i2+a1b0+a0b1+1) -

G2: F2=i1+a1b1+1+x(a1b1+a1b0+a0b1)+2x 2x

G1: F1=a0b0+a1b1+2+x(a1b1+a1b0+a0b1) 2

Sigin: a0b0+a1b1+x(a1b1+a1b0+a0b1) -

Figure 7.4: Function extraction of a 2-bit GF multiplier shown in Figure 7.3 using
backward rewiring from PO to PI.

= x2 + x + 1. The output signature is Sigout = z0+z1x, and input signature is

Sigin = (a0b0+a1b1)+(a1b1+a1b0+a0b1)x. First, Finit = Sigout is transformed into F8

using polynomial of gate g8, z1=i5+i6 and simplified to F8 = z0+i5x+i6x. Then, the

polynomials Fi are successively derived from Fi+1 and checked for a possible reduction.

The first reduction happens when F5 is transformed into F4, where i4 (at gate g4) is

replaced by (1+ a0b0). After simplification, a monomial 2x is identified and removed

by modulo 2 from F4. Similar reductions are applied during the transformations

F3 → F2 and F2 → F1. Finally, the function of the design is extracted as expression

F1. A complete rewriting process is shown in Figure 7.4. We can see that F1 = Sigin,

which indicates that the circuit indeed implements the GF (22) multiplication with

P (x)=x2 + x+ 1.

An important observation is that the polynomial reductions happen in a logic cone

of every output bit independently of other bits, regardless of logic sharing between

the cones. For example, the reductions in F4 and F2 happen within the logic cone of

output z1 only. Similarly, in F1, the reduction is within logic cone of z0.

Theorem 3: Given a GF (2m) multiplier with Sigout = F0 = z0x
0 + z1x

1 + ...

+ zmx
m; let Fi=E0x

0 + E1x
1 + ... + Emx

m, where Ei is an algebraic expression

116

in GF (2) obtained during rewriting. Then, the polynomial reduction is possible only

within a single expression Ei, for i=1, 2, ..., m.

Proof: Consider a polynomial Eix
ii+Ekx

ik , where Ei and Ek are simplified in

GF (2). That is, Ei = (e1i + e2i + ...), and Ek = (e1k + e2k + ...). After simplifying each

of the two polynomials, there are no common monomials between Eix
ii and Ekx

ik .

This is because for any element, elix
ii 6= ejkx

ik , for any pairs of (i, k) and (l, j). That

is, the sum of such elements cannot be reduced by modulo 2.

�

7.3.3 Implementation

Gate-leve

netlist

Netlist to Equations

Sigout

Sig
out

=z
m

Sig
out

=z
2

Sig
out

=z
1

Equations

of netlist

Sig
out

=z
0

thread 1

thread 2

thread 3

thread m

Compute final function

Return F
n

…

Figure 7.5: Overview of the parallel extraction framework.

This section describes the implementation of our parallel verification method for

Galois field multipliers. Our approach takes the gate-level netlist as input, and out-

puts the extracted function of the design. It includes four steps:

1. Netlist to equations: parse the gate-level netlist into algebraic equations

based on Equation 1. The equations are listed in reversed topological order, to

117

be rewritten by backward rewriting in the next step. m copies of this equation

file will be made for a GF(2m) multiplier.

2. Generate signatures: split the output signature of GF(2m) multipliers into

m polynomials with Sigout i=zi. Insert the new signatures into the m copies of

the equation file generated from Step1. Each signature is a single output bit.

Eqns of netlist

Sigout = �

Eqns of netlist

Sigout = ��

Eqns of netlist

Sigout = ����

Eqns of netlist

Sigout = ����

…

�
 �
1

�� � �0��

�0 �0�� �0�� � ��0��…

� ���� ����

Parallel extraction

Figure 7.6: Step3: parallel extraction of a GF(2m) multiplier with number of threads
T.

3. Parallel extraction: apply Algorithm 4 on each equation file to extract the

polynomial expression of each output in parallel. In contrast to the polynomial

reductions shown in Chapters 3 and 5, the internal expression of each output bit

does not offer any polynomial reduction (monomial cancellations) with other

bits.

Ideally, our approach can extract GF(2m) multiplier in m threads. However,

due to the limited computing resources, it is impossible to extract GF(2m)

multipliers for a large number of threads. Hence, our approach puts a limit on

a number of parallel threads T . In particular T = 5, 10, 20 and 30 have been

tested in this work. This process is described in Figure 7.6. The m extraction

tasks are assigned into several task sets, ordered from LSB to MSB. In each set,

118

the extractions are processed in parallel. Since the runtime of each extraction

within the set could be different, the tasks in the next set will start as soon as

any previous task terminated.

4. Step4: Finalization: compute the final function of the multiplier. Once the

algebraic expression of each output bit in GF (2) is computed, our method com-

putes the final function by constructing the Sigout using the rewriting process

in step 3.

Data Structure: Our algorithm uses an efficient data structure to support these

simplifications and efficiently implement an iterative substitution and elimination pro-

cess. Specifically, a data structure is maintained that records the terms (monomials)

in the expression that contain the variable to be substituted. It reduces the cost of

finding what terms will have their coefficients changed during the substitution. Each

element represents one monomial consisting of the variables in the monomials, and its

coefficient. The expression data structure is a C++ object that represents a pseudo-

Boolean expression, which is the sum of all the elements in the data structure. It

supports both fast addition and fast substitution with two C++ maps, implemented

as binary search trees, a terms map and a substitution map. This data structure

includes two cases of simplifications: 1) after substitution, the coefficients of all the

monomials will be updated. The monomials with a 0 coefficient are eliminated; 2)

according to Remark 2, the monomials which their coefficient modulo 2 evaluate to

0 are eliminated. Note that the second case is applied after each substitution.

Example 3 (Figure 7.7): We illustrate our parallel extraction method using the

2-bit multiplier in GF (22) in Figure 7.3. The output signature Sigout = z0+xz1 is

split into two signatures, Sigout0 = z0 and Sigout1 = z1. Then, the rewriting process

is applied to Sigout0 and Sigout1 in parallel. When Sigout0 and Sigout1 have been

successfully extracted, the two signatures are merged as Sigout0+xSigout1 resulting in

the polynomial Sigin. In Figure 7.4, we can see that elimination happens three times

119

Sigout0=z0 elim Sigout1=x·z1 elim
G8: z0 - G8: i5x+i6x -
G7: i1+i2 - G7: i5x+i6x -
G6: i1+i2 - G6: i2x+x+i6x -
G5: i1+i2 - G5: i2x+x+i3x+i4x -
G4: i1+i2 - G4: i2x+x+i3x+a0b1x+x 2x
G3: i1+i2 - G3: i2x+a1b0x+x+a0b1x -
G2: i1+a1b1+1 - G2: a1b1x+x+a1b0x+x+a0b1x 2x
G1: 1+a0b0+a1b1+1 2 G1: x(a1b1+a1b0+a0b1) -
z0=a0b0+a1b1, z1=x(a1b1+a1b0+a0b1)

Figure 7.7: Extracting the algebraic expression of z0 and z1 separately in Figure 7.4.

(F5, F7, and F8). According to Theorem 2, we know that the elimination happens

within each element in GF(2n). In Figure 7.7, one elimination in Sigout0 and two

eliminations in Sigout1 have been done independently, as shown earlier (Example 2).

7.4 Reverse Engineering in Galois Field

In this section, we present our approach to reverse engineer any of GF(2m) mul-

tipliers. Using the extraction technique presented in the previous section, we can

extract the algebraic expression of each output bit. In contrast to the algebraic tech-

nique of presented for integer arithmetic circuits (Chapters 3 and 5), the extraction

technique in GF(2m) can extract the algebraic expression of each output bit indepen-

dently. This means that the extraction can be done without the knowledge of the bit

position of the inputs and output. We introduce two theorems to support this claim.

In a GF(2m) multiplication, let si (i ∈ {0,1,...,2m-1}) be a set of products gen-

erated by the AND and XOR operations. For example, in Figure 7.1, there are six

product sets, s0, s1, ..., s6, where s1=a1b0+a0b1; or written as a set : s1={a1b0, a0b1},

etc. The product sets out of field GF(2m) (sets si whose index i=[m, 2m-1]) will be

reduced into the field GF(2m). This is the case for sets s4, s5, s6 in Figure 7.1. We

call these product sets out-field product sets , and call the product sets si with

i=[0,m − 1] in-field product sets . For example, in Figure 7.1, s0, s1, s2, s3 are

in-field product sets, and s4, s5, s6 are out-field product sets. The partial products

120

generation is the same as in the integer multiplication. For a GF(2m) multiplication,

m product sets are in-field, and m− 1 product sets are out-field.

7.4.1 Output encoding determination

Theorem 3: Given a GF(2m) multiplication, the in-field product sets (s0, s1,

..., sm−1) are appearing only in one element in GF(2m), and the out-field product

sets (sm, sm+1, ..., s2m−1) are appearing in at least two elements in GF(2m), in the

reduction process mod P(x).

Proof: In a Galois field multiplication, the in-field product sets (s0, s1, ..., sm−1)

are not required to be reduced since they are already in GF(2m). Hence, the in-field

product sets are generated only once in each output element. Regarding the out-

field product sets, we prove that they are appearing in at least two elements using

contrapositive proof. Let the statement S read: the out-field product sets are only

appearing once in reduction process mod P (x). Since each product in the product

sets sk is a kth element, each product represents xk in the polynomial ring of GF(2m)

multiplication. If S is true, then statement S′ must be true.

S : The out-field product sets are only appearing in one element in mod P(x)

reduction.

S
′ : for k ≥ m, xk mod P(x) = xk−m.

We can see that statement S′ is true if and only if P (x)= xm. However, according

to the definition of irreducible polynomial, P (x)= xm is an illegal irreducible poly-

nomial. Hence, if statement S
′ is false, statement S is also false. Hence, ¬S: the

out-field product sets are appearing in at least two elements in mod P(x) reduction.,

is true. Hence, theorem 4 is proved. �

Based on Theorem 3, we can find the in-field product sets, s0, s1, ..., sm−1, by

searching the unique products in the resulting algebraic expressions of the output

bits. In this context, unique products are the products that exist in only one of

121

the extracted algebraic expressions. Since the in-field products set indicates the bit

position of the output, we can determine the bit positions of the output bits as soon

as all the in-field product sets are identified.

Example 4 (Figure 7.2): We illustrate this procedure using a GF(24) multiplier

implemented using irreducible polynomial P (x)2=x4+x+1 (see Figure 7.1). Note that

in this process, the labels do not offer any knowledge of the bit positions of inputs

and outputs. The extracted algebraic expressions of the four output bits are shown

in Figure 7.2. We first identify the unique products that include set s0=a0b0 in

algebraic expression of z0; set s1=(a0b1+a1b0) in z1; set s2=(a0b2+a1b1+a2b0) in z2;

and set s3=(a0b3+a1b2+a2b1+a3b0) in z3. Note that the number of products in the

in-field product sets si is i. Hence, we have all the in-field product sets and their

relation to the extracted algebraic expressions and make the the following conclusion:

• s0 = a0b0, z0 → Least significant bit (LSB)

• s1 = a0b1+a1b0, z1 → 2nd output bit

• s2 = a0b2+a1b1+a2b0, z2 → 3rd output bit

• s3 = a0b3+a1b2+a2b1+a3b0, z3 → Most significant bit (MSB)

7.4.2 Input encoding determination

We use Algorithm 2 to determine the bit position of the input variables. The

input bit position can be determined by analyzing the in-field product sets, which

has been obtained in the previous step. Based on the GF multiplication algorithm,

we know that s0 is generated by an AND function with two LSBs of the two inputs;

and the two products in s1 are generated by AND and XOR operations using two

LSBs and two 2nd input bits, etc. For example in a GF(24) multiplication (Figure

7.1), s0=a0b0, where a0 and b0 are LSBs; s1=a1b0+a0b1, where a0, b0 are LSBs; a1, b1

are 2nd LSBs. This allows us to determine the bit position of the input bits recursively

122

Algorithm 5 Input encoding determination for GF (2m)

Input: a set of algebraic expressions represent the in-field product sets S
Output: bit position of input variables

1: S={s0, s1, ..., sm−1}
2: initialize a vector of variables V ← {}
3: for i=0, i≤m-1, i++ do
4: for each variable v in algebraic expression of si do
5: if v does not exist in V then
6: assign bit position value of v = i
7: store v in variable set V
8: end if
9: end for

10: end for
11: return V

by analyzing the algebraic expression of si. We illustrate our Algorithm 2 using the

GF(24) multiplier implemented using P (x)2 = x4+x+1 (Figure 7.2).

Example 5 (Algorithm 2): The input of our algorithm is a set of algebraic

expressions of the in-field product sets, s0, s1, s2, s3 (line 1). We initialize vec-

tor V to store the variables in which their bit positions are assigned (line 2). The

first algebraic expression is s0. Since the two variables, a0 and b0 are not in V ,

the bit positions of these two variables are assigned index i = 0 (line 4-8). In the

second iteration, V={a0, b0}, and the input algebraic expression is s1, including

variables a0, b0, a1 and b1. Because a1 and b1 are not in V , their bit position is

i = 1. The loop ends when all the algebraic expressions in S have been visited,

and returns V={(a0, b0)0, (a1, b1)1, (a2, b2)2, (a3, b3)3}. The subscripts are the bit

position values of the variables returned by the algorithm. Note that this proce-

dure only gives the bit position of the input bits; the information of how the input

words are constructed is unknown. There are 2m−1 combinations from which the

words can be constructed using the information returned in V . For example, the

two input words can be W0=a0+2a1+4b2+8a3 and W1=b0+2b1+4a2+8b3; or they can

be W ′

0=a0+2a1+4b2+8b3 and W ′

1=b0+2b1+4a2+8a3. Although there may be many

123

combinations for constructing the input words, the specification of the GF(2m) is

unique.

7.4.3 Extraction of the Irreducible Polynomial

Theorem 5: Given a multiplication in GF(2m), let the first out-field product set

be sm. Then, the irreducible polynomial P (x) includes xm and xi iff all products in

the set sm exist in the algebraic expression of the ith output bits, where i ≤ m.

Proof: Based on the definition of field arithmetic, the polynomial basis represen-

tation of sm is smx
m. To reduce sm into elements in the range [0, m − 1] (with m

output bits), the field reductions are performed modulo irreducible polynomial P (x)

with highest degree m. Based on the definition of irreducible polynomial, P (x) is

either a trinomial or a pentanomial with degree m. Let P (x) = xm+P ′(x). Then,

smx
m mod (xm + P ′(x)) = smP

′(x)

Hence, if xi exists in P ′(x), it also exists in P (x).

�

Even though the input bit positions have been determined in the previous step, we

cannot directly generate sm since the combination of the input bits for constructing

the input words is still unknown. In Example 5 (m=4), we can see that sm={a1b3,

a2b2, a3b1} when input words are W0 and W1; but sm={a1a3, a2b2, b1b3} when inputs

words are W ′

0 and W ′

1. To overcome this limitation, we create a set of products s′m,

which includes all the possible products that can be generated based on all input

combinations. The set s′m includes the true products, i.e., those that exist in the

first out-field product set; and it also includes some dummy products. The dummy

products are those that never appear in the resulting algebraic expressions. Hence, we

first generate the set s′m and eliminate the dummy products by searching the algebraic

124

expressions. After this, we obtain sm. Then, we use sm to extract the irreducible

polynomial P (x) using Algorithm 3.

Example 6: We illustrate the method of reverse engineering the irreducible poly-

nomial using the GF (24) multiplier of Fig. 1. The algorithm is shown in Algorithm

3. The extracted algebraic expressions S is shown in Figure 7.2 (line 1 at Algorithm

3). The bit position of input bits is determined by Algorithm 2 (line 2). Based on

the result of Algorithm 2, we generate s′m={a1a3, b1b3, a2b2, a3b1, a1b3}. To eliminate

the dummy products from s′m, we search all algebraic expressions in S, and eliminate

the products that cannot be a part of the resulting products. In this case, we find

that a1a3 and b1b3 are the dummy products. Hence, we get sm={a3b1, a2b2, a1b3}

(line 3). Based on the definition of irreducible polynomial, P (x) must include xm;

in this example m = 4 (line 4). While looping over all the algebraic expressions,

the expressions for z0 and z1 contain all the products of sm. Hence, x0 and x1 are

included in P (x), so that P (x) = x4+x1+x0. We can see that it is the same as P (x)2

in Figure 7.1.

Algorithm 6 Extracting irreducible polynomial in GF (2m)

Input: the algebraic expressions of output bits S
Input: the first out-field product set sm
Output: Irreducible polynomial P (x)

1: S = {exp0, exp1, ..., expm−1}
2: V ← Algorithm 2(S)
3: sm ← eliminate dummy(s′m ← V , S)
4: P (x)=xm: initialize irreducible polynomial
5: for i=0, i≤m-1, i++ do
6: if all products in sm exist in expi then
7: P (x) += xi

8: end if
9: end for

10: return P (x)

In summary, using the framework presented in Section 3, we first extract the

algebraic expressions of all output bits. Then, we analyze the algebraic expressions to

125

Table 7.1: Results of verifying Mastrovito multipliers using our parallel approach. T
is the number of threads. MO=Memory out of 32 GB. TO=Time out of 12 hours.
(*T=1 shows the maximum memory usage of a single thread.)

Mastrovito [91] This work

Op size # equations
Runtime
(sec)

Mem
(MB)

Runtime (s) Mem*
T=5 T=10 T=20 T=30 T=1*

32 5,482 1 3 2 1 1 1 10 MB
48 12,228 8 13 6 3 3 2 21 MB
64 21,814 29 21 11 8 7 7 37 MB
96 51,412 195 45 38 26 20 23 84 MB

128 93,996 924 91 91 63 55 57 152 MB
163 153,245 3546 161 192 137 121 113 248 MB
233 167,803 4933 168 294 212 180 171 270 MB
283 399,688 30358 380 890 606 550 530 642 MB
571 1628,170 TO - 7980 5038 MO MO 2.6 GB

Table 7.2: Results of verifying Montgomery multipliers using our parallel approach.
T is the number of threads. TO=Time out of 12 hours. MO=Memory out of 32 GB.
(*T=1 shows the maximum memory usage of a single thread.)

Montgomery [91] This work

Op size # equations
Runtime
(sec)

Mem
(MB)

Runtime (s) Mem*
T=5 T=10 T=20 T=30 T=1*

32 4,352 2 3 3 2 1 2 8 MB
48 9,602 14 13 18 11 9 6 16 MB
64 16.898 63 21 45 31 28 27 27 MB
96 37,634 554 45 234 157 133 142 59 MB

128 66,562 1924 68 209 121 115 110 95 MB
163 107,582 12063 101 1616 1172 1095 1008 161 MB
233 219,022 TO 168 722 565 457 480 301 MB
283 322,622 TO 380 19745 17640 15300 14820 488 MB

find the bit position of the input bits and the output bits, and extract the irreducible

polynomial P (x). In the example of the GF(24) multiplier implemented using P (x)

= x4+x+1, shown in Figure 7.1, the final results returned by our approach gives the

following: 1) the input bits set V= {(a0, b0)0, (a1, b1)1, (a2, b2)2, (a3, b3)3}, where the

subscripts represent the bit position; 2) z0 is the least significant bit (LSB), z1 is the

2nd output bit, z2 is the 3rd output bit, and z3 is the most significant bit (MSB);

3) irreducible polynomial is P (x) = x4+x+1; 4) the specification can be verified by

applying the technique presented in Section 3 with the reverse engineered information.

126

7.5 Results

We present the results of our method in two subsections: 1) evaluation of parallel

verification of GF(2m) multipliers; and 2) evaluation of reverse engineering GF(2m)

multipliers.

7.5.1 Parallel Verification of GF(2m) Multipliers

The verification technique for GF(2m) multipliers presented in Section III, was

implemented in C++. It performs backward rewriting with variable substitution and

polynomial reductions in Galois field in parallel fashion. The program was tested on

a number of combinational gate-level GF (2m) multipliers taken from [70], including

the Montgomery multipliers [58] and Mastrovito multipliers [115]. The bit-width of

the multipliers varies from 32 to 571 bits. The experiments of verifying Galois field

multipliers using SAT, SMT, ABC [80] and Singular [40] have been already presented

in [70] and [91]. They demonstrate that the rewriting technique performs significantly

better than other known techniques. Hence, in this work, we only compare our

approach to those of [70] and [91]. Specifically, we compare our approach to the tool

described in [91]. In contrast to the work of [70] and [91], all the GF(2m) multipliers

used in this section are bit-blasted gate-level implementations. We take the bit-

level multipliers from [91] and map them into gate-level circuits using ABC [80]. Our

experiments were conducted on a PC with Intel(R) Xeon CPU E5-2420 v2 2.20 GHz

×12 with 32 GB memory. As described in the next section, our technique can verify

Galois field multipliers in multiple threads (up to 30 using our platform). In each

thread, Algorithm 1 is applied on a single output bit. The number of threads is given

as input to the tool.

The experimental results of our approach and comparison against [91] are shown in

Table 7.1 for gate-level Mastrovito multipliers with bit-width varying from 32 to 571

bits. These multipliers are directly mapped using ABC [80] without any optimization.

127

The largest circuit includes more than 1.6 million gates. This is also the number

of polynomial equations and the number of rewriting iterations (see Section III).

The results generated by the tool, presented in [91] are shown in columns 3 and

4. We performed four different series of experiments, with a different number of

threads, T=5, 10, 20, and 30. The runtime results are shown in columns 6 to 8 and

memory usage in column 9. The timeout limit (TO) was set to 12 hours and memory

limit (MO) to 32 GB. The experimental results show that our approach provides on

average 26.2×, 37.8×, 42.7×, and 44.3× speedup, for T = 5, 10, 20, and 30 threads,

respectively. Our approach can verify the multipliers up to 571 bit-wide multipliers

in 1.5 hours, while that of [91] fails after 12 hours.

Note that the reported memory usage of our approach is the maximum memory

usage per thread. This means that our tool experiences maximum memory usage with

all T threads running in the process; in this case, the memory usage is T ·Mem. This

is why the 571-bit Mastrovito multipliers could be successfully verified with T = 5

and 10, but failed with T = 20 and 30 threads. For example, the peak memory usage

of 571-bit Mastrovito multiplier with T = 20 is 2.6× 20 = 52 GB, which exceeds the

available memory limit.

We also tested Montgomery multipliers with bit-width varying from 32 to 283

bits. These experiments are different than those in [91]. In our work, we first flatten

the Montgomery multipliers before applying our verification technique. That is, we

assume that only the positions of the primary inputs and outputs are known, without

the knowledge of the internal structure or clear boundaries of the blocks inside the

design. The results are shown in Table 7.2. For 32- to 163-bit Montgomery multipliers,

our approach provides on average a 9.2×, 15.9×, 16.6×, and 17.4× speedup, for T = 5,

10, 20, and 30, respectively. Notice that [91] cannot verify the flattened Montgomery

multipliers larger than 233 bits in 12 hours.

128

One observation is that extracting polynomials expressions of Montgomery mul-

tipliers require more time than Mastrovito multipliers. The main reason causing the

difference is the architecture of the multipliers. Mastrovito multipliers are directly

implemented based on the multiplication structure, i.e., the partial product generator

following by XOR-tree structures for modular arithmetic. Since the algebraic model

of XOR is the simplest model (linear model) in GF arithmetic, the size of the polyno-

mial expressions of rewriting of this architecture is small. In contrast, Montgomery

multiplier will first transform the two integer inputs into Montgomery forms. The

modular arithmetic is then applied on these two Montgomery forms. Note that the

polynomial expressions of Montgomery forms are much larger than partial products,

which increase the size of intermediate expressions.

7.5.1.1 Design and Verification cost depend on P (x)

In Table 7.2, we observe that CPU runtime for verifying a 163-bit multiplier is

greater than that of a 233-bit multiplier. This is because the computation complex-

ity depends not only on the bit-width of the multiplier, but also on the irreducible

polynomial P (x).

We illustrate this using two GF(24) multiplications implemented using two differ-

ent irreducible polynomials (refer to Figure 7.1). We can see that when P (x)1=x4 +

x3+1, the longest logic paths for z3 and z0, include ten and seven products that need

to be generated using XORs, respectively. However, when P (x)2=x4 + x + 1, the

two longest paths, z1 and z2, have only seven and six products. This means that the

GF(24) multiplication requires 9 XOR operations using P1(x) and requires 6 XOR

operations using P2(x). In other words, the gate-level implementation of the multi-

plier implemented using P1(x) has more gates compared to P2(x). In conclusion, we

can see that irreducible polynomial P (x) has significant impact on both design cost

and the verification time of the GF(2m) multipliers.

129

7.5.1.2 Runtime vs. Memory of Parallelism

 500

 1000

 1500

 2000

 2500

 3000

T=5 T=10 T=20 T=30
 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

A
ve

ra
ge

 r
un

tim
e

(s
ec

)

A
ve

ra
ge

 M
em

or
y

us
ag

e
(M

B
)

Mont-runtime
Mont-memory

Mas-runtime
Mas-memory

Figure 7.8: Runtime and memory usage of our parallel verification approach as a
function of number of threads T .

In this section, we discuss the tradeoff of runtime and memory usage of our paral-

lel approach to Galois Field multiplier verification. The plots in Figure 7.8 show how

the average runtime and memory usage change with a different number of threads.

The vertical axis on the left is CPU runtime (in seconds), and on the right is memory

usage (MB). The horizontal axis represents the number of threads T , ranging from 5

to 30. The runtime is significantly improved for T ranging from 5 and 15. However,

there is not much speedup when T is greater than 20, most likely due to the memory

management synchronization overhead between the threads. Based on the experi-

ments of Mastrovito multipliers (Table 7.1), our approach is limited by the memory

usage when the size of the multiplier and T are large. In our work, T = 20 seems

to be the best choice. Obviously, T varies between the platforms depending on the

number of cores and the memory.

In addition to analyze the runtime complexity of our rewriting algorithm, an

analysis using single thread (i.e. T=1) is shown in Figure 7.9. The y-axis shows

the runtime of extracting the polynomial expressions, and x-axis indicates the size of

the Mastrovitor Multipliers. The result shows that the runtime complexities using

different T are almost the same.

130

Figure 7.9: Sing thread runtime analysis using Mastrovito multipliers.

7.5.1.3 Effect of synthesis on verification of GF(2m) multipliers

We conclude that highly bit-optimized integer arithmetic circuits are harder to

verify than their original, pre-synthesized netlists[125]. This is because the efficiency

of the rewriting technique relies on the amount of cancellations between the different

terms of the polynomial, and the cancellations strongly depend on the order in which

signals are rewritten. A good ordering of signals is difficult to be achieved in highly

bit-optimized circuits.

To see the effect of synthesis on parallel verification of GF circuits, we applied

our approach to post-synthesized Galois field multipliers with operands up to 409 bits

(571-bit multipliers could not be synthesized in a reasonable time). We synthesized

Mastrovito and Montgomery multipliers using ABC tool [80]. We repeatedly used the

commands resyn2 and dch2 until ABC could not reduce the number of levels or the

number of nodes anymore. The synthesized multipliers were mapped using a 14nm

technology library. The verification experiments shown in Table 7.3 are performed

by our tool with T = 20 threads. Our tool was able to verify both 409-bit Mastrovito

and Montgomery multipliers within just 13 minutes. We observe that the Galois

field multipliers are much easier to be verified after optimization using our parallel

approach. For example, the verification of a 283-bit Montgomery multiplier takes

2”dch” is the most efficient bit-optimization function in ABC.

131

15,300 seconds when T =20. After optimization, the runtime was just 169.2 seconds,

which is 90x faster than verifying the original implementation. The memory usage

is also reduced from 488 MB to 194 MB. In summary, in contrast to verification

problems of integer multipliers [125], the bit-level optimization actually reduces the

complexity of backward rewriting process. This is because extracting the function

of an output bit of a GF multiplier depends only on the logic cone of that bit and

does not require logic from other bits to be simplified (see Theorem 3). Hence, the

complexity of function extraction is naturally reduced if the logic cone is minimized.

Table 7.3: Runtime and memory usage of synthesized Mastrovito and Montgomery
multipliers (T=20).

Op size
Mastrovito Montgomery

Runtime(s) Mem Runtime(s) Mem
64 4 21 MB 15 38 MB
96 11 44 MB 41 54 MB

128 29 77 MB 27 78 MB
163 62 123 MB 205 153 MB
233 135 201 MB 141 199 MB
283 168 198 MB 169 194 MB
409 776 635 MB 751 597 MB

7.5.2 Reverse Engineering of GF(2m) Multipliers

The reverse engineering technique presented in this chapter was implemented in

the framework described in Section IV in C++. It reverse engineers bit-blasted

GF(2m) multipliers by analyzing the algebraic expressions of each element using the

approach presented in Section III. The program was tested on a number of gate-level

GF (2m) multipliers with different irreducible polynomials, including Montgomery

multipliers and Mastrovito multipliers. The multiplier generator is taken from [70],

takes the bit-width and the irreducible polynomial as inputs and generates the mul-

tipliers in equation or BLIF format. The experimental results show that our tech-

nique can successfully reverse engineer various of GF(2m) multipliers, regardless of

the GF(2m) algorithm and the irreducible polynomials. The experiments Ire con-

ducted on the PC with Intel(R) Xeon CPU E5-2420 v2 2.20 GHz ×12 with 32 GB

132

memory. The number of threads is set to 16 for all the reverse engineering evalua-

tions in this section. This is dictated by the fact that T=16 gives most promising

performance (runtime) and scalability (memory usage) on our platform, based on the

analysis presented in Section V-A (Figure 7.8).

Table 7.4: Results of reverse engineering synthesized and technology mapped Mas-
trovito and Montgomery multipliers.

m P (x)
Mastrovito-syn Montgomery-syn

Runtime(s) Mem Runtime(s) Mem

64 x64+x21+x19+x4+1 13 25 MB 5 20 MB

163 x163+x80+x47+x9+1 69 508 MB 221 610 MB

233 x233+x74+1 152 1.2 GB 154 2.9 GB

409 x409+x87+1 825 6.5 GB 855 10.3 GB

Our program takes the netlist/equations of the GF(2m) implementations, and

the number of threads as input. Hence, the users can adjust the parallel efforts

depending on the limitation of the machines. In this work, all results are performed

in 16 threads. Typical designs that require reverse engineering are those that have

been bit-optimized and mapped using a standard-cell library. Hence, we apply our

technique to the bit-optimized Mastrovito and Montgomery multipliers (Table 7.4).

For the purpose of our experiments, the multipliers are optimized and mapped using

ABC [80]. Compared to the runtime of verifying synthesized multipliers (Table 7.3),

the runtime spent on analyzing the extracted expressions for reverse engineering is

less than 10% of extraction process. This is because most computations of reverse

engineering approach are those for extracting the algebraic expressions, as presented

in Section V-A. Table 7.3.

This approach is further evaluated using four Mastrovito multipliers implemented

with four irreducible polynomials in the same field GF(2233). Those polynomials

are obtained from [102]. The results are shown in Figure 7.10 and those multipliers

are optimized using ABC synthesis. We can see that the multipliers implemented

with trinomial P (x) are much easier to be reverse engineered than pentanomial P (x).

133

Figure 7.10: Result of reverse engineering GF(2233) Mastrovito multipliers that are imple-
mented using different P(x).

This is because the multipliers implemented with pentanomial P(x) contain much

more gates, and have longer critical path, since the reduction over pentanomial re-

quires much more XOR operations. The runtime between different trinomials or

pentanomials are almost the same. Comparing the design efficiency between the two

trinomials, the efficient trinomial irreducible polynomial, xm+xa+1, mostly satisfies

m-a>m/2. The results of area and critical path delay after logic synthesis and tech-

nology mapping with 14nm technology library are shown in Figure 7.11. It shows that

the area and delay of the Mastrovito multiplier implemented with P (x)=x233+x74+1

are 5.7% and 7.4% less than P (x)=x233+x159+1.

Figure 7.11: Evaluation of the design cost using GF(2233) Mastrovito multipliers with
irreducible polynomials x233+x159+1 and x233+x74+1.

7.6 Conclusion

This Chapter presents a parallel approach to verification and reverse engineering of

gate-level Galois Field multipliers using computer algebraic methods. It introduces a

parallel rewriting method that can efficiently extract polynomial expressions of Galois

134

Field multipliers. We demonstrate that, compared to the best existing algorithms,

our approach tested on T=30 threads, provides average 44× and 17× speedup for

verification of Montgomery and Mastrovito multipliers, respectively.

Based on the proposed parallel rewriting technique, we presented a novel approach

that reverse engineers the gate-level Galois Field multipliers, in which the irreducible

polynomial, as well as the bit position of the inputs and outputs are unknown. We

show that our approach can efficiently reverse engineer the Galois Field multipliers

implemented using different irreducible polynomials. Future work will focus on formal

verification of prime field arithmetic circuits and complex cryptography circuits.

135

BIBLIOGRAPHY

[1] Adams, W.W., and Loustanau, P. An Introduction to Groebner Bases. Ameri-
can Mathematical Society, 1994.

[2] Amla, Nina, Du, Xiaoqun, Kuehlmann, Andreas, Kurshan, Robert P, and
McMillan, Kenneth L. An analysis of sat-based model checking techniques in an
industrial environment. In Correct hardware design and verification methods.
Springer, 2005, pp. 254–268.

[3] Andraus, Zaher S, Liffiton, Mark H, and Sakallah, Karem A. Refinement Strate-
gies for Verification methods based on Datapath abstraction. In ASP-DAC 2006
(2006), IEEE Press, pp. 19–24.

[4] Andraus, Zaher S, and Sakallah, Karem A. Automatic Abstraction and Verifi-
cation of Verilog Models. In Proceedings of the 41st annual Design Automation
Conference (2004), ACM, pp. 218–223.

[5] Ashar, Pranav, Ghosh, Abhijit, and Devadas, Srinivas. Boolean satisfiability
and equivalence checking using general binary decision diagrams. Integration,
the VLSI journal 13, 1 (1992), 1–16.

[6] Barrett, Clark, Conway, Christopher L, Deters, Morgan, Hadarean, Liana, Jo-
vanović, Dejan, King, Tim, Reynolds, Andrew, and Tinelli, Cesare. CVC4. In
Computer aided verification (CAV) (2011), Springer, pp. 171–177.

[7] Basith, M. A., Ahmad, T., Rossi, A., and Ciesielski, M. Algebraic Approach to
Arithmetic Design Verification. In Formal Methods in CAD (2011), FMCAD,
pp. 67–71.

[8] Baumgarten, Alex, Tyagi, Akhilesh, and Zambreno, Joseph. Preventing ic
piracy using reconfigurable logic barriers. IEEE Design & Test of Computers
27, 1 (2010).

[9] Beatty, Derek L, Bryant, Randal E, and Seger, Carl-Johan H. Synchronous
circuit verification by symbolic simulation: an illustration. In Proceedings of
the sixth MIT conference on Advanced research in VLSI (1990), MIT Press,
pp. 98–112.

[10] Beers, Robert. Pre-Rtl Formal Verification: an Intel Experience. In Design
Automation Conference, 2008. DAC 2008. 45th ACM/IEEE (2008), IEEE,
pp. 806–811.

136

[11] Belov, Anton, Diepold, Daniel, Heule, Marijn JH, and Järvisalo, Matti. SAT
Competition 2014. SAT (2014).

[12] Biere, Armin. Lingeling, plingeling and treengeling entering the sat competition
2013. Proceedings of SAT Competition (2013), 51–52.

[13] Biere, Armin, Cimatti, Alessandro, Clarke, Edmund, and Zhu, Yunshan. Sym-
bolic model checking without BDDs. Springer, 1999.

[14] Biere, Armin, Cimatti, Alessandro, Clarke, Edmund M, Fujita, Masahiro, and
Zhu, Yunshan. Symbolic model checking using sat procedures instead of bdds.
In Proceedings of the 36th annual ACM/IEEE Design Automation Conference
(1999), ACM, pp. 317–320.

[15] Biere, Armin, Cimatti, Alessandro, Clarke, Edmund M, Strichman, Ofer, and
Zhu, Yunshan. Bounded model checking. Advances in computers 58 (2003),
117–148.

[16] Biere, Armin, Heule, Marijn, and van Maaren, Hans. Handbook of satisfiability,
vol. 185. ios press, 2009.

[17] Bombieri, Nicola, Fummi, Franco, Guarnieri, Valerio, Pravadelli, Graziano, and
Vinco, Sara. Redesign and verification of rtl ips through rtl-to-tlm abstraction
and tlm synthesis. In Microprocessor Test and Verification (MTV), 2012 13th
International Workshop on (2012), IEEE, pp. 76–81.

[18] Bose, Soumitra, and Fisher, Allan L. Verifying pipelined hardware using sym-
bolic logic simulation. In Computer Design: VLSI in Computers and Processors,
1989. ICCD’89. Proceedings., 1989 IEEE International Conference on (1989),
IEEE, pp. 217–221.

[19] Brock, Bishop, Kaufmann, Matt, and Moore, J Strother. Acl2 theorems about
commercial microprocessors. In Formal Methods in Computer-Aided Design
(FMCAD) (1996), Springer, pp. 275–293.

[20] Bryant, Randal E. Graph-based algorithms for boolean function manipulation.
IEEE Trans. on Computers 100, 8 (1986), 677–691.

[21] Bryant, Randal E. Symbolic simulationtechniques and applications. In Pro-
ceedings of the 27th ACM/IEEE Design Automation Conference (1991), ACM,
pp. 517–521.

[22] Bryant, Randal E., and Chen, Yirng-An. Verification of arithmetic circuits with
binary moment diagrams. In Proceedings of the 32st Conference on Design
Automation, San Francisco, California, USA, Moscone Center, June 12-16,
1995. (1995), pp. 535–541.

137

[23] Buchberger, B. Ein algorithmus zum auffinden der basiselemente des restk-
lassenringes nach einem nulldimensionalen polynomideal. PhD thesis, Univ.
Innsbruck, 1965.

[24] Burch, Jerry R. Using bdds to verify multipliers. In Proceedings of the 28th
ACM/IEEE Design Automation Conference (1991), ACM, pp. 408–412.

[25] Chen, Jingchao. Minisat blbd. SAT COMPETITION 2014 (2014), 45.

[26] Chen, Yirng-An, and Bryant, Randal. *PHDD: An Efficient Graph Representa-
tion for Floating Point Circuit Verification. Tech. Rep. CMU-CS-97-134, School
of Computer Science, Carnegie Mellon University, 1997.

[27] Chen, Yirng-An, Clarke, Edmund, Ho, Pei-Hsin, Hoskote, Yatin, Kam, Timo-
thy, Khaira, Manpreet, O’Leary, John, and Zhao, Xudong. Verification of all
circuits in a floating-point unit using word-level model checking. In Formal
Methods in Computer-Aided Design (1996), Springer, pp. 19–33.

[28] Ciesielski, M., Gomez-Prado, D., Ren, Q., Guillot, J., and Boutillon, E. Op-
timization of Data-Flow computation using Canonical TED Representation.
IEEE Trans. on Computers 28, 9 (September 2009), 1321–1333.

[29] Ciesielski, M., Kalla, P., and Askar, S. Taylor Expansion Diagrams: A Canon-
ical Representation for Verification of Data Flow Designs. IEEE Trans. on
Computers 55, 9 (Sept. 2006), 1188–1201.

[30] Ciesielski, M., and W. Brown, A. Rossi. Arithmetic Bit-level Verification using
Network Flow Model. In Haifa Verification Conference, HVC’13 (Nov. 2013),
Springer, LNCS 8244, pp. 327–343.

[31] Ciesielski, M, Yu, C, Brown, W, Liu, D, and Rossi, André. Verification of
Gate-level Arithmetic Circuits by Function Extraction. In 52nd DAC (2015),
ACM, pp. 52–57.

[32] Ciesielski, Maciej, Brown, Walter, Liu, Duo, and Rossi, André. Function extrac-
tion from arithmetic bit-level circuits. In VLSI (ISVLSI), 2014 IEEE Computer
Society Annual Symposium on (2014), IEEE, pp. 356–361.

[33] Ciet, Mathieu, Quisquater, Jean-Jacques, and Sica, Francesco. A short note
on irreducible trinomials in binary fields. In 23rd Symposium on Information
Theory in the BENELUX (2002).

[34] Cimatti, Alessandro, Clarke, Edmund, Giunchiglia, Fausto, and Roveri, Marco.
Nusmv: A new symbolic model verifier. In Computer Aided Verification (1999),
Springer, pp. 495–499.

[35] Clarke, Edmund, Grumberg, Orna, Jha, Somesh, Lu, Yuan, and Veith, Hel-
mut. Counterexample-guided Abstraction Refinement. In CAV 2000 (2000),
Springer, pp. 154–169.

138

[36] Clarke, Edmund M, Grumberg, Orna, and Peled, Doron. Model checking. MIT
press, 1999.

[37] Cohen, Aaron E, and Parhi, Keshab K. Architecture optimizations for the rsa
public key cryptosystem: a tutorial. Circuits and Systems Magazine, IEEE 11,
4 (2011), 24–34.

[38] Cox, D., Little, J., and O’Shea, D. Ideals, Varieties, and Algorithms. Springer,
1997.

[39] De Moura, Leonardo, and Bjørner, Nikolaj. Z3: An efficient smt solver. In
Tools and Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340.

[40] Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H. Singular 3-1-6
A Computer Algebra System for Polynomial Computations. Tech. rep., 2012.
http://www.singular.uni-kl.de.

[41] El Massad, Mohamed, Garg, Siddharth, and Tripunitara, Mahesh V. Inte-
grated circuit (ic) decamouflaging: Reverse engineering camouflaged ics within
minutes. In NDSS (2015).

[42] Fallah, Farzan, Devadas, Srinivas, and Keutzer, Kurt. Functional vector gen-
eration for hdl models using linear programming and 3-satisfiability. In Design
Automation Conference (DAC) (1998), IEEE, pp. 528–533.

[43] Faugere, Jean-Charles. A New Efficient Algorithm for Computing Groebner
Bases (F4). Journal of Pure and Applied Algebra 139, 13 (1999), 61 – 88.

[44] Foster, Harry D. Trends in functional verification: A 2014 industry study. In
Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE (2015),
IEEE, pp. 1–6.

[45] Ghandali, Samaneh, Alizadeh, Bijan, Fujita, Masahiro, and Navabi, Zainalabe-
din. Automatic high-level data-flow synthesis and optimization of polynomial
datapaths using functional decomposition. Computers, IEEE Transactions on
(2014).

[46] Ghandali, Samaneh, Yu, Cunxi, Liu, Duo, Walter, Brown, , and Ciesielski,
Maciej. Logic Debugging of Arithmetic Circuits. In IEEE Computer Society
Annual Symposium on VLSI (ISVLSI) (2015), IEEE, pp. 113–118.

[47] Goldberg, Evgueni, Prasad, Mukul, and Brayton, Robert. Using sat for com-
binational equivalence checking. In Proceedings of the conference on Design,
automation and test in Europe (2001), IEEE Press, pp. 114–121.

[48] Gordon, Michael JC, and Melham, Tom F. Introduction to HOL A Theorem
Proving Environment for Higher Order Logic. In Cambridge University Press
(1993).

139

[49] Hansen, Mark C, Yalcin, Hakan, and Hayes, John P. Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering. IEEE Design & Test of
Computers, 3 (1999), 72–80.

[50] Himanshu, Jain, and et al. Word-level Predicate-abstraction and Refinement
Techniques for Verifying RTL verilog. TCAD (2008).

[51] Huang, Zheng, Wang, Lingli, Nasikovskiy, Yakov, and Mishchenko, Alan. Fast
boolean matching based on NPN classification. In International Conference on
Field-Programmable Technology, FPT, Kyoto, Japan (2013).

[52] Jain, Himanshu, Kroening, Daniel, Sharygina, Natasha, and Clarke, Edmund.
Word level Predicate Abstraction and Refinement for Verifying RTL verilog.
In 42nd DAC (2005), ACM, pp. 445–450.

[53] Kaiss, Daher, Skaba, Marcelo, Hanna, Ziyad, and Khasidashvili, Zurab. Indus-
trial strength sat-based alignability algorithm for hardware equivalence verifi-
cation. In FMCAD (2007), IEEE, pp. 20–26.

[54] Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav,
S., Slobodová, A., Taylor, C., V. Frolov, E. Reeber, and Naik., A. Replac-
ing Testing with Formal Verification in Intel CoreTM i7 Processor Execution
Engine Validation. In Computer Aided Verification (CAV) (2009), Springer,
pp. 414–429.

[55] Kapur, D., and Subramaniam, M. Mechanical Verification of Adder Circuits
using Rewrite Rule Laboratory. Formal Methods in System Design (FMCAD)
13, 2 (1998), 127–158.

[56] Kaufmann, Matt, and Moore, J Strother. Acl2: An industrial strength version of
nqthm. In COMPASS’96, Systems Integrity. Software Safety. Process Security.
Proceedings of the Eleventh Annual Conference on Computer Assurance (1996),
IEEE, pp. 23–34.

[57] Keutzer, K. Dagon: Technology binding and local optimization by dag match-
ing.

[58] Koc, Cetin K, and Acar, Tolga. Montgomery multiplication in gf (2k). Designs,
Codes and Cryptography 14, 1 (1998), 57–69.

[59] Koelbl, Alfred, Jacoby, Reily, Jain, Himanshu, and Pixley, Carl. Solver technol-
ogy for system-level to rtl equivalence checking. In Design, Automation & Test
in Europe Conference & Exhibition, 2009. DATE’09. (2009), IEEE, pp. 196–
201.

[60] Koelbl, Alfred, and Pixley, Carl. Constructing efficient formal models from high-
level descriptions using symbolic simulation. International Journal of Parallel
Programming 33, 6 (2005), 645–666.

140

[61] Koren, Israel. Computer Arithmetic Algorithms. Universities Press, 2002.

[62] Krautz, Udo, Paruthi, Viresh, Arunagiri, Anand, Kumar, Sujeet, Pujar,
Shweta, and Babinsky, Tina. Automatic verification of floating point units. In
Proceedings of the 51st Annual Design Automation Conference (2014), ACM,
pp. 1–6.

[63] Kuehlmann, Andreas, and Krohm, Florian. Equivalence checking using cuts
and heaps. In Proceedings of the 34th annual Design Automation Conference
(1997), ACM, pp. 263–268.

[64] Kuehlmann, Andreas, Srinivasan, Arvind, and LaPotin, David P. Verity-a for-
mal verification program for custom cmos circuits. IBM Journal of Research
and Development 39, 1-2 (1995), 149–166.

[65] Li, Meng, Shamsi, Kaveh, Meade, Travis, Zhao, Zheng, Yu, Bei, Jin, Yier, and
Pan, David Z. Provably secure camouflaging strategy for IC protection. In
Proceedings of the 35th International Conference on Computer-Aided Design,
ICCAD 2016, Austin, TX, USA, November 7-10, 2016 (2016), p. 28.

[66] Li, Wenchao, Gascon, Adria, Subramanyan, Pramod, Tan, Wei Yang, Tiwari,
Anish, Malik, Sharad, Shankar, Nishanth, Seshia, Sanjit, et al. Wordrev: Find-
ing Word-level Structures in a Sea of Bit-level Gates. In HOST 2013 (2013),
IEEE, pp. 67–74.

[67] Li, Wenchao, Wasson, Zach, Seshia, Sanjit, et al. Reverse Engineering Circuits
using Behavioral Pattern Mining. In Hardware-Oriented Security and Trust
(HOST), 2012 IEEE International Symposium on (2012), IEEE, pp. 83–88.

[68] Li, Wenchao, Wasson, Zach, and Seshia, Sanjit A. Reverse engineering circuits
using behavioral pattern mining. In 2012 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2012, San Francisco, CA, USA,
June 3-4, 2012 (2012), pp. 83–88.

[69] Liu, Duo, Yu, Cunxi, Zhang, Xiangyu, and Holcomb, Daniel E. Oracle-guided
incremental SAT solving to reverse engineer camouflaged logic circuits. In 2016
Design, Automation & Test in Europe Conference & Exhibition, DATE 2016,
Dresden, Germany, March 14-18, 2016 (2016), pp. 433–438.

[70] Lv, J., Kalla, P., and Enescu, F. Efficient Grobner Basis Reductions for Formal
Verification of Galois Field Arithmatic Circuits. IEEE Trans. on CAD 32, 9
(September 2013), 1409–1420.

[71] Lv, J., Kalla, P., and Enescu, F. Efficient Grobner Basis Reductions for Formal
Verification of Galois Field Arithmetic Circuits. IEEE Trans. on CAD 32, 9
(September 2013), 1409–1420.

141

[72] Lv, Jinpeng, Kalla, Priyank, and Enescu, Florian. Efficient groebner basis
reductions for formal verification of galois field arithmetic circuits. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on 32, 9
(2013), 1409–1420.

[73] Manolios, Panagiotis, and Srinivasan, Sudarshan K. Refinement Maps for Effi-
cient Verification of Processor Models. In DATE 2005 (2005), pp. 1304–1309.

[74] Mishchenko, A., Een, N., Brayton, R. K., Jang, S., Ciesielski, M., and Daniel,
T. MAGIC: An Industrial-Strength Logic Optimization, Technology Mapping,
and Formal Verification Tool. In Intl. Workshop on Logic Synthesis (June
2010), pp. 124–127.

[75] Mishchenko, A, et al. ABC: A System for Sequential Synthesis and Verification.
URL http://www. eecs. berkeley. edu/˜ alanmi/abc (2007).

[76] Mishchenko, Alan, Chatterjee, Satrajit, and Brayton, Robert. Dag-aware aig
rewriting a fresh look at combinational logic synthesis. In Proceedings of the
43rd annual Design Automation Conference (2006), ACM, pp. 532–535.

[77] Mishchenko, Alan, Chatterjee, Satrajit, and Brayton, Robert. DAG-aware
AIG Rewriting A Fresh Look at Combinational Logic Synthesis. In 43rd DAC
(2006), ACM, pp. 532–535.

[78] Mishchenko, Alan, Chatterjee, Satrajit, Jiang, Roland, and Brayton, Robert K.
Fraigs: A unifying representation for logic synthesis and verification. Tech. rep.,
ERL Technical Report, 2005.

[79] Mishchenko, Alan, Chatterjee, Satrajit, Jiang, Roland, and Brayton, Robert K.
Fraigs: A unifying representation for logic synthesis and verification. Tech. rep.,
ERL Technical Report, 2005.

[80] Mishchenko, Alan, et al. Abc: A system for sequential synthesis and verification.
URL http://www. eecs. berkeley. edu/˜ alanmi/abc (2007).

[81] Naoyuki, Tamura, Takehide, Soh, and Mutsunori, Banbara. PBSugar: A SAT-
based Pseudo-Boolean Solver. http://bach.istc.kobe-u.ac.jp/pbsugar (2013).

[82] Niemetz, Aina, Preiner, Mathias, and Biere, Armin. Boolector 2.0. Journal on
Satisfiability, Boolean Modeling and Computation 9 (2015).

[83] NIST. Recommended elliptic curves for federal government use.

[84] Owre, Sam, Rushby, John M, and Shankar, Natarajan. PVS: A Prototype Ver-
ification System. In Automated Deduction - CADE-11. Springer, 1992, pp. 748–
752.

[85] Paar, Christof, and Pelzl, Jan. Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media, 2009.

142

[86] Pan, Peichen, and Lin, Chih-Chang. A new retiming-based technology mapping
algorithm for lut-based fpgas. In FPGA (1998), pp. 35–42.

[87] Parthasarathy, Ganapathy, Huang, Chung-Yang, and Cheng, Kwang-Ting. An
Analysis of ATPG and SAT Algorithms for Formal Verification. In HLDVT.
Proceedings. Sixth IEEE International (2001), IEEE, pp. 177–182.

[88] Paruthi, Viresh, and Kuehlmann, Andreas. Equivalence checking combining a
structural sat-solver, bdds, and simulation. In Computer Design, 2000. Pro-
ceedings. 2000 International Conference on (2000), IEEE, pp. 459–464.

[89] Pavlenko, E., Wedler, M., Stoffel, D., Kunz, W., Dreyer, A., Seelisch, F., and
Greuel, G.M. Stable: A new qf-bv smt solver for hard verification problems
combining boolean reasoning with computer algebra. In DATE (2011), pp. 155–
160.

[90] Plaza, Stephen M, Chang, Kai-hui, Markov, Igor L, and Bertacco, Valeria.
Node mergers in the presence of don’t cares. In ASP-DAC’07 (2007), IEEE,
pp. 414–419.

[91] Pruss, T., Kalla, P., and Enescu, F. Equivalence Verification of Large Galois
Field Arithmetic Circuits using Word-Level Abstraction via Gröbner Bases. In
DAC’14 (2014), pp. 1–6.

[92] Pruss, Tim, Kalla, Priyank, and Enescu, Florian. Efficient symbolic computa-
tion for word-level abstraction from combinational circuits for verification over
finite fields. IEEE Trans. on CAD of Integrated Circuits and Systems 35, 7
(2016), 1206–1218.

[93] Rajendran, Jeyavijayan, Pino, Youngok, Sinanoglu, Ozgur, and Karri, Ramesh.
Security analysis of logic obfuscation. In Proceedings of the 49th Annual Design
Automation Conference (2012), ACM, pp. 83–89.

[94] Rajendran, Jeyavijayan, Sam, Michael, Sinanoglu, Ozgur, and Karri, Ramesh.
Security analysis of integrated circuit camouflaging. In 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Ger-
many, November 4-8, 2013 (2013), pp. 709–720.

[95] Rajendran, Jeyavijayan, Zhang, Huan, Zhang, Chi, Rose, Garrett S, Pino,
Youngok, Sinanoglu, Ozgur, and Karri, Ramesh. Fault analysis-based logic
encryption. IEEE Transactions on computers 64, 2 (2015), 410–424.

[96] Raudvere, Tarvo, Singh, Ashish Kumar, Sander, Ingo, and Jantsch, Axel. Sys-
tem Level Verification of Digital Signal Processing Applications based on the
Polynomial Abstraction Technique. In Proceedings of the 2005 IEEE/ACM In-
ternational conference on Computer-aided design (ICCAD) (2005), IEEE Com-
puter Society, pp. 285–290.

143

[97] Saab, Daniel G, Abraham, Jacob A, and Vedula, Vivekananda M. Formal
Verification using Bounded Model Checking: SAT versus Sequential ATPG
Engines. In VLSI Design, 2003. Proceedings. 16th International Conference on
(2003), IEEE, pp. 243–248.

[98] SAT. Sat competition 2014. URL http://www.satcompetition.org/2014/results.shtml
(2014 July 14-17 in Vienna, Austria), 53.

[99] Savoj, Hamid, Mishchenko, Alan, and Brayton, Robert. Sequential equivalence
checking for clock-gated circuits. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 33, 2 (2014), 305–317.

[100] Sayed-Ahmed, Amr, Große, Daniel, Kühne, Ulrich, Soeken, Mathias, and
Drechsler, Rolf. Formal verification of integer multipliers by combining grobner
basis with logic reduction. In DATE’16 (2016), pp. 1–6.

[101] Sayed-Ahmed, Amr, Große, Daniel, Soeken, Mathias, and Drechsler, Rolf.
Equivalence checking using grobner bases. FMCAD’2016 (2016).

[102] Scott, Michael. Optimal irreducible polynomials for gf (2m) arithmetic. IACR
Cryptology ePrint Archive 2007 (2007), 192.

[103] Shekhar, N., Kalla, P., and Enescu, F. Equivalence Verification of Polynomial
Data-Paths Using Ideal Membership Testing. IEEE Trans. on Computer-Aided
Design 26, 7 (July 2007), 1320–1330.

[104] Shekhar, Namrata, Kalla, Priyank, Enescu, Florian, and Gopalakrishnan,
Sivaram. Exploiting vanishing polynomials for equivalence verification of fixed-
size arithmetic datapaths. In ICCD (2005), IEEE, pp. 215–220.

[105] Soeken, Mathias, Sterin, Baruch, Drechsler, Rolf, and Brayton, Robert. Simu-
lation Graphs for Reverse Engineering. FMCAD 2015 .

[106] Sohofi, Hassan, and Navabi, Zainalabedin. Assertion-based verification for
system-level designs. In Quality Electronic Design (ISQED), 2014 15th In-
ternational Symposium on (2014), IEEE, pp. 582–588.

[107] Somenzi, Fabio. CUDD: CU Decision Diagram Package-release 2.4. 0. Univer-
sity of Colorado at Boulder (2009).

[108] Soos, Mate. Enhanced Gaussian Elimination in DPLL-based SAT Solvers. In
POS@ SAT (2010), pp. 2–14.

[109] Sorensson, Niklas, and Een, Niklas. Minisat v1. 13-a sat solver with conflict-
clause minimization. SAT 2005 (2005), 53.

[110] Sörensson, Niklas, and Eén, Niklas. MiniSat 2.1 and MiniSat++ 1.0 - SAT race
2008 editions. SAT (2009), 31.

144

[111] Su, Tiankai, Yu, Cunxi, Yasin, Atif, and Ciesielski, Maciej J. Formal verification
of truncated multipliers using algebraic approach and re-synthesis. In 2017
IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2017, Bochum,
Germany, July 3-5, 2017 (2017), pp. 415–420.

[112] Subramanyan, Pramod, Ray, Sayak, and Malik, Sharad. Evaluating the security
of logic encryption algorithms. In IEEE International Symposium on Hardware
Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5-7 May,
2015 (2015), pp. 137–143.

[113] Subramanyan, Pramod, Tsiskaridze, Nestan, Pasricha, Kanika, Reisman, Dil-
lon, Susnea, Adriana, and Malik, Sharad. Reverse Engineering Digital Circuits
Using Functional Analysis. In DATE (2013), pp. 1277–1280.

[114] Sun, Xiaojun, Kalla, Priyank, Pruss, Tim, and Enescu, Florian. Formal ver-
ification of sequential galois field arithmetic circuits using algebraic geometry.
In Proceedings of the 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE) (2015), EDA Consortium, pp. 1623–1628.

[115] Sunar, Berk, and Koç, Ç K. Mastrovito multiplier for all trinomials. Computers,
IEEE Transactions on 48, 5 (1999), 522–527.

[116] Synopsys. Synopsys Formality.

[117] Theo, Drane, and Himanshu, Jain. Formal Verification and Validation of High-
level Optimizations of Arithmetic Datapath Blocks. In SNUG Awards 2011
(2011), Synopsys.

[118] Torrance, Randy, and James, Dick. The state-of-the-art in IC Reverse Engineer-
ing. In Cryptographic Hardware and Embedded Systems-CHES 2009. Springer,
2009, pp. 363–381.

[119] Torrance, Randy, and James, Dick. The state-of-the-art in semiconductor re-
verse engineering. In Proceedings of the 48th Design Automation Conference,
DAC 2011, San Diego, California, USA, June 5-10, 2011 (2011), pp. 333–338.

[120] Van Eijk, CAJ. Sequential equivalence checking based on structural similari-
ties. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 19, 7 (2000), 814–819.

[121] Vasudevan, S., Viswanath, V., Sumners, R. W., and Abraham, J. A. Automatic
Verification of Arithmetic Circuits in RTL using Stepwise Refinement of Term
Rewriting Systems. IEEE Trans. on Computers 56, 10 (2007), 1401–1414.

[122] Wienand, O., Wedler, M., Stoffel, D., Kunz, W., and Greuel, G.-M. An Alge-
braic Approach for Proving Data Correctness in Arithmetic Data Paths. CAV
(July 2008), 473–486.

145

[123] Yasin, Muhammad, Mazumdar, Bodhisatwa, Sinanoglu, Ozgur, and Rajendran,
Jeyavijayan. Camoperturb: secure IC camouflaging for minterm protection. In
Proceedings of the 35th International Conference on Computer-Aided Design,
ICCAD 2016, Austin, TX, USA, November 7-10, 2016 (2016), p. 29.

[124] Yu, Cunxi, Brown, Walter, and Ciesielski, Maciej. Verification of Arithmetic
Datapath Designs using Word-level Approach A Case Study. ISCAS 2015 10 ,
11.

[125] Yu, Cunxi, Brown, Walter, Liu, Duo, Rossi, André, and Ciesielski, Maciej J.
Formal verification of arithmetic circuits using function extraction. IEEE Trans.
on CAD of Integrated Circuits and Systems 35, 12 (2016), 2131–2142.

[126] Yu, Cunxi, Choudhury, Mihir, Sullivan, Andrew, and Ciesielski, Maciej J.
DAG-aware Logic Synthesis of Datapaths. In 2017 International Conference
On Computer Aided Design,ICCAD 2017, Irvine, CA, USA, November 13-16,
2017 (2017).

[127] Yu, Cunxi, and Ciesielski, Maciej. Formal Verification using Don’t-care and
Vanishing Polynomials. In 2016 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI) (2016), IEEE, pp. 284–289.

[128] Yu, Cunxi, and Ciesielski, Maciej J. Analyzing imprecise adders using bdds -
A case study. In IEEE Computer Society Annual Symposium on VLSI, ISVLSI
2016, Pittsburgh, PA, USA, July 11-13, 2016 (2016), pp. 152–157.

[129] Yu, Cunxi, and Ciesielski, Maciej J. Automatic word-level abstraction of data-
path. In IEEE International Symposium on Circuits and Systems, ISCAS 2016,
Montréal, QC, Canada, May 22-25, 2016 (2016), pp. 1718–1721.

[130] Yu, Cunxi, Ciesielski, Maciej J., Choudhury, Mihir, and Sullivan, Andrew. Dag-
aware logic synthesis of datapaths. In Proceedings of the 53rd Annual Design
Automation Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016 (2016),
pp. 135:1–135:6.

[131] Yu, Cunxi, Holcomb, Daniel, and Ciesielski, Maciej. Reverse engineering of ir-
reducible polynomials in gf(2m) arithmetic. In DATE 2017, Lausanne, Switzer-
land (2017).

[132] Yu, Cunxi, Zhang, Xiangyu, Liu, Duo, Ciesielski, Maciej, and Holcomb, Daniel.
Incremental sat-based reverse engineering of camouflaged logic circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2017).

[133] Zhu, Qi, Kitchen, Nathan, Kuehlmann, Andreas, and Sangiovanni-Vincentelli,
Alberto. Sat sweeping with local observability don’t-cares. In Proceedings of
the 43rd annual Design Automation Conference (2006), ACM, pp. 229–234.

146

	Formal Analysis of Arithmetic Circuits using Computer Algebra - Verification, Abstraction and Reverse Engineering
	Recommended Citation

	tcad17-runtime-mem.eps

