University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

Bit-parallel word-serial polynomial basis finite field multiplier in
GF(2(233)).

Wenkai Tang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Tang, Wenkai, "Bit-parallel word-serial polynomial basis finite field multiplier in GF(2(233))." (2004).
Electronic Theses and Dissertations. 1310.
https://scholar.uwindsor.ca/etd/1310

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1310?utm_source=scholar.uwindsor.ca%2Fetd%2F1310&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Bit-Parallel Word-Serial Polynomial Basis
Finite Field Multiplier in GF(2?%)

by

Wenkai Tang

A Thesis
Submitted to the Faculty of Graduate Studies and Research through the
Department of Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
May, 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-92454-8
Our file Notre référence
ISBN: 0-612-92454-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/fiim, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(© May, 2004 Wenkai Tang

All Rights Reserved. No Part of this document may be reproduced, stored or oth-
erwise retained in a retreival system or transmitted in any form, on any medium by

any means without prior written permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without perhissioh.

Reproduced with permission of the copyright owner. 'Fu'rithéir}eproduction prohibited without permission.

Abstract

Smart card gains extensive uses as a cryptographic hardware in security applications
in daily life. The characteristics of smart card require that the cryptographic hardware
inside the smart card have the trade-off between area and speed.

There are two main public key cryptosystems, these are RSA cryptosystem and elliptic
curve (EC) cryptosystem. EC has many advantages compared with RSA such as
shorter key length and more suitable for VLSI implementation. Such advantages
make EC an ideal candidate for smart card.

Finite field multiplier is the key component in EC hardware. In this thesis, bit-parallel
word-serial (BPWS) polynomial basis (PB) finite field multipliers are designed. Such
architectures trade-off area with speed and are very useful for smart card.

An ASIC chip which can perform finite field multiplication and finite field squaring
using the BPWS PB finite field multiplier is designed in this thesis. The proposed
circuit has been implemented using TSMC 0.18 CMOS technology.

A novel 8 x 233 bit-parallel partial product generator is also designed. This new
partial product generator has low circuit complexity. The design algorithm can be

easily extended to w x m bit-parallel partial product generator for GF(2™).

iv

To my parents for their constant encouragement, my wife for her support and my
daughter Xina.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to express my sincere gratitude to my graduate supervisors Dr. Huapeng
Wu and Dr. Majid Ahmadi for their constant support, guidance and motivation. I
am also grateful to the committee members Dr. Kemal E. Tepe and Dr. Jessica Chen
for providing valuable feedback at all times.

I would like to thank Till Kuendiger for helpful support on the utilization of VLSI
CAD tools. I would also like to thank Minyi Fu, Bijan Ansari, Zheng Li and Zhong

Zheng for helpful discussions and suggestions.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract
Dedication
Acknowledgements
List of Figures
List of Tables
Abbreviations

1 Introduction
1.1 Research motivations
1.1.1 Smart card and its applications
1.1.2 Cryptography and cryptosystems
1.1.3 Elliptic curve cryptography (ECC)
1.2 Researchgoals.

1.3 Thesis organization L L oL

2 Arithmetic over Finite Field
2.1 Group, ring, field and finite field, ..
211 Group e

iv

vi

viii

xi

S O B W e

-J

vii

Reproduced with permission of the copyright owner. Further reproducﬁtion prohibited without perﬁiééion.

CONTENTS

21.2 Ring 8
213 Field 9
214 Finitefield. oo 10
2.2 Finite field element representations 11
2.2.1 Polynomial basis 12
2.3 Finite field operation L. 12
23.1 Addition 12
2.3.2 Multiplication o 13
2.3.3 Comparisons among the multiplications with different basis . . 14
2.4 Galois type linear feedback shift register (LFSR) 15
25 Ellipticcurve 15
2.6 Polynomial basis (PB) finite field multipliers 17
2.6.1 Bit-parallel PB finite field multipliers 18
2.6.2 Bit-serial PB finite field multipliers 19
2.6.3 Bit-parallel PB finite field squarer 21
2.7 Summary e e 22

3 Design of Bit-Parallel Word-Serial PB Finite Field Multipliers 25

3.1 NIST recommendations 26
3.2 Design of BPWS PB finite field Multiplier 27
3.2.1 Multiplication algorithm 27
3.2.2 Bit-parallel word-serial multiplier architecture 28
3.2.3 M3: Constant Finite Field Multiplier Z =28y 31
3.2.4 M1: 8 x 233 Bit-parallel partial product generator 32

3.3 Alternative BPWS PB finite field multiplier 36
3.4 General BPWS PB finite field multipliers 40
3.5 CompariSons e e e e e e e e e 41
3.6 Summary e e 44
viii

Reproduced with permission of the copyright owner. Further reproductibh brohibited without permission.

CONTENTS

4 Hardware Design 45
4.1 Hardware architecture 45
4.2 Hardware specificationso 46
4.3 VLSI implementation technology and design flow 47
4.4 Front-enddesign 47

441 Stimulifiles 49
44.2 Hardwaremodeling 49
4.4.3 Logical synthesis 50
444 DFTsynthesis. 50
45 Back-enddesign 51
4.5.1 Floorplanning and Placement 51
452 Clock treesynthesis 53
453 Goldennetlist L 54
454 Routing e 54
4.6 Physical verification and modification L. 58
4.6.1 Layout versus schematic (LVS) 58
4.6.2 Design rule checking (DRC) 59
47 ChipLayout 60
4.8 CompariSons v v v v i e e e e e e 63
4.9 Summary e e e e e 63

5 Summaries of Contributions 65

A Program 1 66

B Program 2 68

References 79

VITA AUCTORIS 82

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited withau’tr permussuon

List of Figures

1.1

2.1
2.2

Smart card L e e e 3
Galois type LFSR when F(z)=z™+2*+1 15
MSB first bit-serial PB finite field multiplier when F(z) = 2° +22 +1 20

2.3 LSB first bit-serial PB finite field multiplier when F(z) =z° + 2?2 +1 21
3.1 Proposed hybrid finite field multiplier 29
3.2 Ms3: The constant finite field multiplier Z =28Y 31
3.3 8 x 233 bit-parallel partial product generator 33
3.4 The architecture of the general constant finite field multiplier Z = z*Y 33
3.5 The architecture of AND network 34
3.6 The architecture of XOR network 34
3.7 The architecture of sub XOR network 35
3.8 Alternative BPWS PB finite field multiplier over GF(2%3) 37
3.9 The BPWS PB finite field multiplier in GF(2™) 40
3.10 The alternative BPWS PB finite field multiplier in GF(2™) 41
4.1 The schematic of the hardware 46
4.2 CMCdigital design flow 48
4.3 Illustration of placement, 53
4.4 Functional multiplication test 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

4.5 Waveform of functional multiplication test 55
4.6 Functional squaring test 56
4.7 Waveform of functional squaring test 56
4.8 Timing limit checking 57
49 Theresultof LVS 59
4.10 The result of phantom level DRC 60
4.11 The result of standard DRC from CMC 61
4.12 The result of anntenna DRC from CMC 61
413 Thelayout of thechip 62

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Additionrulefor GF(2) 11
2.2 Multiplication rule for GF(2) 11
2.3 Close form representation of the product coefficient ¢; 19
2.4 The summary for MSB and LSB bit-serial finite field multipliers . . . 21
2.5 Close form representation for the squaring coefficient ¢; 23
3.1 NIST recommendations 26
3.2 The output and intermediate results upon each clock cycle 30
3.3 Circuit and timing complexities of the 8 x 233 partial product generator 35
3.4 Circuit and timing complexities of the BPWS PB finite field multiplier 35
3.5 The values of output and other modules on each clock cycle 39
3.6 The circuit and timing complexities of alternative BPWS PB finite

field multiplier 39
3.7 The comparisons among bit-parallel, bit-serial and BPWS finite field

multipliers L 42
4.1 Specifications 47
4.2 Results of logicsynthesis 50
4.3 The hardware parameters 63
4.4 Comparisons among VLSI implementation of finite field multipliers . 64

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abbreviations

AOP
ASIC
ATPG
BPWS
CMC
CMOS
DFT
DRC
DSS
EC
ECC
ECDLP
GF
HDL
LFSR
LSB

All One Polynomial

Application-Specific Integrated Circuit
Automatic Test Pattern Generation
Bit-Parallel Word-Serial

Canadian Microelectronics Corporation
Complementary Metal Oxide Semiconductor
Design For Testbility

Design Rule Check

Digital Signature Standard

Elliptic Curve

Elliptic Curve Cryptography

Elliptic Curve Discrete Logarithm Problem
Galois Field (Finite Field)

Hardware Description Language

Linear Feedback Shift Register

Least Significant Bit

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABBREVIATIONS

LSW
LVS
MSB
MSW
NIST
PB
RC
RSA

RSPF
RTL
SOC
TSMC

Least Significant Word

Layout Versus Schematic

Most Significant Bit

Most significant Word

National Institute of Standard and Technology
Polynomial Basis
Resistance-Capacitance

Rivest, Shamir, and Adleman
(public key encryption technology)
Regular Standard Parasitic Format
Register Transfer Level

System On Chip

Taiwan Semiconductor Manufacture Company

Reproduced with permission of the copyright owner. Further reproduétién 'brrci)'hribited wrirthout pé}mission.

Chapter 1

Introduction

In this chapter, the research motivations are introduced in the first section, the fol-

lowings are our research goals and the thesis organization.

1.1 Research motivations

Our research is originated from smart card applications.

1.1.1 Smart card and its applications

A smart card is a credit card sized plastic card embedded with an integrated circuit
(IC) chip. It provides not only memory capacity, but computational capability as
well. The self-containment of smart card makes it resistant to attack as it does
not need to depend upon potentially vulnerable external resources. Because of this
characteristic, smart cards are often used in different security applications which

require strong security protection and authentication.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permlgélon

1. INTRODUCTION

The success of the smart cards in Europe began in the early eighties, between 1982
and 1984 when Carte Bancaire (the French Bank Card Group) had the first smart card
pilot running [9]. Together with Bull (A French company), Philips (An international
company) and Schlumberger (An international company), Carte Bancaire launched
trials in the French cities of Blois, Caen, and Lyon. The trials were a great success.
Following these trials, French banks launched the use of smart cards for banking.
This was the first mass rollout of smart cards in the banking industry.

Today, smart cards are used for many different purposes in daily life. Smart
card can be a phone card, people can use it to make local or long distance call in
a phone booth; Smart card can also act as an identification card which is used to
prove the identity of the card holder. For example, it can be used as campus access
card. In Finland, smart cards are used as the Finnish National Electronic Identity
(FINEID) cards; Smart card can be a medical card which stores the medical history
of a person; Furthermore, the smart card can be used as a credit/debit bank card
which allows off-line transactions. In the near future, the traditional magnetic strip
card will be replaced and integrated together into a single card by using the multi-
application smart card, which is known as an electronic purse or wallet in the smart
card industry. All of these applications require sensitive data to be stored in the
card, such as biometrics information of the card owner, personal medical history, and
cryptographic keys for authentication, etc.

A smart card [9] shown in Figure 1.1 consists of a microprocessor, ROM (Read
Only Memory), EEPROM (Electrical Erasable Programmable Read Only Memory),
and RAM (Random Access Memory).

Today’s smart cards have approximately the same computing power as the first
IBM PC [9]. At present, most smart cards have an inexpensive 8-bit microprocessor,
but the high-end cards can have a 16-bit or 32-bit processor. An optional crypto-

graphic coprocessor (security processor) increases the performance of cryptographic

1. INTRODUCTION

(ROM)
~16 KB to 32 KB
~ Operating systent
- Commumication
I EEPROM
-1 KBt I6 KB
~ Filesystem
CpPU RAM - Program files
= % bit -~ 256 byteto ||~ Keys
-5 MHz. 5V 1 KB - Passwords
C ~ optional coprocessor - Applications)

Figure 1.1: Smart card

operations. The working frequency of smart card normally is 5 MHz. The RAM size
of most smart cards is 256 bytes to 1 kilobyte. The chip size is at most 25mm? and
there are also a card operating system and might have some applications in smart
card [9].

Since the working frequency is relatively slow, furthermore, the memory inside
the smart card is very limited and the card operating system is not for security pur-
pose, software implementation of any security application in smart card is normally
very slow and considered insecure. We usually solve the high load of cryptographic
computations by means of the cryptographic coprocessor. Due to the above features
of the smart card and its area constraint which we cannot make the chip very large,

the coprocessor hardware inside the smart card should trade-off area for speed.

1.1.2 Cryptography and cryptosystems

Cryptography and cryptosystems gain extensive uses in all kinds of security applica-
tions.
Cryptography is the study of mathematical techniques related to the aspects of

information security such as confidentiality, data integrity, and data origin authenti-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

cation, etc. Cryptosystems can normally be classified into two groups : symmetric
cryptosystems [1] and asymmetric cryptosystems [1] (also called public key cryptosys-
tems).

Symmetric cryptosystems use the same key to encrypt and decrypt information.
Implementations of symmetric key encryption/decryption can be highly efficient, so
that users do not experience any significant time delay as a result of the encryption
and decryption. But symmetric cryptosystems have a problem of low security for
their key. It is generally very difficult to transmit the secret key from the sender
to the recipient securely and in a tamperproof fashion. If anyone else discovers the
key, it affects both confidentiality and authentication. A person with an unauthorized
symmetric key not only can decrypt messages sent with that key, but can also encrypt
new messages and send them as if they came from one of the two parties who were
originally using the key. Frequently, trusted couriers are used as a solution to this
problem. A more efficient and reliable solution is a public key cryptosystem.

Public key cryptosystems involve a pair of keys (a public key and a private
key) which are associated with an entity that needs to authenticate its identity or
to sign or to encrypt data. Such public key cryptosystems have the abilities to
perform the functions of key exchange, digital signature, encryption and decryption.
Nowadays there are two main public key cryptosystems which are RSA cryptosystems
and Elliptic curve (EC) cryptosystems.

1.1.3 Elliptic curve cryptography (ECC)

In 1985, N. Koblitz [11] and V.S. Miller [16] independently proposed elliptic curves
(EC) for public key cryptosystems. Their proposal however was not considered as
a new cryptographic algorithm with elliptic curves over finite fields, as they imple-
mented existing algorithms, like Diffie-Hellman, using elliptic curves [23].

Over the past two decades, elliptic curve has been well researched by many schol-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permisisriidrhj

1. INTRODUCTION

ars. These cryptosystems need a much shorter key than RSA cryptosystems to provide
the same security strength. It appears that an elliptic curve cryptosystem imple-
mented over the 160-bit field GF(2!%°) currently offers roughly the same resistance to
side channel attack as would a 1024-bit RSA [20] and an elliptic curve cryptosystem
over a 136-bit field GF(21%) gives us roughly the same security as 768-bit RSA [22].
The basic operations in RSA cryptosystems are integer modular operations, while
in EC cryptosystems, finite field operations are the basic operations. When elliptic
curve is over finite field GF(2™), the implementation of EC cryptosystems will save
more hardware resources than RSA cryptosystems since the field elements in GF(2™)
can be represented by m-bit binary numbers and the binary number is well adopted
by computer arithmetic. All these advantages make EC an ideal candidate for smart
card applications.

The finite field operations in EC cryptosystems can be broken into finite field ad-
ditions, multiplications, squarings and inversions. Finite field addition can be simply
implemented by XOR gates and normally considered as almost free. These finite field
adders are carry-free, and thus are faster than normal carry ripple adders. The finite
field inversion can be further broken into finite field multiplications and finite field
squarings [26, 4] and finite field squaring is a special case of finite field multiplication,
thus, the finite field multiplier becomes the key component in EC hardware.

A number of finite field multiplier architectures have been proposed with different
emphasis for various security applications. Full bit-parallel finite field multipliers [28,
12, 13, 14, 15, 19, 25, 27} can yield high throughputs, bit-serial finite field multipliers
[2, 8, 24, 27] only need small area. These finite field multiplier architectures can satisfy
nearly all security applications. However, the full bit-parallel finite field multipliers
are still too large for smart cards because they have the chip area constraint; On
the other hand, finite field multiplier with bit-serial structure is too slow since the

frequency is low for smart card and too many clock cycles are needed to perform one

Reproduced with permission of the copyrighf owner. Further reproduction prohibited without permission.

1. INTRODUCTION

multiplication. We may need a hybrid bit-parallel word-serial (BPWS) finite field

multiplier architecture to balance the trade-off between area and speed.

1.2 Research goals

One of our research goals is to design a new hybrid BPWS finite field multiplier archi-
tecture for smart card, such a finite field multiplier should trade-off between area with
speed; The final goal is to design an ASIC (Application Specified Integrated Circuit)
chip which can perform finite field multiplication using this BPWS architecture and

finite field squaring using a bit-parallel finite field squarer.

1.3 Thesis organization

Chapter 2 introduces the basic concepts of finite field, finite field element repre-
sentations, finite field operation and a few state-of-art polynomial basis finite field
multiplier architectures.

A BPWS finite field multiplier architecture is designed in Chapter 3, a novel
8 x 233 bit-parallel partial product generator is developed, an alternative BPWS
finite field multiplier architecture and the general architectures are also introduced in
this chapter.

The design of an ASIC chip which has the BPWS finite field multiplier together
with a full bit parallel squarer is presented in Chapter 4. The VLSI implementation
technology is TSMC 0.18 CMOS technology. The design flow is the CMC digital
design flow. The results at each design stage are also shown in this chapter.

Chapter 5 presents summary and conclusions of this research and provides future

works.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Arithmetic over Finite Field

In this chapter, concept of field, irreducible polynomial, finite field and finite field
element representations are introduced. Furthermore Elliptic Curve (EC) and why
finite field multiplier is so important for EC are explained. Using these background
knowledge, several state-of-the-art polynomial basis finite field multiplier architec-
tures are discussed. At the end of this chapter, a bit parallel finite field squarer is

introduced.

2.1 Group, ring, field and finite field

2.1.1 Group

A group [31] (G,*) is defined as a set G together with a binary operation * :
G*xG — G. We write “a xb” for the result of applying the operation * to the

two elements a and b of G. To have a group, * must satisfy the following axioms :

Reproduced with permission of thércrzgpr)yrirgrj’htrowner. Further reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

e Associativity: For all a, band cin G, (a*b) xc=ax* (b*c).

e Identity element: There is an element e in G such that for all ¢ in G, exa =

a=ax*xe.

o Inverse element: For all a in G, there is an element b in G such that axb=e =

b x a, where e is the identity element from the previous axiom.
e Closure: For all @ and b in G, a * b belongs to G.

An abelian group is a group (G, *) that is commutative, i.e., a xb = b * a holds for

all elements a and b in G.

Examples
1. The set of integers under addition forms a group and also an abelian group.

2. The set of nonzero rational numbers under multiplication is a group and also

an abelian group.

3. The set of integers under multiplication is NOT a group.

2.1.2 Ring

A ring [32] is an abelian group (R, +), together with a second binary operation * such
that for all a, b, and ¢ in R,

ax(bxc) = (axb)x*c
ax(b+c) = (axb)+(axc)
(a+b)xc = (a*xc)+(bxc)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

and such that there exists a multiplicative identity, or unity, that is, an element 1 so
that for all a in R,

axl=1xa=a

The identity element with respect to + is called the zero element of the ring and
written as 0.

A commutative ring is a ring in which the multiplication operation obeys the com-
mutative law, i.e., if a and b are any elements of the ring, and if the multiplication

operation is written as %, then a x b =bx*a.

Examples

Integers, rational numbers, real numbers and complex number under addtion and

multiplication are all examples of rings.

2.1.3 Field

A field [33] is a commutative ring (F, +,) such that additive identity element 0 does
not equal multiplicative identity 1 and all elements of F’ except 0 have a multiplicative
inverse. Besides the above axioms of group and ring, a field also obey the following

rules:

o Existence of an additive identity

There exists an element 0 in F', such that for all a belonging to F, a + 0 = a.

o Existence of a multiplicative identity
There exists an element 1 in F different from 0, such that for all a belonging to

F,ax1=a.

o Existence of multiplicative inverses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

For every a # 0 belonging to F, there exists an element a~! in F, such that
axa =1
Examples

Some examples of fields are listed below:

¢ The rational numbers Q = {a/b|a,bin Z,b # 0}, where Z is the set of

integers.
e The real numbers R.
e The complex numbers C.

e The smallest field has only two elements: 0 and 1. It is sometimes denoted by

F; or GF(2). It has important uses in cryptography and coding theory.

2.1.4 Finite field

Finite field is also called Galois field (so named in honor of Evariste Galois). Finite
field is a field that contains only finite number of elements.
All finite fields have prime characteristic. The number (or the order) of the elements

in a finite field is always a prime or a power of a prime [3].

e If p is a prime, the integers modulo p form a field with p elements, denoted by

GF(p). Every other field with p elements is isomorphic to this one.

o If ¢ = p™ is a prime power, then there exists up to isomorphism exactly one

field with g elements, written as GF(q) or GF(p™).

The finite field that is used in this thesis is GF(2™). When we say finite field in this
thesis, we refer to GF(2™).

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

Finite field GF(2™) can be defined (or generated) by an irreducible polynomial F(zx)
of degree m with its coefficients in GF(2),

F(z) =2™ + frna12™ 4 froz™ 2 4+ .. 4+ fiz + 1

where f; € GF(2),fori=1,2,...,m — 1.

The elements in this finite field can be treated as the polynomials of degree nn (0 <
n < m) with the coefficients in GF(2) or the m-bit binary numbers.

The finite field GF'(2) consists of only two elements which are 0 and 1 and satisfies
the following addition and multiplication rules which are summarized in Table 2.1

and Table 2.2.

+101
0101
11110

*1011
01010
11011

Table 2.2: Multiplication rule for GF'(2)

2.2 Finite field element representations

Like vectors in linear algebra can be represented by various vector spaces, we use

bases to represent the field element. There are three main bases used to represent

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

the elements in GF(2™), they are polynomial basis, normal basis and dual bases

respectively.

2.2.1 Polynomial basis

Assume z be a root of the irreducible polynomial F(z) which generates the finite field
GF(2™), then {1,z,22, 2%,...,2™ '} forms a polynomial basis. Any element A in

the finite field can be represented as
m—1
A= Z a;x"' = (ag, 1,09, ...,0mn-1), Where a; € GF(2) .
=0

Normal basis and dual bases are other two main bases. The detail discussion can be

found in [2].

2.3 Finite field operation

Given a finite field GF(2™) which is generated by an irreducible polynomial F(z) =
T+ frao 1™+ fraoT™ 2+ .+ fiz+1, where f; € GF(2) fori = 1,2,...,m—1, let
A and B be any two elements in GF(2™) and {1,z,z?%,...,2™ !} be the polynomial

basis, A and B can be expressed as

m-—-1)
—_— Y2
A= > ar, and
i=0
m—1

B—_—Zbi.’ﬂi,

=0

where a;,b; € GF(2) for i =0,1,...,m— 1.

2.3.1 Addition

Let S be the sum of A and B and S be expressed as

12

Reproduced with permission of the copyright owner. Fuﬁher reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

where s; € GF(2), for i =0,1,...,m — 2, then

m—1 m—1
S = A+B = Y ar'+ Y bat

i=0 i=0
m—1)

= Z (ai + bz)CL'Z .
=0

Thus, we can get
S =ai+bi y (21)

where s;, a;, b; € GF(2), for i =0,1,...,m — 1.

The addition expressed in Formula 2.1 obeys the addition rule for GF(2) which is
described in Table 2.1 and can be implemented by an XOR gate. Hence, the addition
in GF(2™) can be implemented by m XOR gates.

2.3.2 Multiplication

Let C be the product of A and B and C be expressed as
m—1
C= Z art
i=0
where ¢; € GF(2), for i =0,1,...,m — 1, then

m—1 m—1

C=AB= Z a;x" Z b;z’modF(z) , (2.2)
i=0 =0
where i, j = 0,1,...,m — 1. Formula 2.2 involves two operations. One is polyno-

mial multiplication which is straightforward; The other is the reduction modulo the
irreducible polynomial F(z). When the irreducible polynomial is trinomial, the coef-
ficients ¢; has a close form of expression in terms of {a;} and {b;} [28] which will be

introduced later.

Finite field squaring is a special case of finite field multiplication. Let C be the

squaring of A and C be expressed as

m~—1
C= Z G,
i=0

13

Reproduced with permission of the cbpyright owner. Further reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

where ¢; € GF(2), fori=0,1,...,m— 1, then

m—1
C=3Y gt = A?’mod F(x)

i=0
= ap+ a1zt +ayz + ... + ap-12*™ 2 mod F(x)

m—1
= Y a;2% mod F(x)
=0

2m—2)

_— !l

- E a,r’,

i=0
, o
where a] is given by
a; if 7 is even;
14 5 ’
a; = z (2.3)

0 if7is odd.

When F(z) is an irreducible trinomial, the coefficient ¢; has close form representa-
tions and the architecture of finite field squarer is much simpler than that of finite

field multiplier. We will discuss this in detail later.

The detail discussions about finite field multiplications based on normal basis and

dual bases can be found in [2, 10, 27].

2.3.3 Comparisons among the multiplications with different

basis

Three finite field multipliers which are based on polynomial basis, normal basis and
dual bases respectively were compared by 1.S. Hsu et al in [10}, which are the dual
basis multiplier, the normal basis multiplier, and the polynomial basis multiplier.

The dual basis multiplier occupies the smallest amount of chip area in VLSI im-
plementation if the basis conversion is not included; The area of the normal basis
multiplier however grows dramatically as the order of field goes up; The polynomial
basis multiplier does not require basis conversion, it is readily matched to any input
or output system, the design and expansion to higher order finite fields are easier to

realize than the dual or normal basis multipliers.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

2.4 Galois type linear feedback shift register (LFSR)

Galois type LFSR are widely used in bit-serial finite field multiplier architectures.
Galois type LFSR is simple and the architecture of Galois type LFSR can be easily
obtained from the irreducible polynomial F(z) which generates GF(2™). Figure
2.1 shows the Galois type LFSR architecture when the irreducible polynomial is
F(z)=z™+z*+1.

Galois type LFSR serves as a constant multiplier, i.e., if the current value of Galois

ao al """"" > ak-l @ ak ak+1 """"""" e am-l
next clock
A—zA

Figure 2.1: Galois type LFSR when F(z) = z™ + z¥F + 1

type LFSR is A, the value of this Galois type LFSR during the next clock cycle will
be zA.

2.5 Elliptic curve

Elliptic curve cryptography (ECC) was proposed by Victor Miller and Neal Koblitz
in the mid 1980s [11, ?]. EC over GF(2™) has the following form,

E:y*+ay=12"+ax* +ag (2.4)

where ag and a, are the elements in finite field GF(2™) and E represents the elliptic

curve.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

The elliptic curve is the set of points (z,y) which are the solutions to Formula 2.4
together with an extra point O which is called the point at infinity. The coordinate
values z and y of the point are also the elements in GF(2™). The number of such
points is finite.

This set of points on an EC forms a group under a certain addition rule (or it is
called addition law), which is written using the notation +. The point O is the
identity element of the group.

Given a point P = (z,y) and a positive integer ¢, we define [t|P = P+ P + ... +
P(t times). The order of a point P = (z,y) is the smallest positive integer n such
that [n]P = O.

We denote < P > as the group generated by P, i.e.

n—1

<P>={0O,PP+P,P+P+P,...,P+P+...+P}

The security of ECC relies on elliptic curve discrete logarithm problem (ECDLP):
Let E be an elliptic curve over GF(2™), let P be a point on the elliptic curve, let @
be a point in < P >. Finding an integer ! such that @ = [{|P is the ECDLP.

It is widely believed that the [in ECDLP is hard to computationally solve when the
point P has large prime order.

Point operations on EC conform the addition law which is defined below.

Assume Py(z1,y1), Pa(22,y2) € E and P, + Py = P3(x3,y3), we define

2
(Yt 1+ Yo
IL‘3——(H5> +%—1f%+x1+m2+a2

P #P: , (2.5)
Y3 = (%’i—i—%) (@1 + 23) + 23 + 41
Iz = .’1312 + ﬂg

P1 = P2 . Z1 . (26)

Yz = x12+(ml+%—})m3+x3

When P; # P, we can find the point P; using Formula 2.5, this is also called point
addition; When P, = P,, we can obtain P3; by the formula 2.6, this is also called

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

point doubling. All the arithmetic operations in these two formulae are finite field
operations.

From above Formula 2.5 and Formula 2.6 we can see that point operations always
can be broken into finite field multiplications, finite field squarings, finite
field inversions and finite field additions. Finite field addition in GF(2™) can
be implemented by m XOR gates, so the finite field addition is considered as almost
free. We usually calculate the finite field inversion by means of extended Euclidian
algorithm or Fermat theorem (26, 4]. From Fermat theorem, the inversion of any field

element A can be obtained by the following formula
Al= A2 (2.7)

Equation 2.7 can be further broken into finite field multiplications and finite field
squarings. Thus, the finite field inversion can be obtained from finite field multipli-
cation and finite field squaring. Since finite field squaring is a special case of finite
field multiplication, in addition, finite field squarer is much simpler than finite field
multiplier (as will be seen later), the finite field multiplier is our focus. As we have
already discussed in Section 2.3.2, the polynomial basis multiplier has the advantages
over other basis multipliers, the polynomial basis (PB) finite field multiplier is the

focus in this thesis.

2.6 Polynomial basis (PB) finite field multipliers

A number of PB finite field multipliers have been proposed [2, 6, 8, 13, 14, 25, 21,
28, 24]. Two typical kinds of PB finite field multipliers are bit-parallel PB finite field
multipliers and bit-serial PB finite field multipliers.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. S

2. ARITHMETIC OVER FINITE FIELD

2.6.1 Bit-parallel PB finite field multipliers

There are many bit-parallel finite field multipliers which have been proposed so far.

A bit-parallel systolic multiplier has been proposed in [13] for the GF(2™) using the
polynomial basis representation. The finite field is generated by the irreducible trino-
mial ™ + z™ + 1 of degree m. The permutation polynomial and Horner’s algorithm
are applied to create a low complexity systolic multiplier. The circuit includes m?
2-input AND gates, m? + m — 1 2-input XOR gates and 3m? + 2m — 2 1-bit latches.
The latency of the systolic multiplier over GF(2™) is only 2m — 1 clock cycles with
a throughput rate of one result per clock cycle.

In [14], a bit-parallel systolic AOP-based (All One Polynomial based) multiplier for
GF(2™) has been presented. The architectures of the two AOP-based multipliers can
also be adopted to implement ESP-based (Equal Space Polynomial based) multipliers.

In [25], an architecture based on a new formulation of the multiplication matrix
is described and circuit complexities are analyzed when the finite field is generated
by trinomial 2™ + z™ + 1.

In [21], a new bit-parallel structure for a multiplier with low complexity in Galois
fields is introduced. The multiplier operates over composite fields GF((2")™), with
k = mm. It is shown that this operation has complexity of order O(k'°823) under
certain constraints regarding k.

A bit-paralle] finite field multiplier based on polynomial basis is discussed in [28].
Let A and B be any two field elements represented by polynomial basis as follow

m~1
A= E a;x' , and
i=0

m—1
B = Z blx’ ,
1=0

where a;,b; € GF(2), for i =0,1,2,...,m — 1. Let C be their product
m—1
C= Z ezt = AB .

1=0

18

2. ARITHMETIC OVER FINITE FIELD

When F(z) is trinomial i.e. F(z) = 2™ + z* + 1, ¢; has the following close form

representations shown in Table 2.3.

Fzy=xzm+z+1 co = S0+ Sm
ci = 8i+ Sm+i—1+ Sm+i, i=12,...,m-1
Cm~1 = Sm-1++8%2m-2
Pl)=zm+zF+1 i = 8+t Smti + Som—kii i=0,1,...,k—2
1<k<m/2 Ck—1 = Sk-1+Sm+k—-1
[= 8+ Sm+i + Sm—k+i +S2m—2k+i 1=k, ...,2k—2
ci = 8i+ Sm+i+ Sm—k+i i=2k—-1,....m—2
Cm~1 = Sm—1t82m—k-1
Flz)=zm+z™2+1 ¢ = 8+ Sm+i t+ 83m/24i i=0,1,...,m/2 -2
Cm/2~1 = Smyj2~17T S3m/2-1
¢ = 8i+tSmyati i=m/2,...,m—2
Cm—1 = Sm-1183m/2-1

Table 2.3: Close form representation of the product coefficient c;

2.6.2 Bit-serial PB finite field multipliers

Thomas Beth et al presented two basic architectures for PB bit serial finite field mul-
tiplier in [2]. Leilei Song et al have the similar design in [24] and Johann Grobschadl
has the same idea with low power implementation in [8]. All the bit serial PB finite

field multipliers use Galois type LFSRs.

Most significant bit (MSB) first bit serial PB finite field multiplier

The architecture of MSB first bit serial finite field multiplier [2] is very simple. The

Figure 2.2 shows the architecture when irreducible polynomial is F'(z) = z° + z2 + 1.

There is a Galois type LFSR used in Figure 2.2. The initial value of this Galois
type LFSR is 0. One operand B is input in parallel. The other operand A is input in

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissﬂioni. o

2. ARITHMETIC OVER FINITE FIELD

b b
202,3,2,4,

bo
J?
P—C—P—LC—P—l—P—{c—p—{C

Figure 2.2: MSB first bit-serial PB finite field multiplier when F(z) = 2° + 2% + 1

serial, upon each clock cycle, one bit a; in A is fed into the circuit, the input method
used is the most significant bit (MSB) first. The final result can be obtained from
the outputs ¢;s after 6 clock cycles. It takes 6 clock cycles to perform one finite field

multiplication using this MSB first bit-serial finite field multiplier.

Least significant bit (LSB) first bit-serial PB finite field multiplier

The above MSB first PB finite field multiplier has an alternative form which is LSB
first PB finite field multiplier [2]. When irreducible polynomial is still F(z) =
z° + 22 + 1, the architecture of the LSB first bit-serial PB multiplier is shown in
Figure 2.3.

There is a Galois type LFSR in this architecture and it is initially set to one of
the operands. The other operand A is input in serial. The input method is the least
significant bit (LSB) first. There is one additional 5-bit register which is initially set
to 0. The final product can be obtained from the outputs ¢;s after 6 clock cycles.
Like the MSB first bit-serial finite field multiplier, there are 6 clock cycles needed in

order to perform one finite field multiplication using this LSB architecture.

Assume all the AND gates and XOR gates have two inputs, the delay of the

20

Reproduced with permission of the copyright owner. Furthér Vreipr)roduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

2,2,3,3,9,

] ®)

Figure 2.3: LSB first bit-serial PB finite field multiplier when F(z) = z° + 2% + 1

AND gate is T4 and the delay of the XOR gate is Tx. When GF(2™) is generated by
irreducible trinomial F(z) = 2™+zF+1, we can summarize the circuit complexity and
speed to perform one multiplication for the above bit-serial PB finite field multipliers

in Table 2.4.

Multiplier | Speed (clock cycle) | Circuit complexity | Critical path

m AND gates
MSB first m m + 1 XOR gates 2Tx
1 m-bit register
m AND gates
LSB first m m + 1 XOR gates Th+Tx

2 m-bit registers

Table 2.4: The summary for MSB and LSB bit-serial finite field multipliers

Reproduced with permission of the copyright ownér. VFurther reproduction prohibited without permission.

21

2. ARITHMETIC OVER FINITE FIELD

2.6.3 Bit-parallel PB finite field squarer

Finite field squaring is a special case of finite field multiplication. The architecture of
bit-parallel PB finite field squarer is much simpler than that of bit-parallel PB finite
field multiplier. A trinomial based bit-parallel PB finite field squarer is introduced in
[28].
Suppose that GF(2™) is generated by the irreducible polynomial F(z) over GF'(2),
an arbitrary field element A can be expressed by the polynomial basis as

m—1

A= Z a;xt .

i=0

Let C be the squaring of A, we have
C= mi%l cr' = A?mod F(z)
i=
= ay+a2? +art+ ...+ 1272 mod F(z)

m—1 .
= 3 a;z% mod F(z)

=0
2m—2 .
= > ad,
j==
where a; is given by
, as if ¢ is even;
a; = o (2.8)
0 if¢is odd.

When F(z) is an irreducible trinomial, i.e., F(z) = 2™ + 2" + 1, where 1 < k < Z,

the coefficient ¢; has close form representations which are summarized in Table 2.5.

2.7 Summary

Some basic concepts about finite field, field element representation and finite field
arithmetic are introduced in the first three sections. In Section 2.5, Elliptic curve

cryptography is briefly touched and we know that the finite field multiplier is the

22

Reproduced with permiééiigr;a‘rr;[ﬁéircc;pi)i)}right owner. Further reproduction prohibited without permission.

2. ARITHMETIC OVER FINITE FIELD

miseven ¢ =a;+ap, ., i=0,2,....,m-2,
CG=0a, i1 i=13,...,m—-1
Fz)=zm+z+1 misodd co=ay,

ci=al,;, i=1,3,...,m—-2,

G =aj+a; 1, i=24,...,m—-1
kiseven ci=aj+ay, 4., 1=0,2,...,k—2,
misodd ci=ap,,;, i=1,3,...,k—-1,

Ci=a;+ah, okiis i=kk+2,...,2k—-2,

CG=an it i i=k+1,k+3,...,m—-2,

c=a, i=2k,2k+2,...,m—1.

Fz)=zm +zF +1 k is odd G =aj, i=0,2,...,k—1,
misodd ci=ap,, ;+a, Ly i=13,...,k—-2,

G=a;ta, 4 itap, sy t=k+1LEk+3,...,2k-2,

CGi=an ., i=kk+2,....,m—-2,

q=a§+a’m_k+i, i=2k,2k+2,....m—1.
k is odd ci=aj+ay ., i=0,2,...,k—1,
miseven ¢i=ay ..., i=1,3,...,k—2,

. — ' '
Ci=0;+F 0 s+ 0 ks
PN
= Oy i
ot ’
ci=aj+ay, .,

i=k+1,k+3,....2k—2,
i=kk+2...,m—1,
i=2k,2k+2,... m—2.

Fzy=z™+z% +1

=)+

'
“=Spae
c=aj, =3 +1L2+3,....m-2,
c,-=a’_,%+l, i=2,24+2,...,m-1

Table 2.5: Close form representation for the squaring coefficient ¢;

23

Reproduced with permission of the copyright owner. Fuﬂﬁer reproduction prohibited without permissiohﬂ.m

2. ARITHMETIC OVER FINITE FIELD

basic key component in elliptic curve hardware. Two typical architectures of finite
field multipliers are introduced in Section 2.6. At last, we mentioned a bit-parallel
PB finite field squarer.

In the next chapter, we will design bit-parallel word-serial PB finite field multiplier

architectures which have the trade-off between gate counts (area) and speed.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without pé;hission.

Chapter 3

Design of Bit-Parallel
Word-Serial PB Finite Field
Multipliers

In this chapter, accepted standard for EC cryptosystems is introduced at the begin-
ning. Next, the bit-parallel word-serial (BPWS) PB finite field multiplier is designed.
An alternative form of BPWS PB finite field multiplier architecture is introduced
in the following section. At the end of this chapter, general forms of BPWS PB
multiplier architectures and the comparisons are presented.

It is known that, ECC devices require less storage, less power, less memory, and
less bandwidth than other systems [29, 22, 34]. This allows implementation of cryp-
tography in platforms that are constrained, such as wireless devices, handheld com-
puters, smart cards. Several organizations such as NIST (National Institute of Stan-

dard and Technology), ANSI, IEEE etc. have standardized ECC [34]. NIST issues

25

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

standards that are mandatory for US Federal Government agencies to follow. NIST
recommends not only key establishment schemes, key management in Special Publi-
cation 800-56 and 800-57 for EC cryptosystems, but also digital signature standard
(DSS) in Federal Information Processing Standards (FIPS) 186-2 [29] with elliptic
curve domain parameters. We follow NIST recommendations in this thesis as NIST

recommendations for ECC are well and widely adopted.

3.1 NIST recommendations

National Institute of Standard and Technology (NIST) recommends five finite fields
which are generated by five irreducible polynomials for EC cryptosystems [29]. These
five polynomials are shown in Table 3.1.

In this thesis, GF(2%33) which is generated by the irreducible trinomial F(z) =

Degree | Irreducible Polynomial F(x)

163 | F(rx)=2" +2"+28+23+1
233 | Fz)=2*¥ +27*+1

283 | Fx)=2+22+2"+2%+1
409 | F(z) =z +28 41

571 | F(z) =25 + 20 4+ 25 + 22 + 1

Table 3.1: NIST recommendations

233 4+ 27 + 1 is our choice since GF(22%) can satisfy the security requirements for
smart card applications and the irreducible trinomial can significantly reduce the cir-

cuit complexity.

26

Reproduced with permission of the copyright owner. Further reproductibn prohibited without permissioh:%

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

3.2 Design of BPWS PB finite field Multiplier

3.2.1 Multiplication algorithm

Let the irreducible polynomial be

Flx)=a™ 4+ 2™ +1,

then the polynomial basis for GF(2233) can be given as {1,z,2?, ..., 2%2}.

Let A, B € GF(2?%) be any two field elements and C be their product. We can write

A and B as
232

A=Y az', and
i=0
232

i=0
Then the product C is

C = AB mod F(z) . (3.1)

We can divide the operand A into 30 groups (words) from the least significant bit of
A and let each word contain 8 bits. In the 30th word, we append seven “0”s as the

most significant seven bits. This can be shown as follow,

A= (97 07 0’ 0’0707(), a232lg2317a230a R 70’2241- .. 5915’al4a e 7a853'7a agy -« -, G’Q)
A2y Azg Ay Ag

where A; is the word, for j =0,1,...,29.

Let us denote A; as
Aj = a3j+7x7 + agj+6$6 + ...+ 08j+1Z + ag; , (32)

for j =0,1,2,...,29, where a; = 0 for i = 233,234, .. .,239.

Then A can be expressed as

A= (. (Apr®+Ap)z® +...+ A)2®+ A, . (3.3)

27

Reproduced with perr:hission 6rfrtrhe copglwr'iﬁght owner. Further reproduction prohibited without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

Thus, the product C can be expressed in the following formula,

C = AB mod F(z)
= ((...(Apa®+ Agg)z® + ... 4+ A1)z® + Ag) B mod F(z) (3.4)
= (.. (AggB.’L‘s + AggB).’Es +...+ AlB).'Es <+ AoB mod F(l‘)

Let
C;=Cj_12®+D; , for j=0,1,...,29, (3.5)

where

Dj =A29_jB ,fOI‘j=O,1,...,29 . (36)

If we assume C_; = 0, then it can be seen from (3.4) (3.5) and (3.6) that

C=Cy. (3.7)

3.2.2 Bit-parallel word-serial multiplier architecture

The above iterative processes (3.5) and (3.6) can be mapped into the architecture
shown in Figure 3.1.

The multiplier architecture has two input ports I1, I2 and one output port. Input
port 12 is 8 bits wide and used to serially input the words Ag_;, j = 0,1,...,29.
The other input port I1 is 233 bits wide and used to input the other operand B. The
output port is 233 bits wide which is used to output the product.

There are four modules in this architecture. These are :

Module M1 : Module M1 is a 8 x 233 bit-parallel partial product generator. M1
implements the equation (3.6) by taking inputs of 8-bit word Asg—; and 233-bit
B and yielding the partial product Ag_; x B after the jth clock cycle. The

detatled architecture of M1 will be discussed later in Section 3.2.4.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without pefr;nission:

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

233}

23 |'_l
L

i M1: 8 x 233 Partial product generator :
| M2: 233-bit Adder :
: M3: Constant multiplier

: M4: 233-bit Register

Figure 3.1: Proposed hybrid finite field multiplier

Module M2 : Module M2 is a bit-parallel finite field adder which realizes the equa-
tion (3.5) by taking inputs D; from M1 and C;_;z® from M4. This adder
can be easily implemented by 233 XOR gates. The output of M2 is actually
the output of the proposed BPWS PB finite field multiplier after 30 clock cycles.

Module M3 : Module M3 is a bit-parallel finite field constant multiplier. The two
operands include the constant z® and the output of module M2 which is C;.

The output of module M3 is C;z8.

Module M4 : Module M4 is a 233-bit register which is used to store the interme-
diate results. The output of module M4 is C;_128.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibitéd without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

Let the content of M4 be initialized as 0. Assume the operand B be available at I1
from the beginning until the product C is generated at Output.

After the first clock cycle (Clock 0), the input word at I2 is Asg, the output of M1
is Dy = As9B. Since the output of M4 is 0, the output of M2 is Cy = Dy and the
output of M3 is Cyz?.

After the second clock cycle (Clock 1), the input word at I2 is Asg and the output of
M1 is given by D; = A B. The adder M2 takes the inputs D; and Cyz®, where Cyz®

was stored in the register M4 in the previous clock cycle, and yields C; = Cyx8 + D;.

This process is contihued till the 30th clock cycle (Clock 29), the input word at 72
is Ag and the output of M1 is given by Dyg = AgB. The adder M2 takes the inputs
Doy and Cagz®, where Cogz® was stored in the register M4 in the previous clock cycle,
and yields Cyg = Cogz® + Dyg. This is the exact product C from equation (3.7).
Thus one finite field multiplication in GF(2%3?) needs 30 clock cycles in this BPWS
PB finite field multiplier.

Assume that B is available at I1 throughout the multiplication. Table 3.2 shows the

main intermediate results after each clock cycle..

Clock | Input at 12 | Output of M1 | Output of M4 Output
0 Agg .D() = Ang 0 CO = D()
1 A28 D1 = AQgB C()il,'s Cl = Co-’I?S + D1
2 A27 D2 = A27B C].’L’8 Cg = Cl.’lfs —+ Dg
29 AO ng = AoB 0281'8 ng = ngacs + Dgg

Table 3.2: The output and intermediate results upon each clock cycle

30

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

3.2.3 M3: Constant Finite Field Multiplier Z = z8Y

In general, we call a finite field multiplier a constant finite field multiplier when one
of two operands is a constant field element. The constant finite field multiplier has
a much simpler architecture than a regular multiplier since it removes all the AND
gates and significantly reduces the number of XOR gates.

The module M3 in Figure 3.1 is a constant finite field multiplier which performs the
multiplication of Z = z8Y in GF(2%33), where 28 is a constant and Y is any element
in GF(2%3). This constant finite field multiplier can be simply implemented by only
8 XOR gates.

If we express Y and Z as
232

Y = Yy, and
=0

. 93
Z =) ur,
i=0
the coefficients z; of the product Z can be expressed as,
(Yazs+i i=0,1,...,7
i— i=8,9,...,73
a=q (3.8)
Yi-g + Y5144 1=74,75,...,81
[Yi-8 1=82,83,...,232

The architecture of the constant finite field multiplier M3 is shown in Figure 3.2.

70 stz

Figure 3.2: M3: The constant finite field multiplier Z = z8Y

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.r W

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

3.2.4 Ma1: 8 x 233 Bit-parallel partial product generator

Module M1 in the proposed BPWS PB finite field multiplier is a 8 X233 partial product
generator which performs the function of A;B, where B is the 233-bit operand and
A; is the input word of 8 bits. Note that A; can be viewed as a field element in

GF(22%) with the most significant 225 bits being 0s, i.e.,
Aj=ar’ +aez®+... +ag, (3.9)

where a7, ag, - - ., a9 € GF(2). Thus,

AB = (a;x" +agxb+...+a9)B
! (ar” + ag o) (3.10)
= a2’ B+4agx®B+...+a¢B.
In this expression, 7B, z%B, ..., zB are seven constant finite field multipliers. Each

result from the seven constant finite field multipliers is multiplied by the coefficient
a; correspondingly, this step can be done by an AND network which is introduced
later. Finally, the accumulation of the eight results can be simply obtained from an
XOR network.

This 8 x 233 partial product generator can be implemented by the following full bit-
parallel architecture shown in Figure 3.3.

The seven constant finite field multipliers have the similar architectures as the mod-
ule M3 in the proposed BPWS finite field multiplier in Figure 3.1.

Let Z = z¥Y be the constant multiplier, where w = 1,2,...,7, such constant mul-
tiplier needs w XOR gates. The architecture of the constant finite field multiplier
Z = z"Y is shown in Figure 3.4.

In the 8 x 233 bit-parallel partial product generator architecture shown in Figure
3.3, the AND networks are used to multiply a 233-bit field element by the coefficient
a; and can be implemented by 233 AND gates. The architecture is shown in Figure
3.5.

The outputs from eight AND networks are accumulated by an XOR network as

32

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

a,
AND Network |0
233 bits 233 bits
X a
® xB AND Network |———0<—of
233 bits 233 bits 233 bits
x2 a
® xB AND Network |——<—|
233 bits 233 bits 233 bits >
2 S
x’B
AND Network jm——os)
B 233 bits 233 bis o 233 bits Z Output
X4
its 4 :‘r—l (¢ 233 bits
233 bits @x B AND Network |———e—] —
233 bits 233 bis 233 bits 3
X as o
5 =
*B AND Network |eme—mps—»] =
233 bits 233 bits 233 bits
by 3
6]
® x’B I AND Network]_,4._.
233 bits 233 bits 233 bits
by &
® XB AND Network |— <]
233 bits 233 bits 233 bits

Figure 3.3: 8 x 233 bit-parallel partial product generator

I

'YO 'stz

Figure 3.4: The architecture of the general constant finite field multiplier Z = z*Y

33

Reproduced with permission of the copyright owrner. Further reproduction prohibited without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

%?.....%31%32

a;

% yl.....’YZZ;l’YZBZ

Figure 3.5: The architecture of AND network

shown in Figure 3.6.

In Figure 3.6, the module M is sub XOR network which can be implemented by 233

X 233 bits
V2% bits

o i I
2 — 233 bits
M
233bits —

X, —7—. |233bits
3 2B3bis M
X7

— 233 bits
. M.—ffZ
233 bits 33 bis

Xs—A—1
3 23bits 1M
6 L

] 233 bits

233 bits
M
23bits
233 bits

X
2Bbis |M
8 -

Figure 3.6: The architecture of XOR network

XOR gates. The architecture is shown in Figure 3.7.

Assume all AND and XOR gates have only two inputs, the delay of AND gate is
T4, the delay of XOR gate is T’x, the circuit complexity and timing complexity of the
8 x 233 bit-parallel partial product generator are summarized in the Table 3.3.

The circuit complexity and timing complexity of the BPWS PB finite field multiplier

in GF(2?33) are summarized in Table 3.4.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

®oo e oo Oby Obi

o, O
B |Beceee BB

Yo Vi ®eceee V.. Vo

Figure 3.7: The architecture of sub XOR network

of AND gates | 8 % 233
of XOR gates | 7233+ (1+7)*7/2
Critical path Ty +4Tx

Table 3.3: Circuit and timing complexities of the 8 x 233 partial product generator

of AND gates 8 % 233

of XOR gates 8 %233+ (1+8)*8/2
of 233-bit registers | 1

Critical path T4+ 6Tx

Table 3.4: Circuit and timing complexities of the BPWS PB finite field multiplier

35

Reproduced with permission of the copyright owner. Further reproduction prohirbritred \;\}ithaut permlss;on

Reproduced with permission of the copyright ownef. Further reproduction prohibited without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

3.3 Alternative BPWS PB finite field multiplier

As defined in Section 3.2, There is an alternative form of architecture for the above
BPWS PB finite field multiplier.

we still divide one operand A into 30 words from the least significant bit of A and each
word contains 8 bits. In the 30th word, we append seven “0”s as the most significant
seven bits.

Let A; denote each word, A; can be expressed as
2 7
Aj = agj + agj 11T + Ggj12T” + ... + agj 1T’

where j =0,1,2,...,29 and a; = 0 for i = 233,234, ..., 239.

Then A can be rewritten as
A= Ag+ Aiz® + Ay(2®)? + ..+ Agg(28)™ . (3.11)
Thus the product C = AB mod F(z) can be expressed as follows,

C = ABmod F(x)
= (Ao+ Aiz® + Ao(28)’ + ... + An(2®)”®) B mod F(z) (3.12)
= AoB+ A1Bz® + AyB(28)’ + ... + AgB(2®)® mod F(z)
We can further let
Dj = Dj_1$8 , (313)

for j=1,2,...,29, and Dy = B;

Cj - Cj—l -+ Aij s (314)

for j =0,1,...,29,and C_; =0.
From Equations 3.13, 3.14 and 3.12, we will find that the product C = AB mod F(z)
is

C=Ch . (3.15)

36

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

The above alternative BPWS PB finite field multiplier can be implemented by the

architecture shown in Figure 3.8.

This multiplier architecture has two input ports and one output port. One input

2337

M1

233

4233 L 233

{ MI: Constant multiplier

{ M2: 233-bit Register :
{ M3: 8 x 233 Partial product generator
: M4: 233-bit Adder :
i M5: 233-bit Register

Figure 3.8: Alternative BPWS PB finite field multiplier over GF(2%3)

port is 8 bits wide and is used to serially input the word A; which is part of the

operand A, the other input port is 233 bits wide and used to input the other operand

B in parallel. The output port is 233 bits wide which is used for the output product.

There are five modules in this alternative multiplier architecture, which are given

below.

Module M1 : Module M1 is a constant finite field multiplier which performs the

same function as Module M3 described in Section 3.2.

Module M2 : Module M2 is a 233-bit register which has the initial value of B(x)

and store the intermediate results. Let the output of M2 be D;, and the function
that the module M1 and M2 perform be D; = D;_;z8.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

Module M3 : Module M3 is a 8x233 bit-parallel PB finite field multiplier which is
the same as Module M1 described in 3.1. One input A; is the word from the
operand A, the other input is D;, the output of the module M3 is A;D;.

Module M4 : Module M4 is an adder which has the same function as Module M2
described in 3.1. The output of module M4 is also the output of the alternative
BPWS PB finite field multiplier.

Module M5 : Module M5 is another 233-bit register which is used to keep the
intermediate results. Let the output of module M4 be C;, then the function

that the module M4 and M5 perform is C; = C;_; + A4;D;.

Let the initial value of M2 be B, the initial value of M5 be 0, the word input method
used is the least significant word (LSW) first.

During the first clock cycle (Clock 0), the input word is Ay, the output of module
M2 is B which is Dy, the output of module M3 is AyB which is AgDy, the output
module M4 is AgDy which is Cj since the initial value of M5 is 0 which is mapped by
C_i=0

During the second clock cycle (Clock 1), the output of module M2 is Bx® which is
D, the input word is A;, the output of module M3 is A;D;, the output of module
of M5 is Cy, therefore the output of module M4 is Cy + A3 D; which is Ci;

During the third clock cycle (Clock 2), the output of module M2 is B(.’Bs)2 which is
Dy = D;z8, the input word is Aj, the output of module M3 is A,D,, the output of
module M5 is C, therefore the output of module M4 is C; + Ay D, which is Co;

During the 30th clock cycle (Clock 29), the output of module M2 is Dy = Dg2®, the
input word is Asg, the output of module M3 is AggDqg, the output of module M5 is
Cog, therefore the output of M4 is Cag + AggDyg Which is Csa.

The product C = AB mod F(z) can be obtained from the output of module M4

38

Reproduced with permission of the Vcrc;pi);/rijﬁtﬁowner. Further reproduction prohibited without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

Clock | Input M2 M5 Output

0 Ao Dy =B 0 Co= AoB

1 Ay Dy =Dy® | Co | C1=Co+ A1Dy
2 Ay Dy=Dyz® | C | Cy=Ci+ AD,

29 Agg | Dag = Doga® | Cog | Cag = Cag + AggDag

Table 3.5: The values of output and other modules on each clock cycle

during the 30th clock cycle. Table 3.5 shows the values of input words, M2, M5 and
output of the alternative BPWS PB finite field multiplier upon each clock cycle.
The 8 x 233 bit-parallel partial product generator, the constant multiplier, the adder
and registers are the same as those described in Section 3.2. Using this architecture
30 clock cycles are needed in order to perform one multiplication. With the same
assumption in Section 3.2, The circuit complexity and timing complexity for this

alternative BPWS PB finite field multiplier are summarized in Table 3.6.

of AND gates 8 % 233
of XOR gates 8%233+ (1+8)%8/2
of 233-bit registers | 2

Critical path T4+ 5Tx

Table 3.6: The circuit and timing complexities of alternative BPWS PB finite field

multiplier

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

3.4 General BPWS PB finite field multipliers

General BPWS PB finite field multipliers in GF(2™) can be simply derived by ex-
tending the proposed BPWS PB finite field multiplier described in Section 3.2 and
Section 3.3. Assume the finite field is GF(2™) and the size of the input word A; is
w, then the corresponding architectures are shown in Figure 3.9 and Figure 3.10.

The modules in the two general architectures serve the similar functions as those

B
4
1 m
,V«V,.®M1
Alwmsw-j-
b4 m
M2

M1: w x m Partial product generator ;
{ M2: m-bit Adder '
i M3: Constant multiplier
: M4: m-bit Register

Figure 3.9: The BPWS PB finite field multiplier in GF(2™)

described in Section 3.2 and Section 3.3. It needs [m/w] clock cycles to perform one

multiplication in GF(2™) using these general architectures.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without perm|55|on

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

Ml

m g+

m 4 m

: M1: Constant multiplier

i M2: Register ;
{ M3: w x m partial product generator :
i M4: Adder :
i M5: Register

Figure 3.10: The alternative BPWS PB finite field multiplier in GF(2™)

3.5 Comparisons

Assume all AND gates and XOR gates have only 2 inputs and the delays of AND
gate and XOR gate are T4 and Tx respectively. When the irreducible polynomial
F(z) which generates the finite field GF(2™) is trinomial, i.e. F(z) = 2™ + z* + 1,
with 1 < k < m/2, circuit and timing complexities of bit-parallel, bit-serial and the
general BPWS multipliers are shown in Table 3.7.

From Table 3.7 we can see that the numbers of AND gates and XOR gates in pro-
posed BPWS PB finite field multipliers are between those in bit-parallel PB finite
field multiplier and those in bit-serial PB finite field multiplier. There is no sequen-
tial element needed in bit-parallel finite field multiplier. The number of registers in
proposed BPWS PB finite field multipliers is the same as that in bit-serial PB finite
field multipliers. The critical path for proposed BPWS PB finite field multipliers is
also between that of bit-parallel and bit-serial PB finite field multipliers. The number

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

LSW first

wxm+ (1+w)*w/2 XOR gates

Two m-bit registers

Multiplier Speed Circuit complexity Critical path
{Clock Cycles)
bit-parallel 1 m? AND gates T+ ([loga(m — 1)] + 2)Tx
(28] m? — 1 XOR gates
bit-serial (MSB) m m AND gates Ta+Tx
[2] m + 1 XOR gates
One m-bit register
bit-serial (LSB) m m AND gates Ta+Tx
2] m + 1 XOR gates
Two m-bit registers
Proposed BPWS [(m/w)] w*m AND gates T4+ ([logy w] + 3)Tx
MSW first w*m+ (1+w) *w/2 XOR gates
One m-bit register
Proposed BPWS [(m/w)] w *xm AND gates T+ ([logy w] + 2)Tx

Table 3.7: The comparisons among bit-parallel, bit-serial and BPWS finite field mul-

tipliers

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

of clock cycles to perform one finite field multiplication in proposed BPWS PB finite
field multiplier is also bigger than that of bit-parallel PB finite field multiplier and
smaller than that of bit-serial PB finite field multipliers. This proposed BPWS PB
finite field multiplier is the trade-off between bit-parallel finite field multiplier and
bit-serial finite field multiplier.

When m is far bigger than w, there is a rough relation between the number of AND
gates, the number of XOR gates and the number of clock cycles to perform one mul-
tiplication among these multipliers, which is that the products of speed (in clock

cycles) and circuit complexities for these multipliers are approximately same, i.e., for

AND gates:
1 % m?(bit parallel) = m * m(bit serial) & [(m/w)] *xw *m , (3.16)
for XOR gates:

1% (m?—1)(bit parallel) ~ m*(m+1)(bit serial) ~ [(m/w)] *(wsm+(1+w)*w/2) .

(3.17)
Carefully choosing the number w, the proposed BPWS PB finite field multipliers can
achieve the desired trade-off between area and speed.

Now we can have further analysis conducted using this word size w,

w = m , this actually is a full bit parallel architecture, which can be simplified to the
bit parallel PB finite field multiplier [28] by removing all other modules except

for the module of w x m finite field multiplier.

w =1, this directly becomes a bit-serial multiplier as reported in [2].

Thus, our design algorithm can be treated as a general design algorithm for finite

field multiplier.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

3.6 Summary

In this chapter, we first introduced the finite fields recommended by NIST for EC
cryptosystems. After choosing a finite field GF(22%3) which is generated by an irre-
ducible trinomial F(z) = 223 + 27 + 1, we designed and analyzed the BPWS PB
finite field multiplier and the alternative BPWS PB finite field multiplier in Section
3.2 and Section 3.3 respectively. At the end of this chapter, we designed a general
form of BPWS PB finite field multiplier which is MSW first multiplier and its alter-
native form which is LSW first multiplier, we also made the comparisons among the
bit-parallel PB finite field multiplier in [28], the bit-serial PB finite field multiplier
in [2] and our general BPWS finite field multipliers. The proposed architecture is
suitable for the application which requires to balance the trade-off between speed and
area, it is extremely useful for smart card applications.

In next chapter, we will design an ASIC chip which is capable of performing the finite
field multiplication and squaring using the proposed BPWS PB finite field multiplier
described in Section 3.2 and the bit-parallel PB finite field squarer described in [28].

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission ofthe copyright owner. Further reproduction prohibited without permission.

Chapter 4

Hardware Design

The final aim of this thesis is to design an application specific integrated circuit
(ASIC) chip which can perform multiplication and squaring in GF(2%3). In this
chapter, the detail design methodology of such a chip is introduced. Issues during the
design are addressed. The multiplication is implemented by applying the proposed
BPWS PB finite field multiplier described in Section 3.2. The squaring is achieved
by applying the bit-parallel PB finite field squarer described in [28].

4.1 Hardware architecture

The proposed hardware architecture is shown in Figure 4.1.

In this figure, the module Multiplier is the BPWS PB finite field multiplier de-
scribed in Section 3.2, the module Squarer is the bit-parallel PB finite field squarer
described in [28], the width of the data bus (which is also size of the word in BPWS
PB finite field multiplier in Section 3.2) is 8, the width of the address is 5, clk is

45

4. HARDWARE DESIGN

rst

clk
241 bits \
data 241 bitg™—7~—] Multiplier 233/b' 5
8bits| © s ¢
e y HEIIRS output
o [% Mux HEH4 &)
0 2 Ne o 8 bits
8 48 | ¢
233 bits g g
addr # 4+ Squarer —
5 bts 233 bt //
5 bits,
sel

w {>G
Figure 4.1: The schematic of the hardware

clock signal, rst, sel and w are control signals, the module Mux is used to select
either finite field multiplication or finite field squaring, the modules of Registers are
used to store the input operands or the result, the modules of codec and codecout
are used to decode the address to write the input data into or read the data out of
the registers. Except for the modules of Multiplier and Squarer, all others can be

modeled in the control part of the data path in a processor.

4.2 Hardware specifications

The specifications for the ASIC chip are summarized in Table 4.1.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. HARDWARE DESIGN

Frequency 50MHz
Area 300000m?

Power consumption 20 mw

Table 4.1: Specifications

4.3 VLSI implementation technology and design

flow

CMC (Canada Microelectronic Corporation) supports all Canadian universities with
industry level VLSI design tools and technical support. CMC also provides several
design flows for different kinds of ASIC designs. The design flow followed in this
thesis is the CMC digital design flow. Figure 4.2 shows the CMC digital design
flow. The VLSI implementation technology used in this project is TSMC (Taiwan
Semiconductor Manufacture Company) 0.18um CMOS technology. Compared with
TSMC 0.35um technology, 0.18um technology has the advantages of small area and
low power consumption etc.

Digital chip design can be partitioned into front-end design, back-end design and

post design verification and modification.

4.4 Front-end design

Front-end design of an ASIC chip includes the tasks of hardware modeling, testbench
and stimuli file creations, logic synthesis and design-for-testability (DFT) synthesis

etc.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. HARDWARE DESIGN

CMC Digital Design Flow V2.0

System-Level
Modeling

HW Architecture
Exploration

RTL Coding TestBench

RTL Simu./Timing Toggle Count
fogic Constrabng Verilog Netlist
Test Vectors

'

vel Timing Analysis using DC

£ Syniliesis

7

Initial/Custom . .
Wireload File Fault Simulation
v
Gate-Level
Simulati

Annoztion

A

Forward

thesis Gate or
“ Punclional Verification © -

Estimated RCs

Post-S;
Block-|

| o) Placement
> !

Verilog Test Fixture
o T
RC Delay
Estimation
no
eet timing?
Back-AnnolmionO

v ves

Clock Tree Synthesis

Clock Tree olden
Optimization Verilog Netlist
Placement § Violation
ECO Removal

sis Using Fasnet

Refined RCs
Pre-layout G-L

Golden
Verilog Netlist

Physicat Rules

Physical Verification.

1. Forward-Anpotati © 2. Back-A
Correct - Verilog Netlist -~ SDF Tiniing
Layout errors Fabrication Gate . SDF Tisming Constraints |~ St1osd |

=+ PDEE
PO S Wireload files
Test Retsrned Chip 3: For the d:r:nm of. yhrxie-.;?ﬂwdm :
NP muyst boohserved

© Canadian Microelectronics Corporation (Copy with permission only)
7/4/00

Figure 4.2: CMC digital design flow

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. HARDWARE DESIGN

4.4.1 Stimuli files

In ASIC digital design, we need stimuli files to verify the logic function of the mod-
eled hardware circuits. In this project, a software program is developed using Bor-
land C++ Builder to create the stimuli files. This program is actually a finite field
multiplier over GF(223) and can create two kinds of stimuli files to test finite field
multiplication and finite field squaring respectively. There are a number of vectors in
the stimuli files. In the stimuli file for the finite field multiplication test, each vector
contains three 233-bit binary numbers, the first two are the two input operands and
the last one is the result used to compare with the output of the modeled circuits;
In the stimuli file for the finite field squaring test, each vector contains two 233-bit
binary numbers, the first is the input operand and the last is the squaring. The

number of the vectors is 1000 in this program.

4.4.2 Hardware modeling

The circuit shown in Figure 4.1 and its modules are modeled in Verilog which is
an industry level hardware description language (HDL). The circuit is modeled at
register transfer level (RTL). In order to verify that the circuit perform the desire
logic, two testbenches which are written in Verilog to perform functional finite field
multiplication and finite field squaring tests are also needed. The detail Verilog files
are listed in Appendix A and Appendix B. The Verilog simulation tool used in this
thesis is Verilog-XL. In the testbenches, the stimuli files which are created by the
software are used to exercise the circuit, no functional error has occurred during

simulation. The modeled circuit performs the desired logic.

49

Reproduced with permission of the copyright owner. Further reproductionrf)irbhibited without permission.

4. HARDWARE DESIGN

4.4.3 Logical synthesis

The Verilog files that we modeled at RTL level to describe the behavior of the hard-
ware circuit are also called RTL netlists, while the physical layout design needs
gate level netlists. The task of logic synthesis is to convert the RTL netlists to gate
netlists. The cells in the gate netlists are referenced by cell libraries (target libraries)
which are provided by ASIC vendors. The logic synthesizer is a software to perform
the logic synthesis task. The logic synthesizer used to perform logical synthesis in
this project is Design Compiler from Synopsys, and the target libraries used here are
TSMC 0.18 micron CMOS technology libraries. The Table 4.2 summarizes the results

of logic synthesis.

Circuit/module # of Cells | Cell Area (um?) | # of equivalent gates
BPWS multiplier core 3029 124936.062500 4893
Squarer core 293 4248.527832 293
Whole circuit 4539 495452.468750 12113

Table 4.2: Results of logic synthesis

4.4.4 DFT synthesis

There are two types of test in our project. One is functional test which verifies that the
circuit performs the correct logic as expected. The other is manufacturing test which
verifies that the circuit does not have manufacturing defects by focusing on circuit
structure rather than functional behavior. Manufacturing defects might remain un-

detected by functional testing yet cause undesirable behavior during circuit operation.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. .

4. HARDWARE DESIGN

Design for testability (DFT)

DFT is a manufacturing test technique that we can adopt to thoroughly test our inte-
grated circuit. Detailed introduction of DFT can be found in [30] and other relevant
books.

In this project, the DFT design technique is internal full scan. The tool which is
used for DFT synthesis is DF'T Compiler from Synopsys, the ATPG tool which is used
to create test patterns and to perform fault simulation is TetraMax from Synopsys.
In our design, all sequential cells are all valid, no violation exists. The number of the

test patterns is 154 and the fault coverage is 100%.

4.5 Back-end design

In this section, we start the physical IC layout design. Back-end design includes the

tasks of floorplanning, placement, clock synthesis and routing.

4.5.1 Floorplanning and Placement
Floorplanning

The objectives of floorplanning are to minimize the chip area and minimize delay. The
input to a floorplanning tool is the gate netlist that describes the modeled circuit.
The gate netlist in our design is the output from logical synthesis and DFT synthesis
which is a logical description of the ASIC. The floorplan is a physical description of an
ASIC. Floorplanning is thus a mapping between the logical description (the netlist)
and the physical description (the floorplan).

The tasks of floorplanning are to

e arrange the blocks on a chip,

51

4. HARDWARE DESIGN

e decide the location of the I/O pads,
e decide the location and number of the power pads,
o decide the type of power distribution, and

In our design, the gate netlist does not contain any blocks. In TSMC 0.18um tech-
nology, the power supplies for I/O ring and core cells are different. There are four
pairs of power pads added in our design, two pairs are used for I/O ring power sup-
ply, two pairs are used for the core power supply. The aspect ratio is set to 1 which
means the shape of the chip is square. A pair of power ring is placed around the
core which contains all the standard cells and three pairs of vertical power strips are

placed across the core.

Placement

After completing a floorplan we can begin placement of the logic cells. The objectives

of placement are to
e guarantee the router can complete the routing step,
e minimize all the critical net delays,
e the chip as dense as possible,
¢ minimize the total estimated interconnect length,
e meet the timing requirements for the critical nets,
e minimize the interconnect congestion.

Compare with floorplanning, placement is more suitable for automation.

Our design is row-based ASIC design. All logic cells are placed in rows which are

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. HARDWARE DESIGN

defined in the floorplanning and placement tool. Rows are separated by channels
which are used for horizontal routing. Figure 4.3 illustrates that the logic cells are
placed into rows. Carefully selecting the channel offset, we can avoid the later design
rule checking (DRC) problems. In our design, the row utilization is set to 90%,
the channel offset of 4*0.56 micron is obtained from many experiments and other
designers’ experience.

In our design, the tool used to perform floorplanning and placement is Physical

Cells []
PAVd Rows
y

[=

l
Channel /’|’ ‘ S

Figure 4.3: Illustration of placement

Design Planner (or called AreaPdp) which is a Cadence tool. Placement is done by
the timing driven Qplace tool which is integrated in AreaPdp. Timing constraint files
which are obtained during logic synthesis are fed into AreaPdp as constraint files. In
our design, timing requirements are met and there is no congestions in the geometry

report.

4.5.2 Clock tree synthesis

The major task of clock tree synthesis is developing the interconnect geometry that

connects the clock to all the cells on the chip that use a clock. These cells consist of

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without pérmission.

4. HARDWARE DESIGN

latches, flip-flops, and other logic elements that are needed to synchronize with the
system clock. In this thesis, clock tree synthesis is done in CTGen which is integrated
with First Encounter (FE) Ultra, a Cadence tool. The generated clock tree meets the

timing requirements and 23 buffers are added to balance the clock tree in our design.

4.5.3 Golden netlist

The gate netlist generated from Design compiler has been modified at stages of DET
compiler by replacing all sequential cell with corresponding scanned enable sequential
cells and clock tree synthesis by adding buffers into it. This modified gate netlist
should perform the same logic as the RTL netlist. Before doing routing, we should
run the functional test again to verify if this modified netlist perform the desire logic.
The test tool is still Verilog-XL. Without considering the timing requirement, the
functional test at this step is the last time to verify if the circuit can perform the
desire logic. Any failure in functional test will result in the iterations of floorplan,
placement and clock tree synthesis. The results of functional multiplication test are
shown in Figure 4.4 and Figure 4.5. The functional squaring test results are shown

in Figure 4.6 and Figure 4.7.

There is no functional error during simulation and this modified gate netlist is

called golden netlist which can also be used in later LVS checking.

4.5.4 Routing

After the chip is floorplanned and the logic cells have been placed, it is time to make
the connections by routing the chip. Routing is usually split into global routing
followed by detailed routing. In this project, the tool (router) which is used to

perform routing is Silicon Ensemble which is a Cadence tool. After detailed routing

54

Reproduced with permission of the copyright owner. Fuﬁher reproduction prohibited without permission.

4. HARDWARE DESIGN

cik
-cout{232:0]

clemp_oul(232:0]
dataf7i0]
data_out{7:0f

. . BBB8H
5060040009

raset
sefect
wiltte

Figure 4.5: Waveform of functional multiplication test

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

4. HARDWARE DESIGN

addrao]
{213
cnuqzazm

ctemp_out{23z:0}
datsf?:0]

b data_out{7:0]
‘raset
selaci

write

Figure 4.7: Waveform of functional squaring test

Reproduced with permission of the copyrighi oWher. Further reproduction prohibited without permission.

56

4. HARDWARE DESIGN

is complete, the exact length and position of each interconnect for every net is known
and the parasitic capacitance and resistance associated with each interconnect, via,
and contact can be calculated by RC extraction tool. Interconnect delay and load
due to parasitic resistance and capacitance are written in regular standard parasitic
format (RSPF) format and static timing analysis is done in perl scripts in our design.
The timing analysis at this step is the last time to verify timing. Any failure to meet
the timing requirements will result in the iterations of floorplanning, placement and
routing until the timing requirements are thoroughly met. The result of timing limit

checking is shown in Figure 4.8.

e pin_to_p)

ipear] . tmpcmd> ReadGCFConstraints . ./Synopsys/top_wrapper.gcf
dpearl . tmpcmd> SetMaxPossibilities 10

pearl. tmpecmd> CheckTiming]

pear}.tmbcmd> CheckLimits -check max_load,max_slew,fluence > checklim
1its. Tog
L ipear] /tmpemds Timingverify -check setup,hold,gatedclock,recovery,rem

ioval ;hochangesetup ,nochangehold,period, width,loop -max_slack .©
iNo timing constrainis - were triggered

domd> timingverify

jcmdy check]imits

cmd> timingverify
cmd> checklimits

Figure 4.8: Timing limit checking

Our design meets the timing requirements and there is no timing violation in our

design.

57

Reproduced with permission of the copyright owner. Furtherr reproduction prohibited without permission.

4. HARDWARE DESIGN

4.6 Physical verification and modification

After detail routing is complete and timing analysis shows that the design meet the
timing requirement, we can perform physical verification and even modification which
is usually needed before the chip is fabricated. There are two major kinds of checking,

layout versus schematic (LVS) and design rule checking (DRC).

4.6.1 Layout versus schematic (LVS)

The timing analysis we perform after routing just shows whether the design meets
the timing requirements. The netlist might be modified during routing. One of our
concerns is if the physical layout after routing performs the same logic as the golden
netlist. LVS essentially compares the physical netlist (the netlist after routing) to
the golden reference (golden netlist) to ensure that what is about to be committed
to silicon is what is really wanted.

In our design, the tool to perform LVS is Diva LVS from Cadence which is integrated
in Cadence Design Framework II (dfII). Diva LVS in dfIl is used to compare:

1. the final layout in the form of a DEF (Design Exchange Format) file created

from Silicon Ensemble after routing to
2. the golden netlist

to verify the physical (Placed & Routed) version of the design contains the same
instances, nets, and connectivity as the verified "golden” netlist. The LVS result is

shown in Figure 4.9.

In our design, the layout and schematic match each other. Since the physical
layout meets the timing requirements, now we know the physical layout can perform

the desire logic.

58

Reproduced with permission of the copyright owner. Further reproductibn prohibited without permission. i

4. HARDWARE DESIGN

The net-Tists match.

layout schematic

instances
un-matched
rewired 0 0
size errors 8] 4]
pruned] 4]
active 4622 4622
tTotal 4622 4622
) nets
un—matched [¢] 0
merged (4] 4]
pruned (o] [+
active 4651 4651
total 4651 4851
terminals
un-matched 0
matched but
different type 0 4]
total [#) 37
End comparison: Feb 20 10:34:32 2004

Comparison program completed successfully.

Figure 4.9: The result of LVS

4.6.2 Design rule checking (DRC)

DRC ensures that nothing has gone wrong in the process of placing the logic cells
and routing. |

The DRC may be performed at two levels. Since the detailed router normally works
with logic-cell phantoms, the first level of DRC is a phantom level DRC , which checks
for shorts, spacing violations, or other design-rule problems between logic cells. This
is principally a check of the detailed router. In our design, Dracula DRC which is a
cadence tool performs the phantom level DRC. The result from Dracula is shown in
Figure 4.10.

There is no any DRC violation during phantom level design rule checking.

If we have access to the real library-cell layouts (sometimes called hard layout), we
can instantiate the phantom cells and perform a second-level DRC at the transistor

level. This is principally a check of the correctness after replacing the library cells

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without perrrrr{i'ssibni

4. HARDWARE DESIGN

Figure 4.10: The result of phantom level DRC

with detail cell layouts. Since we don’t have the detail library-cell layouts due to
the confidentiality of TSMC technology, CMC will perform this check as a type of
incoming inspection. The results of the second-level DRC from CMC are shown in

Figure 4.11 and Figure 4.12.

There is no any DRC violation in this design. Now our design passed the CMC
inspection and is ready for fabrication. The design name is ICFWRWTK, the fabri-
cation run code is 0402CF. The chip is expected to return on Oct. 2004.

4.7 Chip Layout

The layout of the chip is shown in Figure 4.13.
The total die size of chip is 2533190.5um? including pads. There are 39 pads in the

chip. The hardware parameters are summarized in Table 4.3. From this table, we

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. HARDWARE DESIGN

& htipfhwww . cme . cafprod_scrvidrofciZICh 'WRlWK}plirnuu(.inm Microsoft (nter .
Gle. Edit Yiew Favorik Tools vu'elp :

Qoo - & @ T ‘ps,mh ﬁgﬁmm @i £ 3

agddress http:, .l'.fwww cmc, ca,fprod _ser drctcfﬂCFWRTWK[prlntout hfo
Google ~.| X Searchiweh vl (@ L E852 blocked | B s wri [3 @c »
hon e SOOI e NEHIORE,

STANDARD DRC RESULTS for BCFWRTWK. strm

Exscution. Date/Time: Mon Jan 12 13:58:16 2004
Calibre Vezs:u:m' vB. B_16. 2 Wad Nov 28 22:46:31 PST 2001

=~ "RUNTIME WARNINGS

ACUTE angle on layer M2i at location -(286.976, 74.485) in cell PVSS1IDGZ_66.
ACUTE ‘angle on layer M2i at lowation (26.92F,169.63) +4in cell FDOOBCDG_71.
ACUTE ‘arngle on: layer M2i at” location (26 9286, 169, 53) in cell PDIDGZ_70.

——. RULECHECK' RESULTS STATISTICS

< SUMMARY

TOTAL CPU. Times 688
TOTAL REAL Time: 692

TOTAL DRC RuleChscks Executed: 341
TOTAL DRC Results Generated:

e] hip:SAwww . cme calprod_serv/dec/otfiCT WRIWKpriniout ante.info - Mir:roe.uﬂ internet i xplorer

™) seaich WFM @mm .@ @- a;%} r

e M semctiwen a szzma i
ANTENNA DRC RESULTS for BCFWRTWK.'stia

Execution Date/Time: Mon Jan. 12 14:08:15 2004
Calibre Version: vB:8.16. 2 Wed Nov 28 22:46:31 PST 2001

~~~ RUNTIME WARNINGS

—— RULECHECK RESULTS STATISTICS

~~— SUMMARY

“TOTAL. CPU Time: ‘87
TOTAL ‘REAL. Time: 87
‘TOTAL DRC RuleChecks Executed: 24
TOTAL “DRC. Résults Generated: 0 ()

Figure 4.12: The result of anntenna DRC from CMC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61


http://www.cmc.ca/prod_serv/drc/cf/lCFWRTWK/prlntout'.lnfo

4. HARDWARE DESIGN

Figure 4.13: The layout of the chip

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. HARDWARE DESIGN

can see that our designed chip meets the design specifications.

Specification BPWS core | Squarer core | Whole circuit
# of cells 3029 293 4570
# of equivalent gates 4893 293 12154
Area (um?) 189297.06439 | 6437.15746 2533190.5
Power consumption (mw) < 9.2178 31.7421
Frequency (MHz) 50 (max. 130)

Table 4.3: The hardware parameters

4.8 Comparisons

It is known that the finite field multiplier is a key component in an EC security
processor. The comparisons among the designed chip and other VLSI implementation
of finite field multipliers are made in Table 4.4.

Even though the frequency is set to 50 MHz during the chip design, the maximum
frequency that the chip can work on is 130 MHz. For our designed chip, there is
only one clock cycle needed to perform one finite field squaring, while for all other
multipliers, the number of clock cycles to perform one finite field squaring is the same
as that to perform one finite field multiplication. From Table 4.4 we can see that our

design meets the design saves hardware resources.

4.9 Summary

The full hardware design methodology is introduced in this chapter. The CMC dig-
ital design flow is followed, the VLSI technology adopted is TSMC 0.18um CMOS

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. HARDWARE DESIGN

Multiplier | Frequency | Field # of Cells Gate VLSI
(MHz) size counts technology
BPWS 50 2233 3029 4893 | TSMC 0.18um
8x233 (max.130) CMOS
Squarer 293 293
Classical 77 2233 37296 LUTs 528427 | Xilinx FPGA
233 x 233 37552 FFs XC2V6000-
(7 F1517-4
Hans et al 66.4 < 2256 14797 LUTs 136064 | Xilinx FPGA
MSD 2048 FFs Virtex-11
64 x 256 XCV2000E-7
(5]
Souichi 3 <2576 | 248x288 ANDs | 14544 ALTERA
et al 2 x 8 x 288 XORs FPGA
8 x 288 3+ (8 + 288) FFs EPF10K250-
(18] AGC5992

Table 4.4: Comparisons among VLSI implementation of finite field multipliers

technology. There is no any error existed in the final layout. The design name is
ICFWRWTK, the fabrication run code is 0402CF. The chip is expected to return on
Oct. 2004. The designed chip is ready for fabrication.

In next chapter, my contributions and the expected future works are summarized.

64

Reproduced with permission of the copyright owner. rFuwrither reproduction prohibited without permission. "



Chapter 5

Summaries of Contributions

The summaries of my contributions are:

e Two BPWS PB finite field multipliers in GF(2%33) are designed in this thesis
and the proposed BPWS PB finite field multipliers have the trade-off between

area and speed.

e The maximum frequency that the designed chip can work is 130 Mhz. The
area of the BPWS multiplier is 189297.06439um?, the power consumption is

less than 9.2178 mw. These results meet the design specifications.

e Compared with other finite field multipliers in Table 4.4, the proposed BPWS

finite field multiplier saves the hardware resource.
e A novel 8 x 233 bit-parallel partial product generator is designed in this thesis.

The expected future work is to design an EC security processor for smart card

using this proposed BPWS finite field multiplier.

65

Reproduced with permission of the copyridht 7owner. Further reproduction prohibited without permission.



‘uoissiwiad noyum paugiyoud uononpoudas Joyung “Jsumo ybuAdos ayj jo uoissiuad yum paonpoiday

99

£( ([g)do3"amoTe3ep)I’ ‘([£]3N0TRIRP)QV4d" ) £o3no eiyepd HAD800Ad
f( ({z]dos~ano™eqep)I° ‘([z]ano eiep)Qvd" ) zosno erepd HADLO0Ad
$( ([1]dozano~eqep)I” ‘([T]amoTeaep)avd" ) Tozno~erepd ngogoodd
‘( ([0]doa"ano~egep)I* ‘([0]3n0 eleP)Q¥d’ ) 00ano eaepd HAO800Ad

¢ (doa~zutr~3se3‘doy~Tur~1se3‘doy ur~3seq ‘doz es"3ses
‘dog~yro3sa‘dogy~yrom‘dor qno~eaep‘dog yoetes
‘doy 3esax‘dog e3tamn‘dor N0 ‘doa~ippe‘dor~erep) shsdoi sfs~doa

fdoy zurTases
‘doy~Tur~3se3‘doj ur 98931 ‘doy "es 3802 dog " ¥To9s1
‘doy~qTom‘do3"q0eTes ‘doj qesex‘dor eqtan‘doy ¥To exta
‘dog~zppe [0:%] oITa
‘do3~qno eqep‘doa elep [0:L] °ITA
‘qno~eqep [¢:.]andano
‘YTOASI‘HTOM‘qooTes 1880103 TIA‘YTD 3ndut
{ZUTT1893°TUT 2S83 ‘Ur 3883 ‘esT3se3 andut
tappe [0:¢]andut
‘egep [0:.]andut
f(gUTT1sSe3‘TuTT3se3 ‘UTT 35039573893 YT03SIHIOM
‘Jno~"ejep‘109T8S ‘ 19S0I‘ 93 TINHIO ‘ Ippe ‘esep) xoddein~dog
aTnpouw sdqy/sul sTesseWIl,

*s1Te> ped g/1 oya seutrgep 1T ‘uworgdraosep Teael doiz oy3 //
ST a-zaddeam~dog eyl ‘TeaeT omg sepniour AyoersTy 3TADITI oyl //
/**************************************************************

>k €00C 9T ‘3ny ook
*kok fue] teyuepm ook
*okk 4+ zeddean~doa Hokk

*************************************************************/

I wosbousg

Vv xipuaddy




A. PROGRAM 1

PD008CDG pdata_out04 ( .PAD(data_out[4]), .I(data_out_topl[4]) );
PDOOSCDG pdata_out05 ( .PAD(data_out([5]), .I(data_out_top[5]) );
PDOO8CDG pdata_out06 ( .PAD(data_out[6]), .I(data_out_top(6]) );
PDO0O8BCDG pdata_out07 ( .PAD(data_out[7]), .I(data_out_top[7]) );
PDIDGZ pdata00 ( .C(data_top[0]), .PAD(datal0]) );
PDIDGZ pdata0Oi .C(data_top[1]), .PAD(data{1])
PDIDGZ pdata02 ( .C(data_top[2]), .PAD(data[2])
PDIDGZ pdata03 ( .C(data_top{3]), .PAD(datal[3])
PDIDGZ pdata04 ( .C(data_top[4]), .PAD(datal4])
PDIDGZ pdata05 ( .C(data_top[5]), .PAD(datal[5])
PDIDGZ pdata06 ( .C(data_top{6]), .PAD(datal[6])
PDIDGZ pdata07 ( .C(data_top[7]), .PAD(datal7])
PDIDGZ paddr00 ( .C(addr_top[0]}), .PAD(addr[0])
PDIDGZ paddrOi .C(addr_top[1]), .PAD(addr[1])
PDIDGZ paddr02 ( .C(addr_top[2]), .PAD(addr[2])
PDIDGZ paddr03 ( .C(addr_top[3]), .PAD(addr[3])
PDIDGZ paddr04 ( .C(addr_top[4]), .PAD(addr[4])
PDIDGZ pclk ( .C(clk_top), .PAD(clk) );
PDIDGZ pwrite ( .C(write_top), .PAD(write) );
PDIDGZ pwclk ( .C(wclk_top), .PAD(wclk) );
PDIDGZ prstclk ( .C(rstclk_top), .PAD(rstclk) );
PDIDGZ pselect ( .C(select_top), .PAD(select) );
PDIDGZ preset (.C(reset_top), .PAD(reset) );
PDIDGZ ptest_se (.C(test_se_top), .PAD(test_se) );
PDIDGZ ptest_in (.C(test_in_top), .PAD(test_in) );
PDIDGZ ptest_inl (.C(test_inl_top), .PAD(test_inl) );
PDIDGZ ptest_in2 (.C(test_in2_top), .PAD(test_in2) );
endmodule

.s e

e wa

“we we we

Nl N N N N N N N N N N

e wa

Q AN/ A

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

Program 2

/*************************************************************

Kk *kk
%k ¥k k
%% %k

topall.v * kK
Wenkai Tang *kk
Aug. 16 2003 *kk

TRk kR ok kRO Rk kAR R ok ORIk ko kb Rk Kok
// The circuit hierachy includes two level. The topall.v is

// the second level description, it models the circuit and still
// contains a hierachy.

‘timescale 1ns/10ps module

top_sys(a,

input
input
input
input
input
input
input

addr,clk,w,rst,sel,c,wclk,rstclk,test_se,
test_in,test_inl,test_in2);

[7:0] a;

[4:0] addr;

clk,wclk,rstclk;

w5

rst;

sel;

test_in, test_se, test_inl,test_in2;

output [7:0] c;

wire [255:0] wi, w2;

wire [7:0] w81;

wire [232:0] wil,w12,wl3,wl4,wl5;

codec

ci(a,addr,clk,w,wl);

assign wil=w1[240:8];

assign w81=w1[7:0];

BPWSMSBFFM b1 (w81,wil,clk,rst,rstclk,wl2);
fbp_squarer f1(wll,wi3);

multiplixer2tol mi(wi2,w13,sel,wl4);

68

Reproduced with permission of the copyright owner. Further reproduction prohrirbited without bérmission.



B. PROGRAM 2

latch233 11(wi4,wclk,1’b0,wis);
assign w2[232:0]=w15;

assign w2[255:233]="1b0;
codecout c2(w2,addr,clk,w,c);

endmodule

// Module codec is a component in module top_sys, it decodes address
// and write the data into a part of register.
module codec(data,addr,clk,w,data_out);

input [7:0] data;

input [4:0] addr;

input clk;

input w;

output [255:0] data_out;

reg[255:0] data_out;

always @(posedge clk)
begin
if (w)

case (addr)

5°b00000: data_out[7:0]=data;
5°b00001: data_out[15:8]=data;
5°b00010: data_out[23:16]=data;
5°b00011: data_out[31:24]=data;
5°b00100: data_out[39:32]=data;
5°b00101: data_out[47:40]=data;
5'b00110: data_out[55:48]=data;
5°b00111: data_out[63:56]=data;
5°b01000: data_out[71:64]=data;
5°b01001: data_out[79:72]=data;
5°b01010: data_out[87:80]=data;
5°b01011: data_out[95:88]=data;
5’b01100: data_out[103:96]=data;
5°b01101: data_out[111:104)=data;
5°b01110: data_out[119:112]=data;
5'b01111: data_out[127:120]=data;
5°b10000: data_out[135:128]=data;
5°b10001: data_out[143:136]=data;
5°b10010: data_out[151:144]1=data;
5°b10011: data_out[159:152]=data;
5’b10100: data_out{[167:160]=data;
5°b10101: data_out[175:168]=data;
5°b10110: data_out[183:176]=data;
57p10111: data_out[191:184]=data;

5’b11000: data_out[199:192]=data;
5°b11001: data_out [207:200)=data;
5°b11010: data_out[215:208]=data;
5°b11011: data_out[223:216]=data;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissi;h:

69



B. PROGRAM 2

5°b11100: data_out[231:224]}=data;
5°b11101: data_out [239:232])=data;
5°b11110: data_out[247:240]=data;
5°b11111: data_out[255:248]=data;
endcase
end
endmodule

//Module codecout is a component in module top_sys, it decodes
//the address and read the data out of the register.
module codecout(data,addr,clk,w,data_out);

input [255:0] data;

input [4:0] addr;

input w;

input clk;

output [7:0] data_out;

reg [7:0] data_out;

always @(posedge clk)
begin
if (tw)

case (addr)

5b00000: data_out=datal7:0];
5’b00001: data_out=datal15:8];
5°b00010: data_out=data[23:16];
5°b00011: data_out=data[31:24];
5°b00100: data_out=data[39:32];
5’°b00101: data_out=datal[47:40];
5'b00110: data_out=data[55:48];
5’b00111: data_out=data[63:56];
5°b01000: data_out=data[71:64];
5°b01001: data_out=datal[79:72];
5'b01010: data_out=data[87:80];
5°b01011: data_out=datal[95:88];
5'b01100: data_out=data[103:96];
5’°b01101: data_out=data[111:104];
5°b01110: data_out=data[119:112];
5°b01111: data_out=data[127:120];

5’b10000: data_out=data[135:128];
5°b10001: data_out=data[143:136];
5°b10010: data_out=datal151:144];
5°b10011: data_out=datal159:152];

5°b10100: data_out=data[167:160];
5’b10101: data_out=datal[175:168];
5°b10110: data_out=data{183:176];
5°b10111: data_out=data[191:184];

5°b11000: data_out=datal[199:192];
5°b11001: data_out=data[207:200];
5°b11010: data_out=datal[215:208];

70




B. PROGRAM 2

5'b11011: data_out=data[223:216];

5°b11100: data_out=data[231:224];
5°b11101: data_out=data[239:232];
5°b11110: data_out=datal[247:240];
5’b11111: data_out=data[255:248];

endcase
end
endmodule

//Module BPWSMSBFFM is a component in module top_sys. It is
//the proposed BPWS PB finite field multiplier.
module BPWSMSBFFM(a,b,clk,rst,rstclk,c);

input [7:0] a;

input [232:0] b;

input clk;

input rst,rstclk;

output [232:0] c;

wire [232:0] wi,w2,w3,w4,w5,w6,w7;

wire w0;

assign w0=1’b0;

latch233 11 (b,rstclk,w0,wl);//cik

multiplier8x233 m8x233 (a,wl,w2);

xor_network xni (w2,w5,w3);

assign c=w3;

const_multiplier cm8 (w3,w4);

latch233 12 (w4,clk,rst,wb);
endmodule

//Module fbp_squarer is a component in module top_sys. It is
//the full bit parallel PB squarer.
module fbp_squarer(a,b);

input [232:0] a;

output [232:0] b;

reg [232:0] b;

integer k;

integer m;

integer 1i;

alvays @ (a)
begin
k=74,
m=233;
for(i=0;i<k;i=i+2)
blil=ali/2] ~alm-k/2+i/2];
for(i=1;i<k;i=i+2)
blil=a[(m+i)/2];
for (i=k;i<2*k;i=i+2)
bl[il=ali/2] “alm-k+i/2];
for(i=k+1;i<m;i=i+2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71



B. PROGRAM 2

blil=a[(m+i)/2] “a[(m-k+i)/2];
for(i=2#k;i<m;i=i+2)
blil=ali/2];
end
endmodule

//Module latch233 is a component in both module top_sys and
//module BPWSMSBFFM. It serve as a 233-bit register.
module latch233(a,clk,rst, q);

input [232:0] a;

input clk;

input rst;

output [232:0] q;
reg [232:0] q;
integer k;

always @ ( posedge clk) //or posedge rst
if (rst)
q=233’b0;
else
q=a;
endmodule

//Module multiplixer2tol is a component in module top_sys.
//It is the multiplixer used to select the output from either
//multiplier or squarer.
module multiplixer2toi(a,b,sel,c);

input [232:0] a;

input [232:0] b;

input sel;

output [232:0] c;

reg [232:0] c;

always@(a or b or sel)
begin
if (sel)
c=a;
else
c=b;
end
endmodule

//Module multiplier8x233 is a component in module BPWSMSBFFM.
//1It is the 8x233 partial product generator.
module multiplier8x233(a,b,c);

input [7:0] a;

input [232:0] b;

output [232:0] c;

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B. PROGRAM 2

wire [232:0] x1,x2,x3,x4,x5,x6,m1,n2,m3,m4,n5,n6,n7,
a0,al,a2,a3,a4,ab,a6,a7;

const_mi cml (b,
const_m2 cm2 (b,
const_m3 cm3 (b,
const_md cméd (b,
const_m5 cm5 (b,
const_m6 cmé (b,
const_n7 cm7 (b,

and_network amO
and_network amil
and_network am2
and_network am3
and_network am4
and_network amb
and_network amé
and_network am7

xor_network xal
xor_network xa2
xor_network xa3
xor_network xad
xor_network xab
xor_network xa6
xor_network xa7

mi);
n2);
mn3);
md);
m5);
né) ;
n7);

(al0],b,20);
(al1]l,m1,a1);
(a[2] ,m2,a2);
(a[3],m3,a3);
(al4],m4,a4);
(a[5],m5,a5);
(a[6],m6,a6);
(al7],m7,a7);

(a0,al,x1);
(a2,a3,x2);
(a4,a5,x3);
(ab,a7,x4);
(x1,x2,x5);
(x3,x%4,x6);
(x5,x%6,¢);

endmodule

//Module xor_network is a component in both module BPWSMSBFFM
// and module multiplier8x233. It is the 233-bit adder.
module xor_network(a,b,c);

input [232:0] a;

input [232:0] b;

output [232:0] c;

reg [232:0] c;

integer k;

always @(a or b)
for (k=0;k<233;k=k+1)
clkl=alx] blk];
endmodule

//Module const_multiplier is a component in module BPWSMSBFFM.
//It is the comstant multiplier.
module const_multiplier(a,b);

input [232:0] a;

output [232:0] b;

reg [232:0] b;

integer k;

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissioh.



B. PROGRAM 2

always @(a)
begin

b[0]=a[225];

b[1]=a[226];

b[2]=a[227];

b[3]=a[228];

b[4]=a[229];

b{5]=a{230];

b[6]=al231];

b[7]=a(232];

for (k=8;k<74 ;k=k+1)
blk]l=a[k-8];
b[74]=al225]~al66];
b[75]=a[226] ~a[67];
b[76]=a[227] ~a[68];
b[77]1=a[228] ~a[69];
b[78]=a[229] ~a[70];
b[79]=a{230] ~a[71];
b(80]=a[231]~a[72];
b[81}=a[232] ~a[73];

for (k=82;k<233;k=k+1)
blk]l=alk-8];

end
endmodule

//Module const_ml is a component in module multiplier8x233.
//It is one constant multiplier.
module const_mi(a,b);
input [232:0] a;
output [232:0] b;
reg [232:0] b;
integer k;
always @(a)
begin
b[0]=a[232];
for (k=1;k<74;k=k+1)
blk]=alk-11;
b[74]=a[232] "a[73];
for (k=75;k<233;k=k+1)
blkl=alk-1];
end
endmodule

//Module const_m2 is a component in module multiplier8x233.
//It is one constant multiplier.
module const_m2(a,b);

input [232:0] a;

output [232:0] b;

74

Reproduced with permission of the copyright owner. Further reprcr)ducticr)hmpr)rc;hibited without permissior{.”



B. PROGRAM 2

reg [232:0] b;
integer k;
always @(a)
begin
b[0]=a[231];
b[1]=af232];
for (k=2;k<74;k=k+1)
blk]=al[k-2];
b[74]=al231]~al72];
b[75]=a[232]~a[73];
for (k=76;k<233;k=k+1)
blkl=alk-2];
end
endmodule

//Module const_m3 is a component in module multiplier8x233.
//1t is one constant multiplier.
module const_m3(a,b);
input [232:0] a;
output [232:0] b;
reg [232:0] b;
integer k;
always @(a)
begin
b[01=a[230];
bl[1]=a[231];
b[2]=a[232];
for (k=3 ;k<74;k=k+1)
blk]=alk-3];
b[74]=a[230] ~a[71];
b[75]=al231] ~a[72];
b[76]=a[232] "a[73];
for (k=77;k<233;k=k+1)
blk]=alk-3];
end
endmodule

//Module const_mé4 is a compoment in module multiplier8x233.
//It is one constant multiplier.
module const_m4(a,b);
input [232:0] a;
output [232:0] b;
reg [232:0] b;
integer k;
always @(a)
begin
b[0]=a[229];
b[1]=a[230];
b[2]=a[231];

Reproduced with permission of the copyright owner. Further reproduction Vproh;ibited without permissicr)Ah‘. “

75



B. PROGRAM 2

b[3]=al232];
for (k=4 ;k<74;k=k+1)
blk]=a[k-4];
b[74]=a[229] ~a[70];
b[751=a[230] ~a[71];
b{76]=a(231] ~a[72];
b[77]=a(232] “al[73];
for (k=78;k<233;k=k+1)
blk]l=alk-4];
end
endmodule

//Module const_m5 is a component in module multiplier8x233.
//It is one constant multiplier.
module comst_m5(a,b);
input [232:0] a;
output [232:0] b;
reg [232:0] b;
integer k;
always @(a)
begin
b[0]=a[228];
b[1]=a[229];
b[2]=a[230];
b[3]=al231];
bl4]=a[232];
for (k=5;k<74 ;k=k+1)
bik]l=alk-5];
b[74]=a[228] ~a(69];
b[751=a[229] ~al70];
b[76]1=a[230] ~af71];
b[77]1=a[231]"a[72];
b[78]=a{232] ~a[73];
for (k=79;k<233;k=k+1)
blkl=alk-5];
end
endmodule

//Module const_m6 is a component in module multiplier8x233.
//1t is one constant multiplier.
module const_mé6(a,b);
input [232:0] a;
output [232:0] b;
reg [232:0] b;
integer k;
always @(a)
begin
bl01=a[227];
b{1]=a[228];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76



B. PROGRAM 2

b[2]=al229];
b[3]1=al[230];
bl4]=a[231];
bl51=a[232];
for (k=6 ; k<74 ;k=k+1)
b[k]=al[k-6];
b[74]=a[227]"al68];
b[75]=a[228] ~a[69];
b[76]1=a[229] “a[70];
b[77]1=a[230] ~a[71];
b[78}=al[231]~a[72];
b[79]=a[232] ~a[73];
for (k=80;k<233;k=k+1)
b[k]=alk-6];
end
endmodule

//Module const_m7 is a component in module multiplier8x233.
//1t is one constant multiplier.
module const_m7(a,b);
input [232:0] a;
output [232:0] b;
reg [232:0] b;
integer k;
always @(a)
begin
b[0]=a[226] ;
b[1]=a[227];
b[2]=a[228];
b[3]=al229];
b[4]=a[230];
b[5]l=al231];
b{6j=al232];
for (k=7 ;k<74;k=k+1)
blkl=alk-7];
b[741=a[226] ~a[67];
b[751=a[227]a[68];
b[76]=a[228] ~a[69];
b{77]=a[229] ~a[70];
b[78]=a[230] "al[71];
b[79]1=a[2311"a[72];
b[80]1=a[232] ~a[73];
for(k=81;k<233;k=k+1)
b[k]=al[k-7];
end
endmodule

//Module and_network is a component in module BPWSMSBFFM.
//It is the AND network used to multiply an element by a

(i

Reproducﬁediwith permission of the copyright owner. Further reproduction prohibited without permission.



B. PROGRAM 2

//coefficient.

module and_network(a,b,c);
input a;
input [232:0] b;
output [232:0] c;
reg [232:0] c;
integer k;

always @(a or b)

begin
for (k=0;k<233;k=k+1)
clk]l=akb[k];
end
endmodule

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

[1] M. Benantar “Introduction to the Public Key Infrastructure for the
Internet” Prentice Hall PRT 2002

[2] T. Beth, D. Gollmann,” Algorithm Engineering for Public Key Algo-
rithm”, IEEE Journal on Selected Areas in Communications, VOL. 7,
NO. 4, May 1989

[3] G. Birkhoff, S. Mac Lane, “A Survey of Modern Algebra”, 5th ed. New
York: Macmillan, p. 413, 1996

[4] H. Brunner, A. Curiger, M.Hofstetter, “On Computing Multiplicative
Inverses in GF(2™)” IEEE Trans. Computers, VOL 42, NO. 8, August
1993

[5] H. Eberle, S. Chang, N. Gura, S. Gupta, D. Finchelstein, E. Goupy, D.
Stebila, “ An End-to-End Systems Approach to Elliptic Curve Cryp-
tography” Sun Microsytems Laboratories 2002-2003

[6] D. Gollmann, “qually Spaced Polynomials, Dual Bases, and Multipli-
cation in Fpm” IEEE Trans. Computers, VOL.51, NO.5, May 2002

[7] C. Grabbe, M. Bednara, J. Teich, J. Von Zur Gathen, J. Shokrollahi,
“FPGA designs of parallel high performance GF(2233) multipliers”,
Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 Inter-
national Symposium on , VOL 2, 25-28 May 2003

[8] J. Grobschadl, “A LOW-POWER BIT-SERIAL MULTIPLIER FOR
FINITE FIELDS GF(2™)” IEEE International Symposium on Cir-
cuits and Systems ISCAS 2001, Sydney, Australia, May 6-9, 2001

[9] U. Hansmann, M. S. Nicklous, T. Schack, F. Seliger, “Smart Card
Application Development Using Java” Springer, first edition, 2000.

79

'R;éproduced with permissioh of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

[10] LS. Hsu, T.K. Truong, L.J. Deutsch, L.S. Reed, “A comparison of VLSI
architecture of finite field multipliers using dual, normal, or standard
bases” IEEE Trans. Computers, VOL. 37, Issue 6, June 1988

[11] N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computa-
tion, American Mathematical Society, 48(177):203-209, 1987.

[12] C.K. Koc, B. Sunar “Low-Complexity Bit-Parallel Canonical and Nor-
mal Basis Multipliers for a Class of Finite Fields” IEEE Trans. Com-
puters, VOL. 47, NO.3, March 1998

[13] C.Y. Lee, “Low complexity bit-parallel systolic multiplier over GF(2™)
using irreducible trinomial”, IEE Proc. Comput. Digit. Tech., Vol 150,
No. 1, January 2003

[14] C.Y. lee, E.H. Lu, J.Y. Lee, “New Bit-Parallel systolic multipliers for
a class of GF(2™)”, Computer Arithmetic, 2001. Proceedings. 15th
IEEE Symposium on , 11-13 June 2001 Pages:51 - 58

[15] E.D. Mastrovito, “VLSI Architectures for Multiplication Over Finite
Field GF(2™)” Applied Algebra, Algebraic Algorithms, and Error-
Correcting Codes, Proc. Sixth Intl Conf., AAECC-6, T. Mora, ed.,
pp- 297-309, Rome, July 1988. New York: Springer-Verlag.

[16] V.S. Miller, “Use of elliptic curves in cryptography” CRYPTO’85 Pro-
ceedings of Crypto, pages 417-426, Springer, 1985.

[17] T. Nagell, "Irreducibility of the Cyclotomic Polynomial.” 47 in Intro-
duction to Number Theory. New York: Wiley, pp. 160-164, 1951.

[18] S. Okada, N. Torii, K. Itoh, M. Takenaka, “Implementation of Elliptic
Curve Cryptographic Coprocessor over GF(2™) on an FPGA”, C.K.
Koc and C. Paar (Eds.): CHES 2000, LNCS 1965, pp. 25-40, 2000.
Springer-Verlag Berlin Heidelberg 2000

[19] A. Reyhani-Masoleh, M. Anwar Hasan,“A New Construction of
Massey-Omura Parallel Multiplier over GF(2™)”IEEE Trans. Com-
puters, VOL. 51, NO. 5, May 2002

[20] A. Menezes, “Elliptic Curve Cryptosystems”, CryptoBytes, Vol.1
No.2, Summer 1995.

[21] C. Paar, “A new architecture for a parallel finite field multiplier with
low complexity based on composite fields”, IEEE Trans. Computers,
VOL. 45, NO. 7, July 1996

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

[22] M.J.B. Robshaw, Y.L. Yin, “Elliptic Curve Cryptosystems” An RSA
Laboratories Technical Note, Revised Jun2 27, 1997

(23] B. Schneier, “Applied Cryptography” John Wiley and Sons, Inc., 1994.

[24] L. Song, K. K. Parhi, “Efficient Finite Field Serial/Parallel Multipli-
cation” Application Specific Systems, Architectures and Processors,
1996. ASAP 96. Proceedings of International Conference on , 19-21
Aug. 1996 Pages:72 - 82.

[25] B. Sunar, C.K. Koc“Mastrovito Multiplier for All Trinomails” IEEE
Trans. Computers, VOL. 48, NO. 5, May 1999

[26] N. Takagi, J. Yoshiki, K. Takagi, “ A Fast Algorithm for Multiplicative
Inversion in GF(2™) Using Normal Basis”, IEEE Trans. Computers.
VOL. 50, NO. 5, May, 2001

[27] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and
L.S. Reed, “VLSI Architectures for computing multiplications and In-
verses in GF(2™)” IEEE Trans. Computers, VOL. 46, NO. 2, Feb.
1997

[28] H. Wu, “Bit-Parallel Finite Field Multiplier and Squarer Using Poly-
nomial Basi” IEEE Trans. Computers, VOL. 51, NO. 7, July 2002

[29] National Institute of Standard and Technology, FIPS PUB 186-2, Jan
2000

[30] Synopsys online manual “Test automation” SOLD
[31] http://en.wikipedia.org/wiki/Group_(mathematics)#Basic_definitions
[32] http://en.wikipedia.org/wiki/Ring_(mathematics)
[33] http://en.wikipedia.org/wiki/Field_(mathematics)

[34] http://www.certicom.com/index.php?action=res,ecc_faq

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://en.wikipedia.org/wiki/Ring_(mathematics
http://en.wikipedia.org/wiki/Field_(mathematics
http://www.certicom.com/index.php?action=res,ecc_faq

VITA AUCTORIS

Wenkai Tang was born in 1969 in P.R. China. He received his Bachelor’s Degree
in Optoelectronics from Electronic Engineering Department in Tsinghua University
in 1992. He is currently a candidate for the Master of Applied Science Degree in the
Department of Electrical and Computer Engineering at the University of Windsor

and hopes to graduate in Winter 2004.

82

Reproduced with permission of the copyright owner. Fiurther reproduction prohibited without permission.



	Bit-parallel word-serial polynomial basis finite field multiplier in GF(2(233)).
	Recommended Citation

	ProQuest Dissertations

