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Abstract

Smart card gains extensive uses as a cryptographic hardware in security applications 

in daily life. The characteristics of smart card require that the cryptographic hardware 

inside the smart card have the trade-off between area and speed.

There are two main public key cryptosystems, these are RSA cryptosystem and elliptic 

curve (EC) cryptosystem. EC has many advantages compared with RSA such as 

shorter key length and more suitable for VLSI implementation. Such advantages 

make EC an ideal candidate for smart card.

Finite field multiplier is the key component in EC hardware. In this thesis, bit-parallel 

word-serial (BPWS) polynomial basis (PB) finite field multipliers are designed. Such 

architectures trade-off area with speed and are very useful for smart card.

An ASIC chip which can perform finite field multiplication and finite field squaring 

using the BPWS PB finite field multiplier is designed in this thesis. The proposed 

circuit has been implemented using TSMC 0.18 CMOS technology.

A novel 8 x 233 bit-parallel partial product generator is also designed. This new 

partial product generator has low circuit complexity. The design algorithm can be 

easily extended to w x m  bit-parallel partial product generator for GF{2'^).

IV
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Chapter 1

Introduction

In this chapter, the research motivations are introduced in the first section, the fol­

lowings are our research goals and the thesis organization.

1.1 Research motivations

Our research is originated from smart card applications.

1.1.1 Smairt card and its applications

A smart card is a credit card sized plastic card embedded with an integrated circuit 

(IC) chip. It provides not only memory capacity, but computational capability as 

well. The self-containment of smart card makes it resistant to attack as it does 

not need to depend upon potentially vulnerable external resources. Because of this 

characteristic, smart cards are often used in different security applications which 

require strong security protection and authentication.
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1. INTRODUCTION

The success of the smart cards in Europe began in the early eighties, between 1982 

and 1984 when Carte Bancaire (the French Bank Card Group) had the first smart card 

pilot running [9]. Together with Bull (A French company), Philips (An international 

company) and Schlumberger (An international company), Carte Bancaire launched 

trials in the French cities of Blois, Caen, and Lyon. The trials were a great success. 

Following these trials, French banks launched the use of smart cards for banking. 

This was the first mass rollout of smart cards in the banking industry.

Today, smart cards are used for many different purposes in daily life. Smart 

card can be a phone card, people can use it to make local or long distance call in 

a phone booth; Smart card can also act as an identification card which is used to 

prove the identity of the card holder. For example, it can be used as campus access 

card. In Finland, smart cards are used as the Finnish National Electronic Identity 

(FINEID) cards; Smart card can be a medical card which stores the medical history 

of a person; Furthermore, the smart card can be used as a credit/debit bank card 

which allows off-line transactions. In the near future, the traditional magnetic strip 

card will be replaced and integrated together into a single card by using the multi­

application smart card, which is known as an electronic purse or wallet in the smart 

card industry. All of these applications require sensitive data to be stored in the 

card, such as biometrics information of the card owner, personal medical history, and 

cryptographic keys for authentication, etc.

A smart card [9] shown in Figure 1.1 consists of a microprocessor, ROM (Read 

Only Memory), EEPROM (Electrical Erasable Programmable Read Only Memory), 

and RAM (Random Access Memory).

Today’s smart cards have approximately the same computing power as the first 

IBM PC [9]. At present, most smart cards have an inexpensive 8-bit microprocessor, 

but the high-end cards can have a 16-bit or 32-bit processor. An optional crypto­

graphic coprocessor (security processor) increases the performance of cryptographic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. INTRODUCTION
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Figure 1.1: Smart card

operations. The working frequency of smart card normally is 5 MHz. The RAM size 

of most smart cards is 256 bytes to 1 kilobyte. The chip size is at most 25mm^ and 

there are also a card operating system and might have some applications in smart 

card [9].

Since the working frequency is relatively slow, furthermore, the memory inside 

the smart card is very limited and the card operating system is not for security pur­

pose, software implementation of any security application in smart card is normally 

very slow and considered insecure. We usually solve the high load of cryptographic 

computations by means of the cryptographic coprocessor. Due to the above features 

of the smart card and its area constraint which we cannot make the chip very large, 

the coprocessor hardware inside the smart card should trade-off area for speed.

1.1.2 C ryptography and cryptosystem s

Cryptography and cryptosystems gain extensive uses in all kinds of security applica­

tions.

Cryptography is the study of mathematical techniques related to the aspects of 

information security such as confidentiality, data integrity, and data origin authenti-
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1. INTRODUCTION

cation, etc. Cryptosystems can normally be classified into two groups : symmetric 

cryptosystems [1] and asymmetric cryptosystems [1] (also called public key cryptosys­

tems).

Symmetric cryptosystems use the same key to encrypt and decrypt information. 

Implementations of symmetric key encryption/decryption can be highly efficient, so 

that users do not experience any significant time delay as a result of the encryption 

and decryption. But symmetric cryptosystems have a problem of low security for 

their key. It is generally very difficult to transmit the secret key from the sender 

to the recipient securely and in a tamperproof fashion. If anyone else discovers the 

key, it affects both confidentiality and authentication. A person with an unauthorized 

symmetric key not only can decrypt messages sent with that key, but can also encrypt 

new messages and send them as if they came from one of the two parties who were 

originally using the key. Frequently, trusted couriers are used as a solution to this 

problem. A more efficient and reliable solution is a public key cryptosystem.

Public key cryptosystems involve a pair of keys (a public key and a private 

key) which are associated with an entity that needs to authenticate its identity or 

to sign or to encrypt data. Such public key cryptosystems have the abilities to 

perform the functions of key exchange, digital signature, encryption and decryption. 

Nowadays there are two main public key cryptosystems which are RSA cryptosystems 

and Elliptic curve (EC) cryptosystems.

1.1.3 E lliptic curve cryptography (ECC)

In 1985, N. Koblitz [11] and V.S. Miller [16] independently proposed elliptic curves 

(EC) for public key cryptosystems. Their proposal however was not considered as 

a new cryptographic algorithm with elliptic curves over finite fields, as they imple­

mented existing algorithms, like Diffie-Hellman, using elliptic curves [23].

Over the past two decades, elliptic curve has been well researched by many schol­
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1. INTRODUCTION

ars. These cryptosystems need a much shorter key than RSA cryptosystems to provide 

the same security strength. It appears that an elliptic curve cryptosystem imple­

mented over the 160-bit field GF{2^^^) currently offers roughly the same resistance to 

side channel attack as would a 1024-bit RSA [20] and an elliptic curve cryptosystem 

over a 136-bit field GF{2^^^) gives us roughly the same security as 768-bit RSA [22]. 

The basic operations in RSA cryptosystems are integer modular operations, while 

in EC cryptosystems, finite field operations are the basic operations. When elliptic 

curve is over finite field GF{2^),  the implementation of EC cryptosystems will save 

more hardware resources than RSA cryptosystems since the field elements in GF{2^)  

can be represented by m-bit binary numbers and the binary number is well adopted 

by computer arithmetic. All these advantages make EC an ideal candidate for smart 

card applications.

The finite field operations in EC cryptosystems can be broken into finite field ad­

ditions, multiplications, squarings and inversions. Finite field addition can be simply 

implemented by XOR gates and normally considered as almost free. These finite field 

adders are carry-free, and thus are faster than normal carry ripple adders. The finite 

field inversion can be further broken into finite field multiplications and finite field 

squarings [26, 4] and finite field squaring is a special case of finite field multiplication, 

thus, the finite field multiplier becomes the key component in EC hardware.

A number of finite field multiplier architectures have been proposed with different 

emphasis for various security applications. Full bit-parallel finite field multipliers [28, 

12, 13, 14, 15, 19, 25, 27] can yield high throughputs, bit-serial finite field multipliers 

[2, 8, 24, 27] only need small area. These finite field multiplier architectures can satisfy 

nearly all security applications. However, the full bit-parallel finite field multipliers 

are still too large for smart cards because they have the chip area constraint; On 

the other hand, finite field multiplier with bit-serial structure is too slow since the 

frequency is low for smart card and too many clock cycles are needed to perform one
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1. INTRODUCTION

multiplication. We may need a hybrid bit-parallel word-serial (BPWS) finite field 

multiplier architecture to balance the trade-off between area and speed.

1.2 Research goals

One of our research goals is to design a new hybrid BPWS finite field multiplier archi­

tecture for smart card, such a finite field multiplier should trade-off between area with 

speed; The final goal is to design an ASIC (Application Specified Integrated Circuit) 

chip which can perform finite field multiplication using this BPWS architecture and 

finite field squaring using a bit-parallel finite field squarer.

1.3 Thesis organization

Chapter 2 introduces the basic concepts of finite field, finite field element repre­

sentations, finite field operation and a few state-of-art polynomial basis finite field 

multiplier architectures.

A BPWS finite field multiplier architecture is designed in Chapter 3, a novel 

8 X 233 bit-parallel partial product generator is developed, an alternative BPWS 

finite field multiplier architecture and the general architectures are also introduced in 

this chapter.

The design of an ASIC chip which has the BPWS finite field multiplier together 

with a full bit parallel squarer is presented in Chapter 4. The VLSI implementation 

technology is TSMC 0.18 CMOS technology. The design flow is the CMC digital 

design flow. The results at each design stage are also shown in this chapter.

Chapter 5 presents summary and conclusions of this research and provides future 

works.
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Chapter 2

Arithmetic over Finite Field

In this chapter, concept of field, irreducible polynomial, finite field and finite field 

element representations are introduced. Furthermore Elliptic Curve (EC) and why 

finite field multiplier is so important for EC are explained. Using these background 

knowledge, several state-of-the-art polynomial basis finite field multiplier architec­

tures are discussed. At the end of this chapter, a bit parallel finite field squarer is 

introduced.

2.1 Group, ring, field and finite field

2.1.1 Group

A group [31] (G, *) is defined as a set G together with a binary operation =c ; 

G * G ^  G. We write “a * 6” for the result of applying the operation * to the 

two elements a and b of G. To have a group, * mast satisfy the following axioms ;
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2. ARITHMETIC OVER FINITE FIELD

•  Associativity: For all a, b and c in G, (a * b) * c = a * {b * c).

•  Identity element: There is an element e in G such that for all a in G, e * a =

a = a*e .

•  Inverse element: For all a in G, there is an element 6 in G such that a*b = e =

b* a, where e is the identity element from the previous axiom.

• Closure: For all a and b in G, a * b  belongs to G.

An abelian group is a group (G, *) that is commutative, i.e., a * b  =  b * a  holds for 

all elements a and 6 in G.

Examples

1. The set of integers under addition forms a group and also an abelian group.

2. The set of nonzero rational numbers under multiplication is a group and also 

an abelian group.

3. The set of integers under multiplication is NOT a group.

2.1.2 R ing

A ring [32] is an abelian group (i?, +), together with a second binary operation * such 

that for all a, b, and c in R,

a*  {b* c) = { a * b )* c  

a*  (b + c) =  {a * b) + {a * c)

{a + b )* c  =  {a*c) + {b*c)
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2. ARITHMETIC OVER FINITE FIELD

and such that there exists a multiplicative identity, or unity, that is, an element 1 so 

that for all a in R,

a * l  = l * a  — a

The identity element with respect to +  is called the zero element of the ring and 

written as 0.

A commutative ring is a ring in which the multiplication operation obeys the com­

mutative law, i.e., if a and b are any elements of the ring, and if the multiplication 

operation is written as *, then a * b = b * a.

Examples

Integers, rational numbers, real numbers and complex number under addtion and 

multiplication are all examples of rings.

2.1.3 F ield

A field [33] is a commutative ring (F, - I - ,  *) such that additive identity element 0 does 

not equal multiplicative identity 1 and all elements of F  except 0 have a multiplicative 

inverse. Besides the above axioms of group and ring, a field also obey the following 

rules:

• Existence of an additive identity

There exists an element 0 in F, such that for all a belonging to F, a + 0 = a.

• Existence of a multiplicative identity

There exists an element 1 in F  different from 0, such that for all a belonging to 

F, a * 1 =  o.

• Existence of multiplicative inverses
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2. ARITHMETIC OVER FINITE FIELD

For every a ^  0 belonging to F, there exists an element a  ̂ in F, such that 

a * a~^ = 1 .

Examples

Some examples of fields are listed below:

• The rational numbers Q = {a/b \ a, b in Z,  b ^  0}, where Z  is the set of 

integers.

• The real numbers %.

• The complex numbers C.

• The smallest field has only two elements: 0 and 1. It is sometimes denoted by 

F 2 or GF(2). It has important uses in cryptography and coding theory.

2.1.4 F in ite  field

Finite field is also called Galois field (so named in honor of Evariste Galois). Finite 

field is a field that contains only finite number of elements.

All finite fields have prime characteristic. The number (or the order) of the elements 

in a finite field is always a prime or a power of a prime [3].

• If p is a prime, the integers modulo p form a field with p elements, denoted by 

GF{p). Every other field with p elements is isomorphic to this one.

• If 5 == p'" is a prime power, then there exists up to isomorphism exactly one

field with q elements, written as GF{q) or GF{p^).

The finite field that is used in this thesis is GF{2'^). When we say finite field in this

thesis, we refer to GF{2F').

1 0
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2. ARITHMETIC OVER FINITE FIELD

Finite field GF(2’̂ ) can be defined (or generated) by an irreducible polynomial F(x)  

of degree m  with its coefficients in GF( 2 ),

F{x) =X^^ + + . . . + f iX + I

where /, e  ^ ^ ( 2), for z =  1, 2, . . . ,  m — 1.

The elements in this finite field can be treated as the polynomials of degree n (0 < 

n < m )  with the coefficients in GF{2) or the m-bit binary numbers.

The finite field GF{2) consists of only two elements which are 0 and 1 and satisfies 

the following addition and multiplication rules which are summarized in Table 2.1 

and Table 2.2.

+ 0 1

0 0 1

1 1 0

Table 2.1: Addition rule for GF{2)

* 0 1

0 0 0

1 0 1

Table 2.2: Multiplication rule for GF{2)

2.2 Finite field element representations

Like vectors in linear algebra can be represented by various vector spaces, we use 

bases to represent the field element. There are three main bases used to represent

11
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2. ARITHMETIC OVER FINITE FIELD

the elements in GF(2’̂ ), they are polynomial basis, normal basis and dual bases 

respectively.

2.2.1 Polynom ial basis

Assume a: be a root of the irreducible polynomial F(x)  which generates the finite field 

GF(2"^), then forms a polynomial basis. Any element A  in

the finite field can be represented as
m—1

A =  ^  GiX' =  (oo, ai, 02, . . . ,  Um-i), where ai e  GF{2) .
i=0

Normal basis and dual bases are other two main bases. The detail discussion can be 

found in [2].

2.3 Finite field operation

Given a finite field GF{2^) which is generated by an irreducible polynomial F{x) =  

F + ■ ■ •+ /i3 ;+ l, where fi G GF(2) for z =  1,2, . . . ,  m —1, let

A  and B  be any two elements in GF(2'”) and {1, x , x ^ , . . . ,  x^~^}  be the polynomial 

basis, A  and B  can be expressed as
m—1

A =  Yh I
i = 0  m—1

B  = >
i = 0

where a,, fcj G GF{2) for z =  0,1 , . . . ,  m — 1.

2.3.1 A ddition

Let S  be the sum of A  and B  and S  be expressed as
m —1

S  =  ’

2 = 0

12
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2. ARITHMETIC OVER FINITE FIELD

where Sj e GF{2), for z =  0 ,1, . . . ,  m — 2, then
m —1 m —1

S  = A + B  =
i= 0  i = 0

m —1

= E  («i + bi)x^ .

t = 0

Thus, we can get

Sj =  Oj T fej , (2-1)

where s,, ai, bi e  GF{2), for i =  0 ,1, . . . ,  m — 1.

The addition expressed in Formula 2.1 obeys the addition rule for GF{2) which is 

described in Table 2.1 and can be implemented by an XOR gate. Hence, the addition 

in GF(2^)  can be implemented by m  XOR gates.

2.3.2 M ultip lication

Let C  be the product of A  and B  and C  be expressed as
m —1

C =  ^  c,rr® ,
i = 0

where Cj E GF(2), for i =  0,1, . . . ,  m — 1, then
m - l  m - 1

C = A B  = ̂  ^  hjX^mod.F{x) , (2.2)
i = 0  j = 0

where i, j  = 0 , l , . . . , m  — 1. Formula 2.2 involves two operations. One is polyno­

mial multiplication which is straightforward; The other is the reduction modulo the 

irreducible polynomial F{x). When the irreducible polynomial is trinomial, the coef­

ficients c, has a close form of expression in terms of {oj} and {6,} [28] which will be 

introduced later.

Finite field squaring is a special case of finite field multiplication. Let C  be the 

squaring of A  and C  be expressed as
m —1

C = ' Y ^ C i x \
i = 0

13
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2. ARITHMETIC OVER EINITE FIELD

where q  e  GF{2), for z =  0,1, . . . ,  m — 1, then
m —1

C = ^  CiX̂  =  mod F{x)
i = 0

m —1
= aix'^’’ mod F{x)

i=0 
2m—2

= E
i = 0

where a- is given by

a, =
Oi if i is even;

5 (2.3)
0 if Hs odd.

When F{x) is an irreducible trinomial, the coefficient Ci has close form representa­

tions and the architecture of finite field squarer is much simpler than that of finite 

field multiplier. We will discuss this in detail later.

The detail discussions about finite field multiplications based on normal basis and 

dual bases can be found in [2, 10, 27].

2.3.3 Com parisons am ong th e  m ultiplications w ith  different 

basis

Three finite field multipliers which are based on polynomial basis, normal basis and 

dual bases respectively were compared by I.S. Hsu et al in [10], which are the dual 

basis multiplier, the normal basis multiplier, and the polynomial basis multiplier. 

The dual basis multiplier occupies the smallest amount of chip area in VLSI im­

plementation if the basis conversion is not included; The area of the normal basis 

multiplier however grows dramatically as the order of field goes up; The polynomial 

basis multiplier does not require basis conversion, it is readily matched to any input 

or output system, the design and expansion to higher order finite fields are easier to 

realize than the dual or normal basis multipliers.

14
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2. ARITHMETIC OVER FINITE FIELD

2.4 Galois type linear feedback shift register (LFSR)

Galois type LFSR are widely used in bit-serial finite field multiplier architectures. 

Galois type LFSR is simple and the architecture of Galois type LFSR can be easily 

obtained from the irreducible polynomial F{x) which generates GF{2^).  Figure 

2.1 shows the Galois type LFSR architecture when the irreducible polynomial is 

F{x) = x'^ + x'  ̂+ 1.

Galois type LFSR serves as a constant multiplier, i.e., if the current value of Galois

.k+l•k-1

next clock 
A  — *xA

Figure 2.1: Galois type LFSR when F{x) = x'^ + x'  ̂+ 1

type LFSR is A, the value of this Galois type LFSR during the next clock cycle will 

be xA.

2.5 Elliptic curve

Elliptic curve cryptography (EGG) was proposed by Victor Miller and Neal Koblitz 

in the mid 1980s [11, ?]. EC over GF{2^)  has the following form.

E  \ + xy = x^ + a^x^ -h uq (2.4)

where oq and 02 are the elements in finite field GF(2^)  and E  represents the elliptic 

curve.

15
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The elliptic curve is the set of points {x, y) which are the solutions to Formula 2.4 

together with an extra point O which is called the point at infinity. The coordinate 

values X and y of the point are also the elements in GF{2^).  The number of such 

points is finite.

This set of points on an EC forms a group under a certain addition rule (or it is 

called addition law), which is written using the notation +. The point O is the 

identity element of the group.

Given a point P  =  {x, y) and a positive integer t, we define [t]P = P  + P  + . . .  -\- 

P(t times). The order of a point P  =  {x,y) is the smallest positive integer n  such 

that [n]P =  (9.

We denote < P  > as the group generated by P, i.e.

n —1

< P > = { 0 , P , P  + P , P  + P  + P , . . . , P P P  + . . .  + P}

The security of ECC relies on elliptic curve discrete logarithm problem (ECDLP):

Let E be an elliptic curve over GF{2^),  let P  be a point on the elliptic curve, let Q 

be a point in < P  >. Finding an integer I such that Q = [l]P is the ECDLP.

It is widely believed that the I in ECDLP is hard to computationally solve when the 

point P  has large prime order.

Point operations on EC conform the addition law which is defined below.

Assume Pi{xi, yi), P2(x2,2/2) e  P  and Pi + P2 =  Psix^, 2 /3 ), we define

^ 3 =  I t '+ x o  + 3 ^ 1 + 3 : 2  +  02
Pi ¥^P2-{ • (2-5)

=  ( i T t E )  + ^S + » 1

P , = P 2 .< 2 f '
2/3 =  +  ( a:i +  X 3  +  X 3

When Pi 7̂  P2, we can find the point P3 using Formula 2.5, this is also called point 

addition; When Pi =  P2, we can obtain P3 by the formula 2.6, this is also called

16
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2. ARITHMETIC OVER FINITE FIELD

point doubling. All the arithmetic operations in these two formulae are finite field 

operations.

Prom above Formula 2.5 and Formula 2.6 we can see that point operations always 

can be broken into finite field multiplications, finite field squarings, finite 

field inversions and finite field additions. Finite field addition in GF(2"^) can 

be implemented by m  XOR gates, so the finite field addition is considered as almost 

free. We usually calculate the finite field inversion by means of extended Euclidian 

algorithm or Fermat theorem [26, 4]. From Fermat theorem, the inversion of any field 

element A  can be obtained by the following formula

^-1 ^  ^2--2 _ (2.7)

Equation 2.7 can be further broken into finite field multiplications and finite field 

squarings. Thus, the finite field inversion can be obtained from finite field multipli­

cation and finite field squaring. Since finite field squaring is a special case of finite 

field multiplication, in addition, finite field squarer is much simpler than finite field 

multiplier (as will be seen later), the finite field multiplier is our focus. As we have 

already discussed in Section 2.3.2, the polynomial basis multiplier has the advantages 

over other basis multipliers, the polynomial basis (PB) finite field multiplier is the 

focus in this thesis.

2.6 Polynomial basis (PB) finite field multipliers

A number of PB finite field multipliers have been proposed [2, 6, 8, 13, 14, 25, 21, 

28, 24]. Two typical kinds of PB finite field multipliers are bit-parallel PB finite field 

multipliers and bit-serial PB finite field multipliers.

17
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2.6.1 B it-parallel P B  finite field m ultipliers

There are many bit-parallel finite field multipliers which have been proposed so far. 

A bit-parallel systolic multiplier has been proposed in [13] for the GF{2^)  using the 

polynomial basis representation. The finite field is generated by the irreducible trino­

mial x ” *  - f  x "  - I - 1 of degree m. The permutation polynomial and Horner’s algorithm 

are applied to create a low complexity systolic multiplier. The circuit includes 

2-input AND gates, im? m  — 1 2-input XOR gates and Zm? -f 2m — 2 1-bit latches. 

The latency of the systolic multiplier over GF(2'”) is only 2m — 1 clock cycles with 

a throughput rate of one result per clock cycle.

In [14], a bit-parallel systolic AGP-based (All One Polynomial based) multiplier for 

GF{2^) has been presented. The architectures of the two AOP-based multipliers can 

also be adopted to implement ESP-based (Equal Space Polynomial based) multipliers.

In [25], an architecture based on a new formulation of the multiplication matrix 

is described and circuit complexities are analyzed when the finite field is generated 

by trinomial x"* -f- x" -f-1.

In [21], a new bit-parallel structure for a multiplier with low complexity in Galois 

fields is introduced. The multiplier operates over composite fields GF((2")"*), with 

k =  nm. It is shown that this operation has complexity of order under

certain constraints regarding k.

A bit-parallel finite field multiplier based on polynomial basis is discussed in [28]. 

Let A  and B  be any two field elements represented by polynomial basis as follow
m —1

A = aiX  ̂ , and
1=0

m —1

i= 0

where Uj, bi G GF{2), for z =  0,1,2, . . . ,  m — 1. Let C  be their product
m —1

i= 0

18
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When F{x) is trinomial i.e. F{x) =  x ^  + x'  ̂ + 1, Ci has the following close form 

representations shown in Table 2.3.

F ( x )  =  x*" +  X +  1 Co = So +  Sm

Ci = Si “h S m + i—1 “t" S m + i ) i =  1 , 2 , . . . ,  m  -  1

Cm —1 = S m - 1  +  S 2 m -2

F ( x )  =  X*" +  x*“ +  1 Ci = Si +  Sm + i "I" S2m-~lc+i i =  0 , 1 , . . . ,  fe -  2-

1 <  fc <  m / 2 Cfc-1 = Sfc—1 +  Sm+fc—1

Ci = Si F  S m + i  F  Sm —fc+i F  S2m—2/e+i i = k , . . .  ,2k — 2

Ci = Si F  S m + i  F  Sfjn—k+i i = 2k — I , . . .  ,m  -  2

Cm—1 = S m - 1  F  S 2 m - f c - l

F ( x )  =  x ”» +  x ’” /^  +  1 Ci Si F  S m + i  F  S3m /2+i i = 0 ,1 , . . . ,  m /2  — 2

C m /2 -1 = ^ m / 2 - 1  +  S 3 m / 2 - l

Ci = Si F  Sjn/2+i i =  m / 2 , . . .  , m  — 2

Cm —1 = S m - 1  F  S 3 m / 2 - l

Table 2.3: Close form representation of the product coefficient Cj

2.6.2 B it-serial P B  finite field m ultipliers

Thomas Beth et al presented two basic architectures for PB bit serial finite field mul­

tiplier in [2]. Leilei Song et al have the similar design in [24] and Johann Grobschadl 

has the same idea with low power implementation in [8]. All the bit serial PB finite 

field multipliers use Galois type LFSRs.

Most significant bit (MSB) first bit serial PB finite field multiplier

The architecture of MSB first bit serial finite field multiplier [2] is very simple. The 

Figure 2.2 shows the architecture when irreducible polynomial is F{x) =  -1-rc  ̂-I-1.

There is a Galois type LFSR used in Figure 2.2. The initial value of this Galois 

type LFSR is 0. One operand B  is input in parallel. The other operand A  is input in

19
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2. ARITHMETIC OVER FINITE FIELD

bo b2

Figure 2.2: MSB first bit-serial PB finite field multiplier when F{x) = + 1

serial, upon each clock cycle, one bit ai in A  is fed into the circuit, the input method 

used is the most significant bit (MSB) first. The final result can be obtained from 

the outputs CjS after 6 clock cycles. It takes 6 clock cycles to perform one finite field 

multiplication using this MSB first bit-serial finite field multiplier.

Least significant bit (LSB) first bit-serial PB finite field multiplier

The above MSB first PB finite field multiplier has an alternative form which is LSB 

first PB finite field multiplier [2]. When irreducible polynomial is still F{x) =  

X® -h -f 1, the architecture of the LSB first bit-serial PB multiplier is shown in 

Figure 2.3.

There is a Galois type LFSR in this architecture and it is initially set to one of 

the operands. The other operand A  is input in serial. The input method is the least 

significant bit (LSB) first. There is one additional 5-bit register which is initially set 

to 0. The final product can be obtained from the outputs CjS after 6 clock cycles. 

Like the MSB first bit-serial finite field multiplier, there are 6 clock cycles needed in 

order to perform one finite field multiplication using this LSB architecture.

Assume all the AND gates and XOR gates have two inputs, the delay of the

20
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Figure 2.3: LSB first bit-serial PB finite field multiplier when F{x) = -\- x  + \

AND gate is Ta and the delay of the XOR gate is Tx- When GF{2^)  is generated by 

irreducible trinomial F{x) = x'^+x'^+1, we can summarize the circuit complexity and 

speed to perform one multiplication for the above bit-serial PB finite field multipliers 

in Table 2.4.

Multiplier Speed (clock cycle) Circuit complexity Critical path

MSB first m

m  AND gates 

m -j-1 XOR gates 

1 m-bit register

2 T x

LSB first m

m  AND gates 

m  + 1 XOR gates 

2 m-bit registers

Ta F T x

Table 2.4: The summary for MSB and LSB bit-serial finite field multipliers
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2.6.3 B it-parallel P B  finite field squEirer

Finite field squaring is a special case of finite field multiplication. The architecture of 

bit-parallel PB finite field squarer is much simpler than that of bit-parallel PB finite 

field multiplier. A trinomial based bit-parallel PB finite field squarer is introduced in 

[28|,

Suppose that GF{2^)  is generated by the irreducible polynomial F{x) over GF{2), 

an arbitrary field element A  can be expressed by the polynomial basis as

m —1

A =  y^Q ii X
i = 0

Let C  be the squaring of A, we have
m —1

C = CiX̂  =  A^ mod F{x)
i = 0

= Oo -t- aix^ + a^x'^ + ■ ■.+ am-ix'^'^  ̂ mod F{x)
m —1

=  Y
i=0 
2m—2

= Y
i = 0

where a' is given by
/

ai if z is even;
2 (2 .8 )

0 if z is odd.

When F{x) is an irreducible trinomial, i.e., F{x) =  x"* -f +  1, where 1 < A: < y , 

the coefficient Cj has close form representations which are summarized in Table 2.5.

2.7 Summary

Some basic concepts about finite field, field element representation and finite field 

arithmetic are introduced in the first three sections. In Section 2.5, Elliptic curve 

cryptography is briefly touched and we know that the finite field multiplier is the

22
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Ci =  a '  +  < i =  0 , 2 , . . .  , m  — 2 , 

i =  1 , 3 , . . .  , m  -  1 .

F{x) = X™ + 1  +  1 m  is o d d  co =  Oq

Ci ^m+i ’ j =  1 , 3 , . . .  , m  — 2 ,

Ci =  “ 'i +  “ m + i - l  - i =  2 , 4 , . . .  , m  — 1 .

k  is even Ci = a[+  <l2m-*;+i ’ i =  0 , 2 , . . . , f c - 2  ,

m  is o d d Ci ~  “ m + i  ’ i =  l , 3 , . . . , f e - l  ,

Ci =  Oj +  a2m -2fc+ i  > i =  fe,fc +  2 , . . .  ,21: — 2 ,

Ci C'm+i ^m~k+i ’ i =  fc +  l , fc  +  3, . . . , ) 7 i  — 2 ,

Ci =  a' , j =  2k, 2fc +  2 , . . . ,  m  — 1 .

F{x)  =  x ’̂  + 1 *̂ +  1 k  is o d d Ci =  , i  =  0 , 2 , . . . ,  fc -  1 ,

m  is o d d Ci ®m +t ®2m—fc+i ’ i =  1 , 3 , . . . ,  fc -  2 ,

Ci —  C'i+ o jn - f c+ i  “ 2m -2fc+ i  ’ i =  fc +  l,fc +  3 , . . . ,2 fc  -  2 ,

Ci ^ m + i  ’ i = k ,k  + 2 , . . .  ,m  — 2 ,

Ci ^ i  +  fc+i ’ i =  2k, 2fc +  2 , . . . ,  771 — 1 .

k  is o d d Ci ~  “ i “ m + i  ’ 7 =  0 , 2 , . . . ,  A; -  1 ,

m  is even Ci “  “ 2 m -fc+ i  ’ 7 =  1 , 3 , . . . ,  fc — 2 ,

Ci =  ®i +  “ m + i  +  “ 2m -2fc+ i  ’ 7 =  fc +  l , f c  +  3 , . . . , 2 f c - 2  ,

Ci fc+i ' 7 =  fc,fc +  2, . . . , 7 7 7 — 1 ,

Ci +  *^77i+i J 7 =  2fc, 2fc +  2, . . . , 777 — 2 .

F(x)  =  x™ +  x T  +  1 Ci =  “ 1 +  “ m + i  ' 7 =  0, 2, . . . , y  — 1 ,

Ci ^  “ V + i  ’
7 =  1 , 3 , . . . , f - 2 ,

Ci =  a '  , 7 = f  + 1 , ^ +  3 , . . . , 777 -  2 ,

Ci =  , 7 =  f , f  +  2, . . .,777 -  1 .

Table 2.5: Close form representation for the squaring coefficient Cj

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. ARITHMETIC OVER FINITE FIELD

basic key component in elliptic curve hardware. Two typical architectures of finite 

field multipliers are introduced in Section 2.6. At last, we mentioned a bit-parallel 

PB finite field squarer.

In the next chapter, we will design bit-parallel word-serial PB finite field multiplier 

architectures which have the trade-off between gate counts (area) and speed.

24
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Chapter 3 

Design of Bit-Parallel 

Word-Serial PB Finite Field 

Multipliers

In this chapter, accepted standard for EC cryptosystems is introduced at the begin­

ning. Next, the bit-parallel word-serial (BPWS) PB finite field multiplier is designed. 

An alternative form of BPWS PB finite field multiplier architecture is introduced 

in the following section. At the end of this chapter, general forms of BPWS PB 

multiplier architectures and the comparisons are presented.

It is known that, ECC devices require less storage, less power, less memory, and 

less bandwidth than other systems [29, 22, 34]. This allows implementation of cryp­

tography in platforms that are constrained, such as wireless devices, handheld com­

puters, smart cards. Several organizations such as NIST (National Institute of Stan­

dard and Technology), ANSI, IEEE etc. have standardized ECC [34]. NIST issues

25
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standards that are mandatory for US Federal Government agencies to follow. NIST 

recommends not only key establishment schemes, key management in Special Publi­

cation 800-56 and 800-57 for EC cryptosystems, but also digital signature standard 

(DSS) in Federal Information Processing Standards (FIPS) 186-2 [29] with elliptic 

curve domain parameters. We follow NIST recommendations in this thesis as NIST 

recommendations for ECC are well and widely adopted.

3.1 NIST recommendations

National Institute of Standard and Technology (NIST) recommends five finite fields 

which are generated by five irreducible polynomials for EC cryptosystems [29]. These 

five polynomials are shown in Table 3.1.

In this thesis, GF{2‘̂^ )̂ which is generated by the irreducible trinomial F(x) =

Degree Irreducible Polynomial F{x)

163 F{x) — -{■ x'’ x^ x^ 1

233 F{x) = x ^^  -F + 1

283 F{x) =  x ^ ^  + x^^ + x'  ̂+ x^ + 1

409 F{x) =  x"^^ -F -F 1

571 F{x) = x̂ '^̂  + x^^ x^ x^ + 1

Table 3.1: NIST recommendations

2̂33 _j_ J.74 ^  jg choice since GF{2 ‘̂ ^) can satisfy the security requirements for 

smart card applications and the irreducible trinomial can significantly reduce the cir­

cuit complexity.

26
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3.2 Design of BPWS PB finite field Multiplier

3.2.1 M ultip lication algorithm

Let the irreducible polynomial be

F{x) = +  1 ,

then the polynomial basis for GF{2 ^^) can be given as {1, a;, . . . ,

Let A, B  G GF{2^^^) be any two field elements and C  be their product. We can write 

A  and B  as 232
A = Y^ UiX\ and 

1=0 232
B  = biX\

i= 0

Then the product C  is

C = A B  mod F{x) . (3.1)

We can divide the operand A  into 30 groups (words) from the least significant bit of

A  and let each word contain 8 bits. In the 30th word, we append seven “0”s as the 

most significant seven bits. This can be shown as follow,

A — (0, 0, 0, 0, 0, 0, 0, 0232, 0231, <̂230, • • • , 0224, • • • , O15, Gu, . . . , Og, O7, Og, . . . , Oq) ,
^  V    y . ................ ^  '■-------------- y,  y . "—

A 29 j428 ^ 0

where Aj  is the word, for j  =  0 ,1, . . . ,  29.

Let us denote Aj  as

■̂ j ~  08j+73̂  ̂+  Ogj+ê ;® +  . . .  +  Ogj+ia: +  Ogj , (3-2)

for j  =  0,1, 2 , . . . ,  29, where Oj =  0 for i =  233, 234,. . . ,  239.

Then A  can be expressed as

A =  (.. .  (̂ 293;® +  A2g)x  ̂+ . . .  +  Ai)a* + Ao . (3-3)
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Thus, the product C  can be expressed in the following formula,

C  = A B  mod F{x)

= {{.. .{A 2gX̂  + A 2s)x^ + . Ai)x^ + Ao)B mod F(x)  (3.4)

= (... {A2qBx^ +  A 2sB)x^ +  ...  +  AiB)x^  +  AqB mod F(x)

Let

where

Cj =  Cj-\X^ +  Dj , for j  =  0,1, . . . ,  29, (3.5)

Dj = A 29- j B  , for j  =  0,1, . . . ,  29 . (3.6)

If we assume C_i =  0, then it can be seen from (3.4) (3.5) and (3.6) that

C = C29. (3.7)

3.2.2 Bit-peirallel word-serial m ultiplier architecture

The above iterative processes (3.5) and (3.6) can be mapped into the architecture 

shown in Figure 3.1.

The multiplier architecture has two input ports 71, 12 and one output port. Input 

port 72 is 8 bits wide and used to serially input the words A 2g-j, j  = 0 ,1 , . . . ,  29. 

The other input port 71 is 233 bits wide and used to input the other operand B. The 

output port is 233 bits wide which is used to output the product.

There are four modules in this architecture. These are :

Module M l : Module Ml is a 8 x 233 bit-parallel partial product generator. Ml 

implements the equation (3.6) by taking inputs of 8-bit word A 2g-j and 233-bit 

B  and yielding the partial product A 2g-j x B  after the j t h  clock cycle. The 

detailed architecture of Ml will be discussed later in Section 3.2.4.
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II

233

,M1

2 3 3
Output 233

2 3 3 ,
M3

M4
2 3 3 - '

M l; 8 X 233 Partial product generator 
M2: 233-bit Adder 
M3: Constant multiplier 
M4: 233-bit Register

Figure 3.1: Proposed hybrid finite field multiplier

Module M2 : Module M2 is a bit-parallel finite field adder which realizes the equa­

tion (3.5) by taking inputs Dj from Ml and from M4. This adder

can be easily implemented by 233 XOR gates. The output of M2 is actually 

the output of the proposed BPWS PB finite field multiplier after 30 clock cycles.

Module M3 : Module M3 is a bit-parallel finite field constant multiplier. The two 

operands include the constant and the output of module M2 which is Cj. 

The output of module M3 is Cjx^.

Module M4 : Module M4 is a 233-bit register which is used to store the interme­

diate results. The output of module M4 is Cj-ix^.

29
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Let the content of M4 be initialized as 0. Assume the operand B  be available at 71 

from the beginning until the product C  is generated at Output.

After the first clock cycle (Clock 0), the input word at 72 is A29, the output of Ml 

is Do = A 29B. Since the output of M4 is 0, the output of M2 is Co =  Do and the 

output of M3 is Cox^.

After the second clock cycle (Clock 1), the input word at 72 is A28 and the output of 

Ml is given by Di = A^^B. The adder M2 takes the inputs D\  and where CqX^ 

was stored in the register M4 in the previous clock cycle, and yields C\ = CqX^ +  Di.

This process is continued till the 30th clock cycle (Clock 29), the input word at 72 

is Ao and the output of Ml is given by D 29 = AoB. The adder M2 takes the inputs 

D 20 and C28X^, where C28X̂  was stored in the register M4 in the previous clock cycle, 

and yields C29 = C28X^ +  D 2 9 . This is the exact product C  from equation (3.7). 

Thus one finite field multiplication in GF{2^^^) needs 30 clock cycles in this BPWS 

PB finite field multiplier.

Assume that B  is available at 71 throughout the multiplication. Table 3.2 shows the 

main intermediate results after each clock cycle..

Clock Input at 72 Output of Ml Output of M4 Output

0 A29 Do = A 2 9B 0 Co = Do

1 A28 D\  =  A 2 8B Cox^ Cl =  Cox^ +  Di

2 A27 D 2 — A 2 7 B Cix^ C2 =  +  T>2

29 Ao D 29 = AoB C28X^ C29 =  C2SX̂  +  D 29

Table 3.2: The output and intermediate results upon each clock cycle

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. DESIGN OF BIT-PARALLEL WORD-SERIAL PB FINITE FIELD MULTIPLIERS

3.2.3 M3: C onstant F in ite F ield M ultiplier Z  =  x^Y

In general, we call a finite field multiplier a constant finite field multiplier when one 

of two operands is a constant field element. The constant finite field multiplier has 

a much simpler architecture than a regular multiplier since it removes all the AND 

gates and significantly reduces the number of XOR gates.

The module M3 in Figure 3.1 is a constant finite field multiplier which performs the 

multiplication of Z =  x^Y  in GF{2^^^), where rr® is a constant and Y  is any element 

in This constant finite field multiplier can be simply implemented by only

8 XOR gates.

If we express Y  and Z  as
232

y  = and
i = 0  

- 232

Z =  £
i = 0

the coefficients Zi of the product Z can be expressed as,

1/225+i i= 0 ,l,... ,7

Vi-s i=8,9,... ,73

Vi-s +  yi5i+i i=74,75,... ,81 

Vi- 8  i=82,83,... ,232

The architecture of the constant finite field multiplier M3 is shown in Figure 3.2.

Zi= \ (3.8)

Figure 3.2: M3; The constant finite field multiplier Z =  x^Y
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3.2.4 M l: 8 x 233 Bit-parallel partial product generator

Module M l in the proposed BPWS PB finite field multiplier is a 8x233 partial product 

generator which performs the function of AjB,  where B  is the 233-bit operand and

Aj  is the input word of 8 bits. Note that Aj  can be viewed as a field element in

(0^(2233) most significant 225 bits being Os, i.e.,

Aj  =  arx^ -t- OeX® -H ...  4- Oq , (3.9)

where aj, oq, . . .  ,ao € GF(2). Thus,

A j B  =  i a - j X ^  4-  c lq X ^  4- . . .  4-  o,o)B
- „ (3.10)

— cijX B  “1" d^x B  clqB  .

In this expression, x'^B, x ^ B , .. . , x B  axe seven constant finite field multipliers. Each 

result from the seven constant finite field multipliers is multiplied by the coefficient 

Cj correspondingly, this step can be done by an AND network which is introduced 

later. Finally, the accumulation of the eight results can be simply obtained from an 

XOR network.

This 8 X 233 partial product generator can be implemented by the following full bit- 

parallel architecture shown in Figure 3.3.

The seven constant finite field multipliers have the similar architectures as the mod­

ule M3 in the proposed BPWS finite field multiplier in Figure 3.1.

Let Z  — x ^ Y  be the constant multiplier, where w =  1,2, . . . ,  7, such constant mul­

tiplier needs w XOR gates. The architecture of the constant finite field multiplier 

Z  = x ^ Y  is shown in Figure 3.4.

In the 8 x 233 bit-parallel partial product generator architecture shown in Figure 

3.3, the AND networks are used to multiply a 233-bit field element by the coefficient 

Oj and can be implemented by 233 AND gates. The architecture is shown in Figure 

3.5.

The outputs from eight AND networks are accumulated by an XOR network as

32
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233 bits 233 bits

x B

233 bits233 bits 233 bits
X- x̂B

233 bits233 bits 233 bits

Output233 bits 233 bits 233 bits

233 bits233 bits

233 bits233 bits 233 bits

233 bits 233 bits 233 bits

233 bits233 bits 233 bits

233 bits233 bits 233 bits

A N D  N etw ork

A N D  N etw ork

AN D  N etw ork

AN D  N etw ork

AN D  N etw ork

AN D  N etw ork

A N D  N etw ork

A N D  N etw ork

Figure 3.3: 8 x 233 bit-parallel partial product generator

CXo 0̂ 32

Figure 3.4: The architecture of the general constant finite field multiplier Z  = x ^ Y
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cx, cx

Y o  T

(X3.CX3

0 0 0 0

Y23. Y2:

a i

Figure 3.5: The architecture of AND network

shown in Figure 3.6.

In Figure 3.6, the module M is sub XOR network which can be implemented by 233

233 bits

X,
233 bits

^  233 bits
- ^ 3  233' bits

X 233 bits /___
5 233 bits

6

X  233 bits
7 — 7̂ —

233 bits
Xs—

M

M

M

233 bits
— / —

233 bits -V---

233 bits 
— / —

M
233 bits
- ■/

M
233 bits -V—

M
233 bits-V—

M
233 bits 2

Figure 3.6: The architecture of XOR network

XOR gates. The architecture is shown in Figure 3.7.

Assume all AND and XOR gates have only two inputs, the delay of AND gate is 

Ta, the delay of XOR gate is Tx,  the circuit complexity and timing complexity of the 

8  X 233 bit-parallel partial product generator are summarized in the Table 3.3.

The circuit complexity and timing complexity of the BPWS PB finite field multiplier 

in GF{2^^^) are summarized in Table 3.4.
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cx ex.
Pb P.

Y o Y .

O C e 3 I C X b32

P3

Ŷ 3. Y23

Figure 3.7: The architecture of sub XOR network

#  of AND gates 8 * 233

#  of XOR gates 7 * 233 +  (1 + 7) * 7/2

Critical path Ta + 4Tx

Table 3.3: Circuit and timing complexities of the 8 x 233 partial product generator

#  of AND gates 8 * 233

#  of XOR gates 8 * 233 +  (1 +  8) * 8/2

#  of 233-bit registers 1

Critical path Ta + 6Tx

Table 3.4: Circuit and timing complexities of the BPWS PB finite field multiplier
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3.3 Alternative BPWS PB finite field multiplier

As defined in Section 3.2, There is an alternative form of architecture for the above 

BPWS PB finite field multiplier.

we still divide one operand A  into 30 words from the least significant bit of A  and each 

word contains 8 bits. In the 30th word, we append seven “0”s as the most significant 

seven bits.

Let Aj  denote each word, Aj  can be expressed as

Aj  =  Ogj +  CLSj+lX +  +  . . . +  asj+jX^ ,

where j  =  0 ,1 ,2 ,.. .,  29 and Oj =  0 for i =  233,234,..., 239.

Then A  can be rewritten as

A  — Aq +  AiX^ +  A 2 {x^) +  . . .  +  ^ 29(3;̂ ) . (3-11)

Thus the product C = A B  mod F{x) can be expressed as follows,

C = A B  mod F{x)

=  (Ao +  Aia:* +  A2(x*)  ̂+  . . .  +  A2g(a:®)^^)5 mod F(x) (3-12)

=  AoB + A^Bx^ + A 2B { x ^ f  +  . . .  +  A^gBix^f^  mod F(x)

We can further let

Dj — Dj-iX^ , (3.13)

for j  =  1, 2 , . . . ,  29, and Do =  5 ;

Cj = Cj- i  + AjDj  , (3.14)

for j  =  0 ,1 ,. . . ,  29, and C_i =  0.

Prom Equations 3.13, 3.14 and 3.12, we will find that the product C = A B  mod F{x)  

is

C =  C29 . (3.15)
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The above alternative BPWS PB finite field multiplier can be implemented by the 

architecture shown in Figure 3.8.

This multiplier architecture has two input ports and one output port. One input

Ml ,

1-233

Input

Output
233

M l: Constant multiplier 
M2: 233-bit Register 
M3: 8 X 233 Partial product generator 
M4: 233-bit Adder 
M5: 233-bit Register

Figure 3.8: Alternative BPWS PB finite field multiplier over

port is 8 bits wide and is used to serially input the word Aj  which is part of the 

operand A, the other input port is 233 bits wide and used to input the other operand 

B  in parallel. The output port is 233 bits wide which is used for the output product. 

There are five modules in this alternative multiplier architecture, which are given 

below.

Module M l : Module Ml is a constant finite field multiplier which performs the 

same function as Module M3 described in Section 3.2.

Module M2 : Module M2 is a 233-bit register which has the initial value of B{x)  

and store the intermediate results. Let the output of M2 be Dj, and the function 

that the module Ml and M2 perform be Dj =  Dj^ix^.
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Module M3 : Module M3 is a 8x233 bit-parallel PB finite field multiplier which is 

the same as Module Ml described in 3.1. One input Aj  is the word from the 

operand A, the other input is Dj, the output of the module M3 is AjDj.

Module M4 ; Module M4 is an adder which has the same function as Module M2 

described in 3.1. The output of module M4 is also the output of the alternative 

BPWS PB finite field multiplier.

Module M5 : Module M5 is another 233-bit register which is used to keep the 

intermediate results. Let the output of module M4 be Cj, then the function 

that the module M4 and M5 perform is Cj =  Cj_i -f AjDj.

Let the initial value of M2 be B, the initial value of M5 be 0, the word input method 

used is the least significant word (LSW) first.

During the first clock cycle (Clock 0), the input word is A q, the output of module 

M2 is B  which is Dq, the output of module M3 is A qB  which is A qDo, the output 

module M4 is A qDq which is Cq since the initial value of M5 is 0 which is mapped by 

C-i = 0;

During the second clock cycle (Clock 1), the output of module M2 is Bx^  which is 

Di, the input word is Ai,  the output of module M3 is A^Di, the output of module 

of M5 is Co, therefore the output of module M4 is Cq -f AiDi  which is Ci;

During the third clock cycle (Clock 2), the output of module M2 is B{x^)^ which is 

L>2 =  the input word is A 2 , the output of module M3 is A 2 D 2 , the output of

module M5 is Ci, therefore the output of module M4 is Ci -1- A 2 D 2 which is C2;

During the SOth clock cycle (Clock 29), the output of module M2 is D 29 = D 2gX^, the 

input word is A29, the output of module M3 is A29D29, the output of module M5 is 

C28, therefore the output of M4 is C28 + ^ 29^29 which is Ĉ ?- 

The product C =  A B  mod F{x) can be obtained from the output of module M4
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Clock Input M2 M5 Output

0 ^0 Do = B 0 Co =  AoB

1 =  Dox^ Co Cx=Co + AiD,

2 A 2 D 2 = Cl C2 =  Cl +  AiDi

29 A 29 D29 — D2&X̂ C28 C29 = C28 +  A 29D 29

Table 3.5: The values of output and other modules on each clock cycle

during the 30th clock cycle. Table 3.5 shows the values of input words, M2, M5 and 

output of the alternative BPWS PB finite field multiplier upon each clock cycle.

The 8  X 233 bit-parallel partial product generator, the constant multiplier, the adder 

and registers are the same as those described in Section 3.2. Using this architecture 

30 clock cycles are needed in order to perform one multiplication. With the same 

assumption in Section 3.2, The circuit complexity and timing complexity for this 

alternative BPWS PB finite field multiplier are summarized in Table 3.6.

of AND gates 8 * 233

#  of XOR gates 8 *233+ (1 +8) *8/2

#  of 233-bit registers 2

Critical path Ta +  5Tx

Table 3.6: The circuit and timing complexities of alternative BPWS PB finite field 

multiplier
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3.4 General BPWS PB finite field multipliers

General BPWS PB finite field multipliers in GF(2^)  can be simply derived by ex­

tending the proposed BPWS PB finite field multiplier described in Section 3.2 and 

Section 3.3. Assume the finite field is GF{2^) and the size of the input word Aj  is 

w, then the corresponding architectures are shown in Figure 3.9 and Figure 3.10.

The modules in the two general architectures serve the similar functions as those

m

Ml

M2

Output ■ m

M3
M4

M l: w X m Partial product generator 
M2: m-bit Adder 
M3: Constant multiplier 
M4: m-bit Register

Figure 3.9: The BPWS PB finite field multiplier in GF{2^)

described in Section 3.2 and Section 3.3. It needs [m/tc] clock cycles to perform one 

multiplication in GF(2™) using these general architectures.
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Input

Output

M l: Constant multiplier 
M2: Register
M3: w X m partial product generator 
M4: Adder 
M5; Register

Figure 3.10: The alternative BPWS PB finite field multiplier in GF{2 ^ )

3.5 Comparisons

Assume all AND gates and XOR gates have only 2 inputs and the delays of AND 

gate and XOR gate are Ta and Tx  respectively. When the irreducible polynomial 

F{x) which generates the finite field GF{T^)  is trinomial, i.e. F{x)  =  a;"* +  +  1,

with 1 < fc < m/2, circuit and timing complexities of bit-parallel, bit-serial and the 

general BPWS multipliers are shown in Table 3.7.

Prom Table 3.7 we can see that the numbers of AND gates and XOR gates in pro­

posed BPWS PB finite field multipliers are between those in bit-parallel PB finite 

field multiplier and those in bit-serial PB finite field multiplier. There is no sequen­

tial element needed in bit-parallel finite field multiplier. The number of registers in 

proposed BPWS PB finite field multipliers is the same as that in bit-serial PB finite 

field multipliers. The critical path for proposed BPWS PB finite field multipliers is 

also between that of bit-parallel and bit-serial PB finite field multipliers. The number
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Multiplier Speed 

(Clock Cycles)

Circuit complexity Critical path

bit-parallel

[28]

1 AND gates 

— 1 XOR gates

T a +  (riog2(m -  1)1 +  2)Tx

bit-serial (MSB) 

[2]

m m AND gates 

m + 1 XOR gates 

One m-bit register

Ta  +  Tx

bit-serial (LSB) 

[2]

m 771 AND gates 

m -t 1 XOR gates 

Two m-bit registers

Ta +  Tx

Proposed BPWS 

MSW first

\(m/w)^ w * m  AND gates 

w * m  + (l +  w) * w/2  XOR gates 

One m-bit register

Ta +  (riog2 w)] -1- 3)Tx

Proposed BPWS 

LSW first

\{m/w)] w * m  AND gates 

It) * m + (1 +  lu) * w/2  XOR gates 

Two m-bit registers

Ta  +  ([log2 +  2)Tx

Table 3.7: The comparisons among bit-parallel, bit-serial and BPWS finite field mul­

tipliers
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of clock cycles to perform one finite field multiplication in proposed BPWS PB finite 

field multiplier is also bigger than that of bit-parallel PB finite field multiplier and 

smaller than that of bit-serial PB finite field multipliers. This proposed BPWS PB 

finite field multiplier is the trade-off between bit-parallel finite field multiplier and 

bit-serial finite field multiplier.

When m  is far bigger than w, there is a rough relation between the number of AND 

gates, the number of XOR gates and the number of clock cycles to perform one mul­

tiplication among these multipliers, which is that the products of speed (in clock 

cycles) and circuit complexities for these multipliers are approximately same, i.e., for 

AND gates:

1 * m^(bit parallel) = m *  m(bit serial) w \{m/w)] *w  * m  , (3.16)

for XOR gates:

l*(m^ —l)(bit parallel) m*(m-l-l)(bit serial) ~  \{mlw)' \*{w*m + { l+ w)*w/2)  .

(3.17)

Carefully choosing the number w, the proposed BPWS PB finite field multipliers can 

achieve the desired trade-off between area and speed.

Now we can have further analysis conducted using this word size w,

w = m  , this actually is a full bit parallel architecture, which can be simplified to the 

bit parallel PB finite field multiplier [28] by removing all other modules except 

for the module oi w x  m  finite field multiplier.

w = 1 , this directly becomes a bit-serial multiplier as reported in [2j.

Thus, our design algorithm can be treated as a general design algorithm for finite 

field multiplier.
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3.6 Summary

In this chapter, we first introduced the finite fields recommended by NIST for EC 

cryptosystems. After choosing a finite field GF(2^^^) which is generated by an irre­

ducible trinomial F(x)  =  -I- -f 1, we designed and analyzed the BPWS PB

finite field multiplier and the alternative BPWS PB finite field multiplier in Section 

3.2 and Section 3.3 respectively. At the end of this chapter, we designed a general 

form of BPWS PB finite field multiplier which is MSW first multiplier and its alter­

native form which is LSW first multiplier, we also made the comparisons among the 

bit-parallel PB finite field multiplier in [28], the bit-serial PB finite field multiplier 

in [2] and our general BPWS finite field multipliers. The proposed architecture is 

suitable for the application which requires to balance the trade-off between speed and 

area, it is extremely useful for smart card applications.

In next chapter, we will design an ASIC chip which is capable of performing the finite 

field multiplication and squaring using the proposed BPWS PB finite field multiplier 

described in Section 3.2 and the bit-parallel PB finite field squarer described in [28].
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Chapter 4

Hardware Design

The final aim of this thesis is to design an application specific integrated circuit 

(ASIC) chip which can perform multiplication and squaring in In this

chapter, the detail design methodology of such a chip is introduced. Issues during the 

design are addressed. The multiplication is implemented by applying the proposed 

BPWS PB finite field multiplier described in Section 3.2. The squaring is achieved 

by applying the bit-parallel PB finite field squarer described in [28].

4.1 Hardware architecture

The proposed hardware architecture is shown in Figure 4.1.

In this figure, the module Multiplier is the BPWS PB finite field multiplier de­

scribed in Section 3.2, the module Squarer is the bit-parallel PB finite field squarer 

described in [28], the width of the data bus (which is also size of the word in BPWS 

PB finite field multiplier in Section 3.2) is 8, the width of the address is 5, elk is
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rst

241 bits
data 241 bits!

233 bitsSbits
output

Mux
Sbits

233 bitsaddr

Sbits 233 bits

Sbits,

Multiplier

Squarer

Figure 4.1: The schematic of the hardware

clock signal, rst, sel and w are control signals, the module Mux is used to select 

either finite field multiplication or finite field squaring, the modules of Registers are 

used to store the input operands or the result, the modules of codec and codecout 

are used to decode the address to write the input data into or read the data out of 

the registers. Except for the modules of Multiplier and Squarer, all others can be 

modeled in the control part of the data path in a processor.

4.2 Hardware specifications

The specifications for the ASIC chip are summarized in Table 4.1.
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Frequency 50MHz

Area 300000/xm^

Power consumption 20 mw

Table 4.1: Specifications

4.3 VLSI implementation technology and design 

flow

CMC (Canada Microelectronic Corporation) supports all Canadian universities with 

industry level VLSI design tools and technical support. CMC also provides several 

design flows for different kinds of ASIC designs. The design ffow followed in this 

thesis is the CMC digital design flow. Figure 4.2 shows the CMC digital design 

flow. The VLSI implementation technology used in this project is TSMC (Taiwan 

Semiconductor Manufacture Company) 0.18/xm CMOS technology. Compared with 

TSMC 0.35/im technology, O.lSfxm technology has the advantages of small area and 

low power consumption etc.

Digital chip design can be partitioned into front-end design, back-end design and 

post design verification and modification.

4.4 Front-end design

Front-end design of an ASIC chip includes the tasks of hardware modeling, testbench 

and stimuli file creations, logic synthesis and design-for-testability (DFT) synthesis 

etc.
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4.4.1 Stim uli files

In ASIC digital design, we need stimuli files to verify the logic function of the mod­

eled hardware circuits. In this project, a software program is developed using Bor­

land C-I—I- Builder to create the stimuli files. This program is actually a finite field 

multiplier over GF{2‘̂ ^)  and can create two kinds of stimuli files to test finite field 

multiplication and finite field squaring respectively. There are a number of vectors in 

the stimuli files. In the stimuli file for the finite field multiplication test, each vector 

contains three 233-bit binary numbers, the first two are the two input operands and 

the last one is the result used to compare with the output of the modeled circuits; 

In the stimuli file for the finite field squaring test, each vector contains two 233-bit 

binary numbers, the first is the input operand and the last is the squaring. The 

number of the vectors is 1000 in this program.

4.4.2 Hctrdware m odeling

The circuit shown in Figure 4.1 and its modules are modeled in Verilog which is 

an industry level hardware description language (HDL). The circuit is modeled at 

register transfer level (RTL). In order to verify that the circuit perform the desire 

logic, two testbenches which are written in Verilog to perform functional finite field 

multiplication and finite field squaring tests are also needed. The detail Verilog files 

are listed in Appendix A and Appendix B. The Verilog simulation tool used in this 

thesis is Verilog-XL. In the testbenches, the stimuli files which are created by the 

software are used to exercise the circuit, no functional error has occurred during 

simulation. The modeled circuit performs the desired logic.
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4.4.3 Logiczd synthesis

The Verilog files that we modeled at RTL level to describe the behavior of the hard­

ware circuit are also called RTL netlists, while the physical layout design needs 

gate level netlists. The task of logic synthesis is to convert the RTL netlists to gate 

netlists. The cells in the gate netlists are referenced by cell libraries (target libraries) 

which are provided by ASIC vendors. The logic synthesizer is a software to perform 

the logic synthesis task. The logic synthesizer used to perform logical synthesis in 

this project is Design Compiler from Synopsys, and the target libraries used here are 

TSMC 0.18 micron CMOS technology libraries. The Table 4.2 summarizes the results 

of logic synthesis.

Circuit/module #  of Cells Cell Area (iJ-m?) #  of equivalent gates

BPWS multiplier core 3029 124936.062500 4893

Squarer core 293 4248.527832 293

Whole circuit 4539 495452.468750 12113

Table 4.2: Results of logic synthesis

4.4.4 D F T  synthesis

There are two types of test in our project. One is functional test which verifies that the 

circuit performs the correct logic as expected. The other is manufacturing test which 

verifies that the circuit does not have manufacturing defects by focusing on circuit 

structure rather than functional behavior. Manufacturing defects might remain un­

detected by functional testing yet cause undesirable behavior during circuit operation.
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Design for testab ility  (DFT)

DFT is a manufacturing test technique that we can adopt to thoroughly test our inte­

grated circuit. Detailed introduction of DFT can be found in [30] and other relevant 

books.

In this project, the DFT design technique is in ternal full sccui. The tool which is 

used for DFT synthesis is DFT Compiler from Synopsys, the ATPG tool which is used 

to create test patterns and to perform fault simulation is TetraMax from Synopsys. 

In our design, all sequential cells are all valid, no violation exists. The number of the 

test patterns is 154 and the fault coverage is 100%.

4.5 Back-end design

In this section, we start the physical IC layout design. Back-end design includes the 

tasks of floorplanning, placement, clock synthesis and routing.

4.5.1 Floorplanning and P lacem ent 

Floorplanning

The objectives of floorplanning are to minimize the chip area and minimize delay. The 

input to a floorplanning tool is the gate netiist that describes the modeled circuit. 

The gate netiist in our design is the output from logical synthesis and DFT synthesis 

which is a logical description of the ASIC. The floorplan is a physical description of an 

ASIC. Floorplanning is thus a mapping between the logical description (the netiist) 

and the physical description (the floorplan).

The tasks of floorplanning are to

• arrange the blocks on a chip,
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• decide the location of the I/O  pads,

• decide the location and number of the power pads,

• decide the type of power distribution, and

In our design, the gate netiist does not contain any blocks. In TSMC 0.18/xm tech­

nology, the power supplies for I/O ring and core cells are different. There are four 

pairs of power pads added in our design, two pairs are used for I/O  ring power sup­

ply, two pairs are used for the core power supply. The aspect ratio is set to 1 which 

means the shape of the chip is square. A pair of power ring is placed around the 

core which contains all the standard cells and three pairs of vertical power strips are 

placed across the core.

Placement

After completing a floorplan we can begin placement of the logic cells. The objectives 

of placement axe to

• guarantee the router can complete the routing step,

• minimize all the critical net delays,

• the chip as dense as possible,

• minimize the total estimated interconnect length,

• meet the timing requirements for the critical nets,

•  minimize the interconnect congestion.

Compare with floorplanning, placement is more suitable for automation.

Our design is row-based ASIC design. All logic cells are placed in rows which are
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defined in the floorplanning and placement tool. Rows are separated by channels 

which are used for horizontal routing. Figure 4.3 illustrates that the logic cells are 

placed into rows. Carefully selecting the channel offset, we can avoid the later design 

rule checking (DRC) problems. In our design, the row utilization is set to 90%, 

the channel offset of 4*0.56 micron is obtained from many experiments and other 

designers’ experience.

In our design, the tool used to perform floorplanning and placement is Physical

Rows

Channel -

Figure 4.3; Illustration of placement

Design Planner (or called AreaPdp) which is a Cadence tool. Placement is done by 

the timing driven Qplace tool which is integrated in AreaPdp. Timing constraint files 

which are obtained during logic synthesis are fed into AreaPdp as constraint files. In 

our design, timing requirements are met and there is no congestions in the geometry 

report.

4.5.2 C lock tree synthesis

The major task of clock tree synthesis is developing the interconnect geometry that 

connects the clock to all the cells on the chip that use a clock. These cells consist of
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latches, flip-flops, and other logic elements that are needed to synchronize with the 

system clock. In this thesis, clock tree synthesis is done in CTGen which is integrated 

with First Encounter (FE) Ultra, a Cadence tool. The generated clock tree meets the 

timing requirements and 23 buffers are added to balance the clock tree in our design.

4.5.3 G olden netiist

The gate netiist generated from Design compiler has been modified at stages of DFT 

compiler by replacing all sequential cell with corresponding scanned enable sequential 

cells and clock tree synthesis by adding buffers into it. This modified gate netiist 

should perform the same logic as the RTL netiist. Before doing routing, we should 

run the functional test again to verify if this modified netiist perform the desire logic. 

The test tool is still Verilog-XL. Without considering the timing requirement, the 

functional test at this step is the last time to verify if the circuit can perform the 

desire logic. Any failure in functional test will result in the iterations of floorplan, 

placement and clock tree synthesis. The results of functional multiplication test are 

shown in Figure 4.4 and Figure 4.5. The functional squaring test results are shown 

in Figure 4.6 and Figure 4.7.

There is no functional error during simulation and this modified gate netiist is 

called golden netiist which can also be used in later LVS checking.

4.5.4 R outing

After the chip is floorplanned and the logic cells have been placed, it is time to make 

the connections by routing the chip. Routing is usually split into global routing 

followed by detailed routing. In this project, the tool (router) which is used to 

perform routing is Silicon Ensemble which is a Cadence tool. After detailed routing
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Figure 4.4: Functional multiplication test
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Figure 4.5: Waveform of functional multiplication test
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Figure 4.6: Functional squaring test
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is complete, the exact length and position of each interconnect for every net is known 

and the parasitic capacitance and resistance associated with each interconnect, via, 

and contact can be calculated by RC extraction tool. Interconnect delay and load 

due to parasitic resistance and capacitance are written in regular standard parasitic 

format (RSPF) format and static timing analysis is done in peri scripts in our design. 

The timing analysis at this step is the last time to verify timing. Any failure to meet 

the timing requirements will result in the iterations of floorplanning, placement and 

routing until the timing requirements are thoroughly met. The result of timing limit 

checking is shown in Figure 4.8.

£ i le  £ d tt  view Hindows Help

M  .3lJU
e pin_to_pin
pearl.tmpcmd> ReadCCFConstraints . . /Synopsys/top_wrapper.gcf 
pearl .ttnpcmd> SetM axPossib ilities  10 
p e a r l. tmpemd> CheckTiming
p e a r l. tmpcmd> CheekLimits -check max_1oadjraax_s1ew,fluence > check!itn 
its .T o g
pearl,tmpcrad> Tim ingVerify -check setup.hoTd^gatedcTock,recovery.rem  
oval /nochangesetupmochangehQTdjperiodjWidth,Toop -max_s1ack 0 
No tim ing constrain ts  were triggered  
cmd> tim in g ve rify  
cmd> checki im its  
No l im it  v io la tio n s  were found

cmd> tim in g ve rify  
cmd> checkiim its  
cmd>

Figure 4.8: Timing limit checking

Our design meets the timing requirements and there is no timing violation in our 

design.
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4.6 Physical verification and modification

After detail routing is complete and timing analysis shows that the design meet the 

timing requirement, we can perform physical verification and even modification which 

is usually needed before the chip is fabricated. There are two major kinds of checking, 

layout versus schematic (LVS) and design rule checking (DRC).

4.6.1 Layout versus schem atic (LVS)

The timing analysis we perform after routing just shows whether the design meets 

the timing requirements. The netiist might be modified during routing. One of our 

concerns is if the physical layout after routing performs the same logic as the golden 

netiist. LVS essentially compares the physical netiist (the netiist after routing) to 

the golden reference (golden netiist) to ensure that what is about to be committed 

to silicon is what is really wanted.

In our design, the tool to perform LVS is Diva LVS from Cadence which is integrated 

in Cadence Design Framework II (dfll). Diva LVS in dfll is used to compare:

1. the final layout in the form of a DEF (Design Exchange Format) file created 

from Silicon Ensemble after routing to

2. the golden netiist

to verify the physical (Placed & Routed) version of the design contains the same 

instances, nets, and connectivity as the verified ’’golden” netiist. The LVS result is 

shown in Figure 4.9.

In our design, the layout and schematic match each other. Since the physical 

layout meets the timing requirements, now we know the physical layout can perform 

the desire logic.
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Figure 4.9: The result of LVS

4.6.2 D esign  rule checking (DRC)

DRC ensures that nothing has gone wrong in the process of placing the logic cells 

and routing.

The DRC may be performed at two levels. Since the detailed router normally works 

with logic-cell phantoms, the first level of DRC is a phantom level DRC , which checks 

for shorts, spacing violations, or other design-rule problems between logic cells. This 

is principally a check of the detailed router. In our design, Dracula DRC which is a 

cadence tool performs the phantom level DRC. The result from Dracula is shown in 

Figure 4.10.

There is no any DRC violation during phantom level design rule checking.

If we have access to the real library-cell layouts (sometimes called hard layout ), we 

can instantiate the phantom cells and perform a second-level DRC at the transistor 

level. This is principally a check of the correctness after replacing the library cells
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Figure 4.10: The result of phantom level DRC

with detail cell layouts. Since we don’t have the detail library-cell layouts due to 

the confidentiality of TSMC technology, CMC will perform this check as a type of 

incoming inspection. The results of the second-level DRC from CMC are shown in 

Figure 4.11 and Figure 4.12.

There is no any DRC violation in this design. Now our design passed the CMC 

inspection and is ready for fabrication. The design name is ICFWRWTK, the fabri­

cation run code is 0402CF. The chip is expected to return on Oct. 2004.

4.7 Chip Layout

The layout of the chip is shown in Figure 4.13.

The total die size of chip is 2533190.5/xm  ̂ including pads. There are 39 pads in the 

chip. The hardware parameters are summarized in Table 4.3. From this table, we
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can see that our designed chip meets the design specifications.

Specification BPWS core Squarer core Whole circuit

#  of cells 3029 293 4570

#  of equivalent gates 4893 293 12154

Area 189297.06439 6437.15746 2533190.5

Power consumption (mw) < 9.2178 31.7421

Frequency (MHz) 50 (max. 130)

Table 4.3: The hardware parameters

4.8 Comparisons

It is known that the finite field multiplier is a key component in an EC security 

processor. The comparisons among the designed chip and other VLSI implementation 

of finite field multipliers are made in Table 4.4.

Even though the frequency is set to 50 MHz during the chip design, the maximum 

frequency that the chip can work on is 130 MHz. For our designed chip, there is 

only one clock cycle needed to perform one finite field squaring, while for all other 

multipliers, the number of clock cycles to perform one finite field squaring is the same 

as that to perform one finite field multiplication. Prom Table 4.4 we can see that our 

design meets the design saves hardware resources.

4.9 Summary

The full hardware design methodology is introduced in this chapter. The CMC dig­

ital design flow is followed, the VLSI technology adopted is TSMC 0.18/im CMOS

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. HARDWARE DESIGN

M ultip lier Frequency

(MHz)

Field

size

#  o f Cells G ate

counts

V LSI

technology

B PW S

8x233

50

(m ax. 130)

2233 3029 4893 T SM C  0.18pm  

CM O S

Squarer 293 293

Classical 

233 X 233

[7]

77 2233 37296 L U T s 

37552 F F s

528427 X ilinx  F P G A  

XC2V 6000- 

ffl517-4

H ans e t al 

MSD 

64 X 256

[5]

66.4 <  2^56 14797 L U T s 

2948 F F s

136064 X ilinx  F P G A  

V irtex -II 

X CV 2000E-7

Souichi 

e t al

8 X 288 

[18]

3 <  2®™ 2 » 8 * 288 A N D s

2 * 8 * 288 X O H s

3 * (8 +  288) F F s

14544 A L TE R A

F P G A

E PF 10K 250-

A G C5992

Table 4.4; Comparisons among VLSI implementation of finite field multipliers

technology. There is no any error existed in the final layout. The design name is 

ICFWRWTK, the fabrication run code is 0402CF. The chip is expected to return on 

Oct. 2004. The designed chip is ready for fabrication.

In next chapter, my contributions and the expected future works are summarized.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Summaries of Contributions

The summaries of my contributions are;

•  Two BPWS PB finite field multipliers in GF{2^^) are designed in this thesis 

and the proposed BPWS PB finite field multipliers have the trade-off between 

area and speed.

• The maximum frequency that the designed chip can work is 130 Mhz. The 

area of the BPWS multiplier is 189297.06439/xm^, the power consumption is 

less than 9.2178 mw. These results meet the design specifications.

• Compared with other finite field multipliers in Table 4.4, the proposed BPWS 

finite field multiplier saves the hardware resource.

• A novel 8 x 233 bit-parallel partial product generator is designed in this thesis.

The expected future work is to design an EC security processor for smart card 

using this proposed BPWS finite field multiplier.
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PD008CDG p d a ta _ o u t0 4  ( .P A D (d a ta_ o u t[ 4 ] ) ,  . I ( d a ta _ o u t _ to p [4 ])  ) ;
PD008CDG p d a ta _ o u t0 5  ( .P A D (d a ta_ o u t[ 5 ] ) ,  , I ( d a ta _ o u t_ to p [ 5 ] )  ) ;
PD008CDG p d a ta _ o u t0 6  ( .P A D (d a ta_ o u t[ 6 ] ) ,  . I ( d a ta _ o u t_ to p [ 6 ] )  ) ;
PD008CDG p d a ta _ o u t0 7  ( . P A D (d ata_ o u t[ 7 ] ) ,  . 1 (d a ta _ o u t_ to p  [7 ])  ) ;

. C (d a ta _ to p  [0] ) , . PAD ( d a ta  [0 ])  
• C ( d a ta _ to p [ l ] ) ,  . P A D (data[1 ])  
•C (d a ta _ to p [2 ] ) ,  . P A D (data[2 ])  
■ C (d a ta _ to p [3 ]) ,  . P A D (data[3 ])  
• C ( d a ta _ to p [4 ] ) ,  . P A D (data[4 ])  
■ C (d a ta _ to p [5 ]) ,  . P A D (data[5 ])  
,C ( d a ta _ to p [ 6 ] ) ,  . P A D (data[6 ])  
• C ( d a ta _ to p [7 ] ) ,  . P A D (data[7 ])  
.C ( a d d r _ to p [0 ] ) ,  .P A D (addr[0 ])  
• C ( a d d r _ to p [ l ] ) ,  .P A D (addr[1 ])  
.C ( a d d r _ to p [2 ] ) ,  .P A D (add r[2 ]) 
• C (a d d r_ to p [3 ] ) ,  .P A D (addr[3 ])  
.C ( a d d r _ to p [4 ] ) ,  .PA D (addr[4 ])  

PDIDGZ p c lk  ( .C ( c lk _ to p ) ,  .PA D (clk) ) ;
PDIDGZ p w r i te  ( .C ( w r i t e _ to p ) , .P A D (w rite) ) ;
PDIDGZ pw clk  ( .C (w c lk _ to p ) , .PAD(wclk) ) ;
PDIDGZ p r s t c l k  ( .C ( r s t c l k _ t o p ) , .P A D (rs tc lk )  ) ;  
PDIDGZ p s e l e c t  ( . C ( s e l e c t _ t o p ) , .P A D (se le c t)  ) ;  
PDIDGZ p r e s e t  ( .C ( r e s e t _ t o p ) , .P A D (re se t)  ) ;
PDIDGZ p t e s t _ s e  ( .C ( t e s t _ s e _ t o p ) , .P A D (te s t_ se )  ) ;  
PDIDGZ p t e s t _ i n  ( .C ( t e s t _ i n _ t o p ) , .P A D (te s t_ in )  ) ;  
PDIDGZ p t e s t _ i n l  ( .C ( t e s t _ i n l _ t o p ) , .P A D (te s t_ in l)  ) ;  
PDIDGZ p te s t_ in 2  ( .C ( t e s t _ in 2 _ to p ) , .P A D (te s t_ in 2 )  ) ;  

endm odule

PDIDGZ pdataOO 
PDIDGZ p d a taO l 
PDIDGZ p d a ta 0 2  
PDIDGZ p d a ta 0 3  
PDIDGZ p d a ta 0 4  
PDIDGZ pdataO S 
PDIDGZ pdataO e 
PDIDGZ p d a ta 0 7  
PDIDGZ paddrOO 
PDIDGZ padd rO l 
PDIDGZ pad d r0 2  
PDIDGZ pad d r0 3  
PDIDGZ pad d r0 4
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Appendix B 

Program 2

♦♦* t o p a l l . v  ***
*** Wenkai Tang **■•■
*♦* Aug. 16 2003 ***
♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦******:|c!(c:((!(ci|c:(i***j(ii|t*****j)c*!|i*i|c***!|ci(c*:)ci)c*#*!)ci(e*:)t*i|c**/
II  The c i r c u i t  h ie ra c h y  in c lu d e s  two l e v e l .  The t o p a l l . v  i s  
/ /  t h e  se co n d  l e v e l  d e s c r i p t i o n ,  i t  m odels th e  c i r c u i t  and s t i l l  
/ /  c o n ta in s  a  h ie r a c h y .

‘t im e s c a le  I n s / lO p s  m odule
to p _ s y s ( a , a d d r , e l k , w, r s t , s e l , c , w c lk , r s t c l k , t e s t _ s e , 

t e s t _ i n , t e s t _ i n l , t e s t _ i n 2 ) ; 
in p u t  [7 :0 ]  a ; 
in p u t  [4 :0 ]  a d d r ; 
in p u t  e l k ,w c l k , r s t c l k ;  
in p u t  w; 
in p u t  r s t ;  
in p u t  s e l ;
in p u t  t e s t _ i n ,  t e s t _ s e ,  t e s t _ i n l , t e s t _ i n 2 ;  
o u tp u t  [7 :0 ]  c ; 
w ire  [2 5 5 :0 ] w l, w2; 
w ire  [7 :0 ]  w81;
w ire  [23 2 :0 ] w ll ,w l2 ,w l3 ,w l4 ,w l5 ;

codec c l ( a , a d d r , e l k ,w ,w l ) ; 
a s s ig n  wll«=wl [2 4 0 :8 ]  ; 
a s s ig n  w81*wl[ 7 :0 ] ;
BPWSMSBFFM b l ( w 8 1 , w l l , e l k , r s t , r s t c l k , w l 2 ) ; 
fb p _ sq u a x e r  f l ( w l l , w l 3 ) ;  
m u l t i p l i x e r 2 t o l  m l ( w l2 ,w l3 ,s e l ,w l4 ) ;
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la tc h 2 3 3  I l ( w l 4 , w c l k , l ’b 0 ,w l5 ) ; 
a s s ig n  w 2[232 :0 ]= w l5 ; 
a s s ig n  w 2 [2 5 5 :2 3 3 ]= ’bO; 
co d e c o u t c 2 ( w 2 ,a d d r ,e lk ,w ,c ) ;

endm odule

/ /  M odule codec i s  a  com ponent i n  m odule to p _ s y s ,  i t  d ec o d es  a d d re s s  
/ /  and  w r i t e  th e  d a t a  i n to  a  p a r t  o f  r e g i s t e r ,  
m odule c o d e c ( d a t a ,a d d r ,e lk ,w ,d a ta _ o u t ) ; 

in p u t  [7 :0 ]  d a t a ;  
in p u t  [4 :0 ]  a d d r ; 
in p u t  e lk ;  
in p u t  w;
o u tp u t  [25 5 :0 ] d a ta _ o u t ;  
r e g [2 5 5 :0 ] d a ta _ o u t ;

a lw ay s S (p o sed g e  e lk )  
b e g in  

i f  (w)
c a se  (a d d r)

5 ’bOOOOO: d a t a _ o u t [ 7 :0 ] = d a ta ;
5 ’bOOOOl: d a ta _ o u t[ 1 5 :8 ] = d a ta ;
5 ’bOOOlO: d a ta _ o u t[ 2 3 :1 6 ] = d a ta ;
5 ’bOOOl1: d a t a _ o u t [3 1 :2 4 ]= d a ta ;

5 ’bOOlOO: d a ta _ o u t[3 9 :3 2 ] = d a ta ;
5 ’bOOlOl: d a ta _ o u t[ 4 7 :4 0 ] = d a ta ;
5 ’bOOllO: d a ta _ o u t[ 5 5 :4 8 ] = d a ta ;
5 ’b O O lll: d a t a _ o u t [6 3 :5 6 ]= d a ta ;

5 ’bOiOOO: d a t a _ o u t [ 7 i :6 4 ] = d a ta ;
5 ’bOlOOl: d a ta _ o u t[ 7 9 :7 2 ] = d a ta ;
5 ’bOlOlO: d a t a _ o u t [8 7 :8 0 ]= d a ta ;
5 ’b O lO ll: d a ta _ o u t[ 9 5 :8 8 ] = d a ta ;

5 ’bOllOO: d a ta _ o u t[1 0 3 :9 6 ] = d a ta ;
5 ’b O llO l: d a t a .o u t [ 1 1 1 :1 0 4 ]= d a ta ;
5 ’b O lllO : d a t a . o u t [ 1 1 9 :1 1 2 ]= d a ta ;
5 ’b O l111: d a t a . o u t [1 2 7 :1 2 0 ]= d a ta ;

5 ’blOOOO: d a t a . o u t [ 1 3 5 :1 2 8 ]= d a ta ;
5 ’blOOOl: d a t a . o u t [1 4 3 :1 3 6 ]= d a ta ;
5 ’blOOlO: d a t a . o u t [1 5 1 :1 4 4 ]= d a ta ;
5 ’b lO O ll : d a t a . o u t [1 5 9 :1 5 2 ]= d a ta ;

5 ’blOlOO: d a t a . o u t [1 6 7 :1 6 0 ]= d a ta ;
5 ’b lO lO l: d a t a . o u t [1 7 5 :1 6 8 ]= d a ta ;
5 ’b lO llO : d a t a . o u t [1 8 3 :1 7 6 ]= d a ta ;
5 ’b l O l l l : d a t a . o u t [1 9 1 :1 8 4 ]= d a ta ;

5 ’bllOOO: d a t a . o u t [1 9 9 :1 9 2 ]= d a ta ;
5 ’b l lO O l: d a t a . o u t [2 0 7 :2 0 0 ]= d a ta ;
5 ’b l lO lO : d a t a . o u t [2 1 5 :2 0 8 ]= d a ta ;
5 ’b l l O l l : d a t a . o u t [2 2 3 :2 1 6 ]= d a ta ;
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5 ’ b 11100: d a t  a_ o u t [231:224] = d a ta ;
5 ’b l l l O l : d a t a _ o u t [2 3 9 ;2 3 2 ]= d a ta ; 
5 ’ b 11110: d a t a .o u t  [247:240] = d a ta ; 
5 ’b i l l 11: d a t a . o u t [2 5 5 :2 4 8 ]= d a ta ; 

e n d c ase
end

endm odule

//M o d u le  c o d e co u t i s  a  com ponent i n  m odule t o p . s y s ,  i t  decodes 
/ / t h e  a d d re s s  and r e a d  th e  d a t a  o u t o f  th e  r e g i s t e r ,  
m odule c o d e c o u t ( d a t a ,a d d r ,c lk ,w ,d a t a .o u t ) ; 

i n p u t  [2 5 5 :0 ]  d a t a ;  
in p u t  [4 :0 ]  a d d r ; 
in p u t  w; 
in p u t  e lk ;
o u tp u t [7 :0 ]  d a t a .o u t ;  
r e g  [7 :0 ]  d a t a .o u t ;

a lw ays ® (posedge e lk )  
b e g in  

i f ( ! w )
c a s e  (a d d r)

5 ’bOOOOO: d a t a .o u t= d a ta [ 7 :0 ] ;  
5 ’bOOOOl: d a t a .o u t= d a ta [ 1 5 : 8 ] ; 
5 ’bOOOlO: d a t a .o u t= d a ta [ 2 3 :16 ]; 
5 ’bOOOll: d a ta _ o u t= d a ta [ 3 1 :2 4 ] ; 

5 ’bOOlOO: d a t a .o u t= d a ta [ 3 9 : 3 2 ] ; 
5 ’bOOlOl: d a ta .o u t= d a ta [4 7 :4 0 ]  
5 ’bOOllO: d a ta _ o u t= d a ta [55 :48 ] 
5 ’b O O lll: d a ta .o u t= d a ta [6 3 :5 6 ]  

5 ’bOlOOO: d a t a .o u t= d a ta [ 7 1 : 6 4 ] ; 
5 ’bOlOOl: d a ta .o u t= d a ta [7 9 :7 2 ]  
5 ’bOlOlO; d a ta .o u t= d a ta [8 7 :8 0 ]  
5 ’b O lO ll:  d a ta .o u t= d a ta [9 5 :8 8 ]  

5 ’bOllOO: d a ta .o u t= d a ta [1 0 3 :9 6 ]  
5 ’b O llO l: d a t a .o u t = d a t a [ l l l : 1 0 4 ]  
5 ’b O lllO : d a ta .o u t= d a ta [1 1 9 :1 1 2 ]  
5 ’b O l l l l :  d a ta .o u t= d a ta [1 2 7 :1 2 0 ]  

5 ’blOOOO: d a t a .o u t= d a ta [ 1 3 5 :128 ]; 
5 ’blOOOl: d a ta _ o u t= d a ta [1 4 3 :1 3 6 ]  
5 ’blOOlO: d a ta .o u t= d a ta [1 5 1 ;1 4 4 ]  
5 ’b lO O ll:  d a ta _ o u t= d a ta [1 5 9 :1 5 2 ]  

5 ’blOlOO: d a t a .o u t= d a ta [ 1 6 7 :160 ]; 
5 ’b lO lO l; d a ta .o u t= d a ta [1 7 5 :1 6 8 ]  
5 ’b lO llO : d a ta .o u t= d a ta [1 8 3 :1 7 6 ]  
5 ’b l O l l l :  d a t a .o u t= d a ta [ 1 9 1 :184] 

5 ’bllOOO: d a t a .o u t= d a ta [ 1 9 9 :192 ]; 
5 ’b llO O l: d a t a .o u t= d a ta [ 2 0 7 :2 0 0 ] ; 
5 ’b llO lO : d a ta _ o u t= d a ta [ 2 1 5 :2 0 8 ] ;
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5 ’b l l O l l :  d a ta _ o u t= d a ta [2 2 3 :2 1 6 ] ;
5 ’b lllO O : d a ta _ o u t= d a ta [2 3 1 :2 2 4 ] ;

5 ’b l l l O l :  d a ta _ o u t= d a ta [2 3 9 :2 3 2 ]
5 ’b l l l l O :  d a ta _ o u t= d a ta [2 4 7 :2 4 0 ]
5 ’b l 1111: d a ta _ o u t= d a ta  [255:248] 

en d c ase
end

endm odule

//M o d u le  BPWSMSBFFM i s  a  com ponent i n  m odule to p _ s y s .  I t  i s  
/ / t h e  p ro p o se d  BPWS PB f i n i t e  f i e l d  m u l t i p l i e r ,  
m odule B P W S M S B F F M (a ,b ,e lk ,rs t ,rs tc lk ,c ) ; 

in p u t  [7 :0 ]  a ; 
in p u t  [2 3 2 :0 ] b ; 
in p u t  e lk ;  
in p u t  r s t , r s t c l k ;  
o u tp u t [2 3 2 :0 ] c ;
w ire  [2 3 2 :0 ] w l,w 2,w 3,w 4,w 5,w 6,w 7; 
w ire  wO; 
a s s ig n  wO=l’bO;
la tc h 2 3 3  11 ( b , r s t c l k ,w O ,w l ) ; / / c l k  
m u lt ip l ie rS x 2 3 3  m8x233 (a ,w l ,w 2 ) ;  
x o r .n e tw o rk  x n l  (w 2,w 5,w 3); 
a s s ig n  c=w3;
c o n s t .m u l t i p l i e r  cm8 (w 3,w 4); 
la tc h 2 3 3  12 ( w 4 ,c l k , r s t ,w 5 ) ; 

endm odule

//M o d u le  f b p .s q u a r e r  i s  a  com ponent i n  m odule t o p . s y s .  I t  i s  
/ / t h e  f u l l  b i t  p a r a l l e l  PB s q u a r e r .  
m odule f b p _ s q u a r e r ( a ,b ) ; 

in p u t  [2 3 2 :0 ]  a ; 
o u tp u t [2 3 2 :0 ]  b ; 
r e g  [2 3 2 :0 ] b ; 
i n t e g e r  k ; 
i n t e g e r  m; 
i n t e g e r  i ;

a lw ays @ (a )  
b e g in

k=74; 
m=233;
f o r ( i = 0 ; i< k ; i= i+ 2 )

b [ i ] = a [ i / 2 ] * a [ m - k / 2 + i / 2 ] ; 
f o r ( i = l ; i< k ; i= i+ 2 )  

b [ i ] = a [ ( m + i ) /2 ]  ; 
f o r ( i = k ; i< 2 * k ; i= i+ 2 )

b [ i ] = a [ i / 2 ]  * a [m -k + i/2 ]  ; 
f o r ( i = k + l ; i< m ;i= i+ 2 )
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b [ i ]  =a [ (m+i ) /2 ]  * a [ (m -k+i ) /2 ]  ; 
f o r ( i= 2 * k ; i<m ; i= i+ 2 ) 

b [ i ] = a [ i / 2 ]  ;
end

endm odule

//M o d u le  la tc l i2 3 3  i s  a  com ponent i n  b o th  m odule to p _ sy s  and 
/ /m o d u le  BPWSMSBFFM. I t  s e rv e  a s  a  2 3 3 - b i t  r e g i s t e r ,  
m odule l a t c h 2 3 3 ( a , c l k , r s t ,  q ) ; 

in p u t  [232 :0 ] a ; 
in p u t  e lk ;  
in p u t  r s t ;

o u tp u t  [23 2 :0 ] q ; 
r e g  [2 3 2 :0 ] q ; 
i n t e g e r  k ;

a lw ay s ® ( p o sed g e  e lk )  / / o r  p osedge  r s t  
i f ( r s t )  

q=233’b0; 
e l s e  

q=a; 
endm odule

//M o d u le  m u l t i p l i x e r 2 t o l  i s  a  com ponent i n  m odule to p _ s y s .  
/ / I t  i s  th e  m u l t i p l i x e r  u se d  to  s e l e c t  th e  o u tp u t from  e i t h e r  
/ / m u l t i p l i e r  o r  s q u a r e r .  
m odule m u l t i p l i x e r 2 t o l ( a , b , s e l , c ) ; 

i n p u t  [23 2 :0 ] a ;  
i n p u t  [23 2 :0 ] b ; 
in p u t  s e l ;  
o u tp u t  [23 2 :0 ] c ; 
r e g  [23 2 :0 ] c ;

a lw ays® (a o r  b o r  s e l )  
b e g in  

i f ( s e l )  
c=a; 

e l s e  
c=b;

end
endm odule

//M o d u le  m u l t ip l ie rS x 2 3 3  i s  a  com ponent i n  m odule BPWSMSBFFM. 
/ / I t  i s  t h e  8x233 p a r t i a l  p ro d u c t g e n e r a to r ,  
module m u l t i p l i e r S x 2 3 3 ( a ,b ,c ) ; 

in p u t  [7 :0 ]  a ; 
in p u t  [2 3 2 :0 ] b ; 
o u tp u t [2 3 2 :0 ] c ;
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w ire  [232:0] Xl,x2,x3,x4,x5,x6,ml,m2,m3,m4,m5,in6,m7, 
aO, a l , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 ; 

const_ml cml (b,ml); 
const_m2 cm2 (b,m2) 
const_m3 cm3 (b,m3) 
const_m4 cm4 (b,m4) 
const_m5 cm5 (b,m5) 
const_m6 cm6 (b,m6) 
const_m7 cm7 (b,m7)

and_netw ork  amO ( a [ 0 ] , b ,a 0 ) ;  
and_netw ork  ami ( a [ l ] , m l , a l )  
and_netw ork  am2 (a [2 ] ,m 2 ,a 2 ) 
and_netw ork  am3 (a [3 ] ,m 3 ,a 3 )  
and_netw ork  am4 (a [4 ] ,m 4 ,a 4 )  
a n d .n e tw o rk  amS (a [5 ] ,m 5 ,a 5 )  
and_netw ork  am6 (a [6 ] ,m 6 ,a 6 )  
and_netw ork  am7 (a [7 ] ,m 7 ,a 7 )

x o r_ n e tw o rk  x a l  
x o r_ n e tw o rk  xa2 
x o r_ n e tw o rk  xa3 
x o r_ n e tw o rk  xa4 
x o r_ n e tw o rk  xa5 
x o r_ n e tw o rk  xa6 
x o r_ n e tw o rk  xa7 

endm odule

( a O ,a l ,x l )  
( a 2 ,a 3 ,x 2 )  
( a 4 ,a 5 ,x 3 )  
( a 6 ,a 7 ,x 4 )  
( x l ,x 2 ,x 5 )  
(x 3 ,x 4 ,x 6 )  
( x 5 ,x 6 , c ) ;

//M o d u le  x o r_ n e tw o rk  i s  a  com ponent i n  b o th  m odule BPWSMSBFFM 
/ /  and m odule m u l t ip l ie r 8 x 2 3 3 .  I t  i s  th e  2 3 3 - b i t  a d d e r , 
m odule x o r _ n e tw o r k ( a ,b ,c ) ; 

in p u t  [23 2 :0 ] a ; 
in p u t  [23 2 :0 ] b ; 
o u tp u t  [2 3 2 :0 ] c ; 
r e g  [2 3 2 :0 ] c ;  
in t e g e r  k ;

a lw ays ®(a o r  b ) 
f o r  (k = 0 ;k< 233 ;k= k+ l) 
c [k ]= a [k ]  ~ b [ k ] ; 

endm odule

//M o d u le  c o n s t .m u l t i p l i e r  i s  a  com ponent i n  m odule BPWSMSBFFM. 
/ / I t  i s  th e  c o n s ta n t  m u l t i p l i e r ,  
m odule c o n s t _ m u l t i p l l e r ( a , b ) ; 

in p u t  [23 2 :0 ] a ; 
o u tp u t [2 3 2 :0 ] b ; 
r e g  [23 2 :0 ] b ; 
i n t e g e r  k ;
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a lw ay s @(a) 
b e g in

b [0 ]= a [2 2 5 ] 
b [ l]= a [2 2 6 ]  
b [2 ]= a [2 2 7 ] 
b [3 ]= a [2 2 8 ] 
b [4 ]= a [2 2 9 ] 
b [5 ]= a [2 3 0 ] 
b [6 ]= a [2 3 1 ]  
b [7 ]= a [2 3 2 ]  
f o r ( k = 8 ;k< 74 ;k=k+1) 

b [ k ] = a [ k - 8 ] ; 
b t7 4 ]= a [2 2 5 ]" a [6 6 ]  
b [ 7 5 ]= a [2 2 6 ] 'a [6 7 ]  
b [7 6 ]= a [2 2 7 ]* a [6 8 ]  
b [7 7 ]= a [2 2 8 ]* a [6 9 ]  
b [7 8 ]= a [2 2 9 ]~ a [7 0 ]  
b [7 9 ]= a [2 3 0 ]* a [7 1 ]  
b [8 0 ]= a [2 3 1 ] ‘ a [7 2 ] 
b [8 1 ]= a [2 3 2 ]* a [7 3 ]  

fo r ( k = 8 2 ;k< 233 ;k= k+ l) 
b [ k ] = a [ k - 8 ] ;

end
endm odule

//M o d u le  co n s t_ m l i s  a  com ponent i n  m odule m u l t ip l ie r8 x 2 3 3 .  
/ / I t  i s  one c o n s ta n t  m u l t i p l i e r ,  
m odule c o n s t_ m l ( a ,b ) ; 

in p u t  [2 3 2 :0 ] a ; 
o u tp u t  [23 2 :0 ] b ; 
r e g  [2 3 2 :0 ]  b ; 
i n t e g e r  k ; 
a lw ays ® (a) 

b e g in
b [0 ]= a [2 3 2 ]  ; 
f o r (k = l;k < 7 4 ;k = k + l)  

b [ k ] = a [ k - l ] ; 
b [7 4 ]= a [2 3 2 ]" a [7 3 ]  ; 
fo r ( k = 7 5 ;k< 233 ;k = k + l) 

b [ k ] = a [ k - l ] ;
end

endm odule

//M o d u le  const_m 2 i s  a  com ponent i n  m odule m u lt ip l ie r8 x 2 3 3 .  
/ / I t  i s  one c o n s ta n t  m u l t i p l i e r ,  
m odule c o n s t_ m 2 ( a ,b ) ; 

in p u t  [2 3 2 :0 ] a ; 
o u tp u t [2 3 2 :0 ] b ;
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r e g  [2 3 2 :0 ] b ; 
i n t e g e r  k ; 
a lw a y s  @(a) 

b e g in
b [ 0 ]= a [2 3 1 ] ; 
b [ l ] = a [ 2 3 2 ] ; 
fo r(k = 2 ;k < 7 4 :k = k + l)  

b  [k] =a [k -2 ] ; 
b [ 7 4 ]= a [2 3 1 ]* a [7 2 ] ; 
b [ 7 5 ]= a [2 3 2 ]* a [7 3 ] ; 
f  o r (k = 7 6 ; k<233;k=k+1) 

b [k ]= a [k -2 ]  ;
end

endm odule

//M o d u le  const_m 3 i s  a  com ponent i n  m odule m u l t ip l ie r8 x 2 3 3 .  
/ / I t  i s  one c o n s ta n t  m u l t i p l i e r ,  
m odule c o n s t_ m 3 (a ,b ) ; 

in p u t  [2 3 2 :0 ] a ; 
o u tp u t  [2 3 2 :0 ] b ; 
r e g  [2 3 2 :0 ] b ; 
i n t e g e r  k ; 
a lw ays @(a) 

b e g in
b [0 ]= a [2 3 0 ]  
b [ l ]= a [2 3 1 ]  
b [2 ]= a [2 3 2 ]  
fo r(k = 3 ;k < 7 4 ;k = k + l)  

b  [k] =a [ k - 3 ] ; 
b [7 4 ]= a [2 3 0 ] -a [7 1 ]  ; 
b [ 7 5 ]= a [2 3 1 ] 'a [7 2 ]  ; 
b [ 7 6 ]= a [2 3 2 ] * a [ 7 3 ] ; 
f  o r (k = 7 7 ;k<233;k=k+1) 

b [ k ] = a [ k - 3 ] ;
end

endm odule

//M o d u le  const_m 4 i s  a  com ponent i n  m odule m u l t ip l ie r 8 x 2 3 3 .  
/ / I t  i s  one c o n s ta n t  m u l t i p l i e r ,  
m odule c o n s t_ m 4 (a ,b ) ; 

in p u t  [2 3 2 :0 ] a ; 
o u tp u t  [2 3 2 :0 ]  b ; 
r e g  [2 3 2 :0 ]  b ; 
i n t e g e r  k ; 
a lw ays Q (a) 

b e g in
b [0 ]= a [2 2 9 ]  
b [ l ]= a [2 3 0 ]  
b [2 ]= a [2 3 1 ]
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b [3 ]= a [2 3 2 ]  ; 
fo r(k = 4 ;k < 7 4 ;k = k + l)  

b [ k ] = a [ k - 4 ] ; 
b [7 4 ]= a [2 2 9 ]* a [7 0 ]  : 
b [7 5 ]= a [2 3 0 ] ‘ a  [71] 
b [7 6 ]= a [2 3 1 ] 'a [7 2 ]  
b [7 7 ]= a [2 3 2 ] 'a [7 3 ]  
f  o r (k = 7 8 ;k< 233 ;k=k+1) 

b [ k ]= a [k -4 ]  ;
end

endm odule

//M o d u le  const_m 5 i s  a  com ponent I n  m odule m u lt ip l ie r8 x 2 3 3 .  
/ / I t  i s  one c o n s ta n t  m u l t i p l i e r ,  
m odule c o n s t_ m 5 ( a ,b ) ; 

in p u t  [23 2 :0 ] a ; 
o u tp u t  [2 3 2 :0 ] b ; 
r e g  [2 3 2 :0 ] b ; 
i n t e g e r  k ; 
a lw ay s 0 ( a )  

b e g in
b [0 ]  = a[228] : 
b [ l ]= a [2 2 9 ]  
b [2 ]= a [2 3 0 ]  
b [3 ]= a [2 3 1 ]  
b [4 ]= a [2 3 2 ]  : 
fo r(k = 5 ;k < 7 4 ;k = k + l)  

b [k] =a [k -5 ]  ; 
b [7 4 ]= a [2 2 8 ]* a [6 9 ]  ; 
b [7 5 ]= a [2 2 9 ]* a [7 0 ]  
b [7 6 ]= a [2 3 0 ]* a [7 i]  
b [ 7 7 ]= a [2 3 1 ] ‘ a [7 2 ] 
b [7 8 ]= a [2 3 2 ]~ a [7 3 ]  ; 
f  o r (k = 7 9 ;k< 233 ; k= k+ l) 

b [ k ]= a [k -5 ]  ;
end 

endm odule

//M o d u le  const_m 6 i s  a  com ponent i n  m odule m u l t ip l ie r 8 x 2 3 3 . 
/ / I t  i s  one c o n s ta n t  m u l t i p l i e r ,  
m odule c o n s t_ m 6 (a ,b ) ; 

in p u t  [2 3 2 :0 ] a ; 
o u tp u t  [2 3 2 :0 ] b ; 
r e g  [2 3 2 :0 ]  b ; 
i n t e g e r  k ; 
a lw ay s ® (a) 

b e g in
b [0 ]= a [2 2 7 ]  ; 
b [ i ] = a [ 2 2 8 ] ;
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b [2 ]= a [2 2 9 ]  
b [3 ]= a [2 3 0 ]  
b [4 ]= a [2 3 1 ]  
b [5 ]= a [2 3 2 ]  : 
fo r(k = 6 ;k < 7 4 ;k = k + l)  

b [k] =a [k -6 ] ; 
b [ 7 4 ]= a [2 2 7 ] ‘ a t6 8 ] 
b [7 5 ] =a [2 2 8 ] ' a  [69] 
b [ 7 6 ]= a [2 2 9 ] ‘ a[70] 
b [7 7 ]= a [2 3 0 ]  ‘ a  [71] 
b [7 8 ]= a [2 3 1 ]~ a [7 2 ]  
b [ 7 9 ]= a [2 3 2 ] 'a [7 3 ]  : 
f o r ( k = 8 0 : k<233;k = k+ l) 

b [ k ] = a [ k - 6 ] ;
end

endm odule

//M o d u le  const_m 7 i s  a  com ponent i n  module m u l t ip l ie r8 x 2 3 3 .  
/ / I t  i s  one c o n s ta n t  m u l t i p l i e r ,  
m odule c o n s t_ m 7 ( a ,b ) ; 

in p u t  [2 3 2 :0 ]  a ; 
o u tp u t [2 3 2 :0 ]  b ; 
r e g  [2 3 2 :0 ]  b ; 
i n t e g e r  k ; 
a lw ays @(a) 

b e g in
b [0 ]= a [2 2 6 ]  : 
b [ l ]= a [2 2 7 ]  
b [2 ]= a [2 2 8 ]  
b [3 ]  = a[229] 
b [4 ]  = a[230] 
b [5 ]= a [2 3 1 ]  
b [6 ]= a [2 3 2 ] ,  
fo r(k = 7 ;k < 7 4 ;k = k + l)  

b [ k ]= a [k -7 ]  ; 
b [ 7 4 ]= a [2 2 6 ] 'a [6 7 ]  
b [ 7 5 ]= a [2 2 7 ] -a [6 8 ]  
b [7 6 ]= a [2 2 8 ]* a [6 9 ]  
b [ 7 7 ]= a [2 2 9 ] 'a [7 0 ]  
b [ 7 8 ]= a [2 3 0 ] ‘ a[71 ] 
b [7 9 ] =a [231]*  a  [72] 
b [8 0 ]= a [2 3 2 ]* a [7 3 ]  
f o r ( k = 8 1 ; k< 233;k= k+ l) 

b [ k ]= a [k -7 ]  ;
end 

endm odule

//M o d u le  an d _ n e tw o rk  i s  a  com ponent i n  m odule BPWSMSBFFM. 
/ / I t  i s  t h e  AND n e tw o rk  u se d  t o  m u l t ip ly  an  e lem e n t by  a
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/ / c o e f f i c i e n t . 
m odule a n d _ n e tw o r k (a ,b ,c ) ; 

in p u t  a ;
in p u t  [23 2 :0 ] b ; 
o u tp u t [23 2 :0 ] c ; 
r e g  [23 2 :0 ] c ; 
i n t e g e r  k ;

a lw ays @(a o r  b) 
b e g in

fo r(k = 0 ;k < 2 3 3 ;k = k + l)  
c [k] =a&b [k] ;

end
endm odule
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