
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2017

Private and Public-Key Side-Channel Threats Against Hardware Private and Public-Key Side-Channel Threats Against Hardware

Accelerated Cryptosystems Accelerated Cryptosystems

Dylan Roderick Lalonde
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Lalonde, Dylan Roderick, "Private and Public-Key Side-Channel Threats Against Hardware Accelerated
Cryptosystems" (2017). Electronic Theses and Dissertations. 5995.
https://scholar.uwindsor.ca/etd/5995

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/84725622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5995?utm_source=scholar.uwindsor.ca%2Fetd%2F5995&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Private and Public-Key Side-Channel

Threats Against Hardware Accelerated

Cryptosystems

by

Dylan Roderick Lalonde

A Thesis

Submitted to the Faculty of Graduate Studies through the

Department of Electrical and Computer Engineering in Partial

Fulfillment of the Requirements for the Degree of Master

of Applied Science at the University of Windsor

Windsor, Ontario, Canada

2017

c©2017 D.R.Lalonde

All Rights Reserved. No Part of this document may be reproduced, stored

or otherwise retained in a retrieval system or transmitted in any form, on any

medium by any means without prior written permission of the author.

Private and Public-Key Side-Channel Threats Against Hardware Accelerated

Cryptosystems

by

Dylan R. Lalonde

APPROVED BY:

A. Jaekel, External Reader

School of Computer Science

K. Tepe, Departmental Reader

Electrical and Computer Engineering

H. Wu, Co-Advisor

Electrical and Computer Engineering

M. Mirhassani, Advisor

Electrical and Computer Engineering

April 19, 2017

Declaration of Originality

I hereby certify that I am sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any propriety rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the stan-

dard referencing practices. Furthermore, to the extent that I have included copy-

righted material that surpasses the bounds of fair dealing within the meaning of

the Canada Copyright Act, I certify that I have obtained a written permission

from the copyright owner(s) to include such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions as

approved by my thesis committee and the Graduate Studies office, and that this

thesis has not been submitted for a higher degree to any other institution.

iv

Abstract

Modern side-channel attacks (SCA) have the ability to reveal sensitive data from

non-protected hardware implementations of cryptographic accelerators whether

they be private or public-key systems. These protocols include but are not limited

to symmetric, private-key encryption using AES-128, 192, 256, or public-key cryp-

tosystems using elliptic curve cryptography (ECC). Traditionally, scalar point (SP)

operations are compelled to be high-speed at any cost to reduce point multipli-

cation latency. The majority of high-speed architectures of contemporary elliptic

curve protocols rely on non-secure SP algorithms.

This thesis delivers a novel design, analysis, and successful results from a cus-

tom differential power analysis attack on AES-128. The resulting SCA can break

any 16-byte master key the sophisticated cipher uses and it’s direct applications

towards public-key cryptosystems will become clear. Further, the architecture of

a SCA resistant scalar point algorithm accompanied by an implementation of an

optimized serial multiplier will be constructed.

The optimized hardware design of the multiplier is highly modular and can use

either NIST approved 233 & 283-bit Kobliz curves utilizing a polynomial basis.

The proposed architecture will be implemented on Kintex-7 FPGA to later be inte-

grated with the ARM Cortex-A9 processor on the Zynq-7000 AP SoC (XC7Z045)

for seamless data transfer and analysis of the vulnerabilities SCAs can exploit.

v

In loving memory of Brianne & Dad

vi

Acknowledgments

I wish to express my most sincere gratitude my advisor Dr. Mitra Mirhassani for

her compassion and motivational spirits that truly inspired me to complete my

thesis. Her knowledge, time, and support made this work a great success. Mitra’s

work ethics and dedication in our joint research over the last 2 years shaped the

engineer I am today.

A genuine thank you goes to my co-advisor Dr. Huepang Wu for his great

knowledge and critical feedback for the mathematics of this project. I would also

like to give a special thanks to Dr. Roberto Muscedere for his judgement and

insight on the hardware design within the project.

I’d like to also thank my committee members Dr. Arunita Jaekel and Dr.

Kemel Tepe for their feedback and advice on my work.

In addition to my loving family, I would also like to thank my good friends

Philip Korta and George Kyrtsakas along with my colleagues in the ECE depart-

ment at the University of Windsor for their continual support, advice, and great

times during my entire post-secondary education.

Finally, to my mother, I am perpetually grateful. With your unconditional love

and everlasting life lessons, you taught me that knowledge is surely a beautiful

thing.

vii

Table of Contents

Declaration of Originality iv

Abstract v

Dedication vi

Acknowledgments vii

List of Tables xii

List of Figures xiii

Nomenclature xiv

1 Introduction 1

1.1 Motivation . 1

1.1.1 Transition of Software to Hardware Cryptography 2

1.1.2 Side-Channel Attacks . 2

1.2 Objective . 3

1.2.1 Solution . 3

1.3 Organization of Thesis . 4

2 Mathematical Preliminaries 6

2.1 Number Theory . 6

2.2 Algebra . 7

2.2.1 Group Law . 7

2.2.2 Finite Fields . 8

2.3 Levels of Security Within Public & Private Key Systems 9

viii

TABLE OF CONTENTS

2.3.1 Binary Field . 10

2.3.2 Polynomial Basis . 11

2.3.3 Provable Security . 12

2.4 Elliptic Curves over GF (2m) . 12

2.4.1 Marginal Note on EC Discrete Logarithm Problem 13

2.4.2 Curves and EC Group Theory 13

2.4.3 Point Operations . 15

2.4.4 ECC Overview and Vulnerability Insight 16

2.5 Statistical Analysis for Side-Channel Attacks 16

3 Side-Channel Attacks Against Hardware 18

3.1 Malicious Actions Against Hardware 19

3.1.1 Timing & Safe-Error Attacks 19

3.1.2 Zero Point Attacks . 20

3.1.3 Differential Power Analysis 20

3.2 Novelty . 21

3.3 Executing DPA on AES-128 . 21

3.3.1 Experimental Setup . 22

3.3.2 Framework Differential Power Analysis 23

3.3.3 Generating Hypothetical Keys 26

3.3.4 Inverse Add-Round Key & Shift Row 26

3.3.5 Inverse S-Box . 29

3.3.6 Hamming Distance . 31

3.3.7 Correlation Coefficient . 32

3.3.8 Inverse Sessional Round Key 34

3.3.9 Results & Analysis of Vulnerabilities 34

3.3.10 Hardware Solutions Against DPA 37

3.4 Related Applications . 38

4 Secure High-Level Architecture 40

4.1 Previous Research & Review . 40

4.2 Secure Scalar Point Multiplication 44

4.2.1 Montgomery’s Algorithm . 44

ix

TABLE OF CONTENTS

4.2.2 Joye’s Algorithm with Hardware Design 46

4.2.3 Comparison . 48

4.3 Optimized Point Operations . 49

4.3.1 Point Double with Datapath Schematic 50

4.3.2 Point Addition with Datapath Schematic 51

4.3.3 Review of Hardware . 52

4.4 Multiplicative Inverse . 54

4.4.1 Binary Extended Euclidean Algorithm 55

4.5 High-Level Summary . 55

5 Low-Level Multiplier Implementation 57

5.1 Finite Field Multiplier . 57

5.1.1 FIFO for Large Keys . 59

5.1.2 Parallel Multiplication and Squaring 59

5.1.3 Montgomery Multiplication and Reduction 62

5.2 Summary of the Connected System 65

5.2.1 Multiplier Comparison . 66

5.2.2 Overview of Architecture . 67

6 Conclusions 68

6.1 Summary of Contributions . 68

6.2 Future Work . 69

6.2.1 Hardware Design . 69

6.2.2 Software-Hardware Integration Against SCAs 70

6.2.3 Masking to Prevent CPA Attacks 70

Appendices 73

A DPA Data & Results 73

A.1 Power Trace to be Attacked . 73

A.2 16-Byte Key Results . 73

B Matlab Script DPA 82

x

TABLE OF CONTENTS

C C Scripts - Verilog Script Generation 83

C.1 Parallel Multiplier . 83

C.2 Parallel Reduction . 86

C.3 Parallel Polynomial Multiplier . 89

D Verilog HDL Scripts 91

D.1 Parallel Polynomial Squarer . 91

D.2 Serial Montgomery Multiplier . 92

D.3 32-bit FIFO . 97

D.4 Serialized Montgomery Multiplier Comparison 100

E Verilog HDL Pseudo Scripts 101

E.1 Binary Extended Euclidean Inversion 101

E.2 Point Double . 104

E.3 Point Addition . 107

Bibliography 113

Vita Auctoris 119

xi

List of Tables

2.1 Achieving Standard Security - Keys 9

4.1 Keynote ECC Processors in Literature 42

4.2 Hardware Costs of Point Addition 43

4.3 Comparison of SPM SCA Protection 48

5.1 Parallel vs. Serial Finite Field Multiplier 58

5.2 Post Synthesis Multiplier Results on Kintex-7 66

xii

List of Figures

2.1 Kobliz Elliptic Curve - EK :y2 + xy = x3 + x2 + 1 14

2.2 Kobliz Elliptic Curve - Point Operations 15

2.3 ECC GF (2m) Hierarchy of Operations 16

3.1 Block Diagram of AES-128 [38] . 22

3.2 SASEBO-GIII . 24

3.3 Block Diagram of DPA Against AES-128 25

3.4 10 Rounds of Inverse Session Key 34

3.5 15,000 Traces Max Correlation Vector for Byte 4 35

3.6 Vulnerable Samples within a Power Trace 36

4.1 Joye’s SPM Hardware Block Diagram 47

4.2 LD - Point Double Datapath Schematic 51

4.3 LD - Point Addition Datapath Schematic 53

5.1 32-bit FIFO Schematic . 59

5.2 Parallel m-bit Multiplier [40] . 60

5.3 233-bit Montgomery Multiplier RTL Schematic 64

5.4 233-bit Montgomery Multiplier RTL Datapath 65

xiii

Nomenclature

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

CPA Correlation Power Analysis

CPU Central Processing Unit

DoD Department of Defense

DPA Differential Power Analysis

EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

EEA Extended Euclidean Algorithm

EEPROM Electrically Erasable Programmable Read-only Memory

EM Electromagnetism

FIFO First in First out

FPGA Field Programmable Gate Array

FSM Finite State Machine

xiv

GCD Greatest Common Divisor

GF Galois Field

HDL Hardware Descriptive Language

HTTPS Hypertext Transfer Protocol Secure

IC Integrated Circuit

ISR Inverse Shift Row

JTAG Joint Test Action Group

L2R Left-to-Right

LD López-Dehab

LUT Look-up Table

MCC Micro-programmable Controller

NAF Non-Adjacent Form

NIST National Institute of Standards and Technology

RSA R. Rivest, A. Shamir, L. Adleman Cryptosystem

SCA Side-Channel Attack

SISO Serial in Serial out

SoC System-on-Chip

SPA Simple Power Analysis

SPM Scalar Point Multiplication

USB Universal Serial Bus

V 2X Vehicle-to-Everything

XOR Exclusive-OR

ZV P Zero-Value Point

xv

Chapter 1

Introduction

Due to the ever-rising amount of private information being transmitted from one

source to another over any communication network, maintaining security places the

tremendous burden on internal processing capabilities. Unsatisfying performance

from software results in the reign of hardware accelerators in applied cryptography.

This speed comes at a large risk of modern attacks against hardware to reveal

delicate intelligence.

1.1 Motivation

Currently, this technological decade is proving the pace of digital accessibility to

be swift and reliable at any cost. People push the indefinitely increasing traffic of

the internet with a wide range of activities. These can be businesses needing real-

time updates, banks’ secure transactions, and simple password protected accounts

used for social media by consumers. In the late 90s, people had minimal access to

internet by an expensive personal computer but today in 2017, most people who

are connected to the internet out of the current 46% of the worlds population [48],

have more than one device connected to the web. Also, within the last few years

the automotive industry is starting to penetrate the capabilities of the internet

through vehicle-to-everything (V2X) technologies with telematics systems. All

of these uses of the connected world need to have a reliable secure end-to-end

connection when navigating important information.

1

CHAPTER 1. INTRODUCTION

1.1.1 Transition of Software to Hardware Cryptography

Traditionally computers would run dedicated software algorithms to authenticate,

maintain confidentiality, and or hold integrity of data. Due to the pressure of

throughput constraints placed on the computers central processing unit (CPU),

physical capabilities of the CPU would further halt speed requests. To obtain

these desirable yet forced objectives, the large bit size cryptographic algorithms

needed to be implemented in hardware to reach benchmarks that could never be

obtained by software. Presently, the most efficient security measures will com-

pute the encryption/decryption or processing in hardware while dedicating all

the input output data transmissions and analysis in software which are the mod-

ern integrated platforms engineers see today. Hardware computes the public-key

cryptosystems with ease enabling users to provide private key exchanges and es-

tablishment, authentication, and more importantly, preserving their privacy.

As public-key cryptography offers many benefits, the algorithms used till 1985

were inefficient in hardware. The new concept of Elliptic Curve Cryptography

(ECC) offered the same level of symmetric security [34], while maintaining smaller

key sizes, memory usage, and power consumption. Naturally, the industry stan-

dard then directed its interest to ECC for most large high-speed, high security

measures.

Hardware accelerators are in high demand due to the custom, high-speed

throughput they can provide. As these sophisticated circuits have an unreach-

able performance merit compared to software, they possess a characteristic that

fingerprints the adept algorithms. Fraudulent acts on these circuits can result in

an extensive amount of valuables compromised.

1.1.2 Side-Channel Attacks

Side-Channel Attacks (SCAs) are attacks that gain delicate information acquired

from hardware implementations of cryptosystems. This important data leaked is

from any side-channel of the circuit as it encrypts/decrypts plaintext-ciphertext or

as the system alters keys states [17]. The results of a successful SCA can reveal the

2

CHAPTER 1. INTRODUCTION

architecture of the integrated circuit (IC), intermediate keys within cryptosystems,

and more frightening, can compromise the master key to recover all sensitive in-

put data. Opposed to traditional brute force, SCAs exploit the hardware’s nature

through timing, fault injection, power, and or electromagnetism (EM) radiation

analysis to acquire secret information in merely a fraction of the time.

To protect an IC properly against SCAs there is a broad background required

from different domains of embedded security. The central knowledge required

includes areas from hardware design for feasibility, functionality, and constraints,

a cryptographic algorithm aptitude, and the ability to perform a successful SCA.

1.2 Objective

The main objective of this thesis is to create an entire platform to develop and

test side-channel attacks against a wide range of cryptosystems available in hopes

to better protect the hardware at the highest level of operations within or outside

of the scale of the algorithms.

Specifically, the other objective of this thesis is to create a complete base ar-

chitecture of a secure scalar point multiplication (SPM) to open the development

of an integrated hardware accelerator to be applied in ECC protocols for SCA

investigations. The auxiliary support of a comprehensive SCA is also needed to

accurately design the custom hardware.

1.2.1 Solution

This thesis will include an in-depth explanation with experimental results, of a

successful side-channel attack to show the susceptibilities of cryptographic hard-

ware from multiple aspects. The weaknesses will be discovered to transfer the

applied knowledge to the architectural design on a public-key system.

The thesis will additionally include an examination of the entire architecture

of the targeted SPM on a field-programmable gate array (FPGA). This will also

3

CHAPTER 1. INTRODUCTION

include an implementation and analyses of two types of multipliers to be utilized

in the design.

1.3 Organization of Thesis

The progression of this thesis will focus on the process of implementing the algo-

rithms for a novel SPM architecture with an insight and practise of modern SCAs

for maximum security. The rest of the thesis is as follows.

Chapter 2 is the primitive mathematics required in elliptic curve (EC) oper-

ations that encompass the base for ECC. The algebraic basics of group laws and

finite fields are be addressed in this chapter. Provable security will be discussed

in respect to choosing a correct finite field and parameters. A discussion of the

problem that makes ECC strong will be explained along with the fundamental

operations of the point operations. A brief introduction of the statistics needed

for a SCA will also be explained.

Chapter 3 discusses, investigates, and performs a pertinent side-channel at-

tacks on an industrial practised cipher. Initially the chapter will brief the most

opportune SCAs to leverage the targeted hardware auspiciously. The main attacks

include timing, safe-error, and differential power attacks. Lastly, the chapter will

explain in great depth the exact process to break AES-128 providing a simple

method to break power dependant states within a cryptosystem.

Chapter 4 provides a literature survey of the most opportune designs to fight

SCAs. It outlines the proposed secure high-level architecture and why it will be

secure against the previously mentioned side-channel attacks. This level of the de-

sign is most susceptible to SCAs as it deciphers how the master key manipulates

the base point of the EC during the SPM to produce the product of a public-

private key system. Joye’s SP algorithm is designed in hardware and is broken

into the two optimized point operations. The datapath of the point doubling and

addition is displayed. Lastly, the newly high-level inversion algorithm is selected

4

CHAPTER 1. INTRODUCTION

and explained to translate to a hardware design.

Chapter 5 offers the low-level implementation of the proposed design. The

finite field multiplier is the most important design to be made as it needs to be op-

timized to the correct application of the overall hardware accelerator. This chapter

discusses two multipliers with a hardware throughput solution in detail and gives

an analysis of the cost, speed, and feasibly through simulations and synthesis.

Finally, an overview of the complete scalar point multiplication algorithm with a

hierarchy of operations that build this design.

Chapter 6 covers the overall contributions of this work as well as the future work

needed to progress the full development of the secure hardware implementation.

The future works include the remainder of the designed hardware in Verilog hard-

ware descriptive language (HDL) to ultimately be attacked to diagnose threats,

an implementation of a custom cryptographic library for hardware functionality

testing, and vulnerabilities solutions towards symmetrical key hardware ciphers.

5

Chapter 2

Mathematical Preliminaries

ECC naturally revolves around number theory, group laws, and finite fields arith-

metic. Accompanied by the elliptic curve discrete logarithm problem (ECDLP)

over a NIST approved, efficient elliptic curve is the formulae for a tenacious math-

ematical backbone when designing custom hardware.

Sections 2.1-2.3 are in reference to the books [39,40]. These textbooks provide a

descriptive yet concise way to understand the ECC algebra fundamentals with ease.

The last section will brief the small amount of formulae to grasp the numerical

concept of a particular SCA.

2.1 Number Theory

Given two integers x, y, and a positive integer n:

Definition 2.1.1: Congruence

x is congruent to y mod n if the difference of x− y is integrally divisible by n:

x ≡ y mod n

Property: x is congruent to y if and only if y mod n = x mod n.

Definition 2.1.2: Multiplicative Group

The set of elements x of Zn relatively prime with n, is the multiplicative group Z
∗

n:

6

CHAPTER 2. MATHEMATICAL PRELIMINARIES

Z
∗

n = {x ∈ Zn | gcd(x, n) = 1}, where Zn = {0, 1, 2, ..., n− 1}

Property: The Euler totient function Φ(n) is the number of elements in Z
∗

n.

Also, if Z∗

n has a generator, then Z
∗

n is said to be cyclic.

Definition 2.1.3: Multiplicative Inverse

In a multiplicative group where the operation is a product, if xy mod n = 1, then

y is the the multiplicative inverse of x:

y = x−1 mod n

Property: x has a multiplicative inverse if and only if gcd(x, n) = 1. If inverse

exist, it is unique.

Definition 2.1.4: Order of an Element

The order of element x ∈ Z
∗

n is the least positive integer r such that:

xr = 1mod n

Property: If the order of x is equal to the number Φ(n) of elements in Z
∗

n, then

x is said to be a generator or primitive element of Z∗

n.

2.2 Algebra

The following definitions are shown below defined over set G.

2.2.1 Group Law

Using the binary operator ∗, the group is G∗:

Definition 2.2.1.1: Associativity

7

CHAPTER 2. MATHEMATICAL PRELIMINARIES

x ∗ (y ∗ z) = (x ∗ y) ∗ z, ∀ x, y, z ∈ G

Definition 2.2.1.2: Commutativity

x ∗ y = y ∗ x, ∀ x, y ∈ G

Property: If group G
∗ has Commutativity, then group G

∗ is an Albanian Group.

Definition 2.2.1.3: Identity Element

There exists an element 0 ∈ G such:

a ∗ 0 = 0 ∗ a = a, ∀ a ∈ G

Definition 2.2.1.4: Inverse Element

For ∀ a ∈ G, a 6= 0, there exists a single element a−1 ∈ G such:

a ∗ a−1 = a−1 ∗ a = 0, ∀ a ∈ G

2.2.2 Finite Fields

Defined over field F with the binary operator ∗, finite fields possess the same

group definitions and properties previously mentioned in Section 2.2.1 [18] with

the addition of the following:

Definition 2.2.2.1: Associativity of Closure under Multiplication

Given a ∗ (b ∗ c) = c ∗ (a ∗ b) ∈ G:

a, b, c ∈ F

Definition 2.2.2.2: Distributivity

a ∗ (b ∗ c) = c ∗ (a ∗ b) = a ∗ bc = c ∗ ab, ∀ a, b, c ∈ F

8

CHAPTER 2. MATHEMATICAL PRELIMINARIES

Definition 2.2.2.3: Multiplicative Identity

There exists an element 1 ∈ F such:

a ∗ 1 = 1 ∗ a = a, ∀ a ∈ F

Definition 2.2.2.4: Multiplicative Inverse

For ∀ a ∈ F, a 6= 0, there exists a single element a−1 ∈ F such:

a ∗ a−1 = a−1 ∗ a = 1, ∀ a ∈ F

Finite fields are defined as F = Z
∗

n/f(x), where f(x) ∈ F. A finite field is a field

of finite length [41]. The field selection now rises as a design decision. Whether

to implement a prime or binary field over various ECs with different key sizes

is crucial. Changing any detail in the base preliminary design alters the entire

architecture dramatically.

2.3 Levels of Security Within Public & Private

Key Systems

All aspects of ECC applications are important to understand the capabilities of

specifics design to be integrated into realizable cryptosystems. For example, the

below table visually shows the sizable keys needed to provide 80, 112, 128, 192, &

256-bit levels of security.

Table 2.1: Achieving Standard Security - Keys

Symmetric Example Algorithm Prime Field Binary Field Usage

280 RSA-1024 |p| = 2192 m = 2163 Authentication

2112 3DES |p| = 2224 m = 2233 Authentication

2128 AES-128 |p| = 2256 m = 2283 Confidentiality

2192 AES-192 |p| = 2384 m = 2409 Confidentiality

2256 SHA-256 |p| = 2521 m = 2571 Integrity

9

CHAPTER 2. MATHEMATICAL PRELIMINARIES

The algorithms above need to establish their targeted security level which is

defined by the key length. Public-Key authentication can be developed by a dig-

ital signature algorithms such as the R. Rivest, A. Shamir, L. Adleman cipher

(RSA)-1024 used by certificate authorities (CA) or a key-establishment can be

implemented with EC Diffie Hellman (ECDH) key-exchange. Confidentiality is

acquired by a symmetrical block cipher such as the Advanced Encryption Stan-

dard (AES) which is the leading method in preventing man-in-the-middle attacks

by using a secret private-key. To gain integrity, or uniqueness, one needs to apply a

hashing function with large complexity [1]. All of these systems need specific sym-

metrical cipher key lengths to ensure brute-forced attacks are negligible. Below,

Equation (2.1) that displays the number of possibilities to be growing exponen-

tially.

y(x) = 2m−1 (2.1)

Clearly as m increases, computationally this calculation becomes impossible

past 128-bits [37]. Modern ECC applications can work with notorious protocols

like HyperText Transfer Protocol Secure (HTTPS) that readily use AES-128 im-

plementations [19] to provide key-exchanges.

Practising ECC begins by choosing a key length, field, basis, and an elliptic

curve. In the following subsections, those qualities will be considered.

2.3.1 Binary Field

A binary field can be defined as a field of which all 2m elements are of radix-2

within a specified finite field and in this case, a Galois field (GF (2m)). If f(x) is

an irreducible/primitive binary polynomial of size m-bit, F2m = GF (2m) - the field

is of degree m [39]. All elements within the field exhibit binary strings of length

m-bit.

GF (2m) = {a(x) | a(x) = am−1x
m−1 + ...+ a1x+ a0, xi ∈ GF (2)} (2.2)

Equation (2.2) shows the Galois binary field GF (2), to explicitly depict that

the field and basis will be modulo 2. Normally this is implicit quality. All opera-

tions will be completed under the binary polynomial basis within this field. For the

10

CHAPTER 2. MATHEMATICAL PRELIMINARIES

scope of this project, binary fields of 233 and 283-bit will be tested and compared.

Another type of field is a prime field. Prime field encompass a set of integers

of any prime p-radix, [0, ..., p−1]. All field calculations are computed over modulo

p similarly to 2m. These fields are typically implemented in software as they are

computationally faster compared to binary fields while using multiple CPU cores.

2.3.2 Polynomial Basis

Polynomial or standard bases, are specified by a primitive polynomial of highest

degree m. This polynomial acts as the irreducible string (am...a1a0) in hardware

of which all other element strings defined as (am−1...a1a0) are concealed. Hence,

all elements shown as a polynomial sum under the binary field’s standard basis

are shown below in Equation (2.3).

X =
m−1
∑

i=0

aix
i, ai ∈ GF (2m) (2.3)

Irreducible polynomials are chosen to be either trinomials or pentanomials de-

pending on the m-bit size of the key being used. An example is using 233 and

283-bit keys; respectively, they need a trinomial and pentanomial to encompass

the Galois field.

A primitive trinomial is defined as tm + tn + 1, where n is the lowest-degree

middle term. If the trinomial basis is not available, the pentanomial defined by

tm + tx + ty + tz + 1 has to be applied. Similarly x, y, z are the lowest-degree

successive terms. Using the pentanomial forces sacrifices of larger memory usage

(look-up table (LUT) on a FPGA), register complexion, and slower reduction com-

putations [8].

The subsequent field arithmetic includes typical polynomial multiplication and

addition modulo 2. Addition/subtraction in hardware will be simply be an m-bit

exclusive-OR (XOR) gate. Further operations are designed using a polynomial

basis. Hardware works end-to-end calculations in binary therefore introducing an-

other basis such as a normal basis is cumbersome when targeting a larger goal

11

CHAPTER 2. MATHEMATICAL PRELIMINARIES

such as side-channel attack analysis.

Normal bases are quite popular in hardware and software implemented ECC

protocols. Due to complexities with special class Type T, the normal basis proves

superiority in specific situations regarding fast squaring operations [20]. Due to

the difficulties testing and verifying hardware results using a normal basis, it will

not be further attempted.

2.3.3 Provable Security

In 2003, standards such as Brainpool, used in German passports, or the National

Security Agency (NSA) Suite B (2005) presently used in United States Depart-

ment of Defence (DoD) security clearance projects [49] were and still are the mod-

ern ECC standards. Within Suite B, the National Institute of Standards and

Technology (NIST) selected curves of which they have approved based on three

main categories of curve parameters, the elliptic curve discrete logarithm problem

(ECDLP) difficulty, and complex ECC security. A fantastic reference for a more

detailed analysis of the applied algebraic security is found from cyber-security ex-

perts, Safecurves’ website [47].

The most widely used curves that are the state-of-the-art are Montgomery,

Kobliz, and Edwards prime and binary curves [21]. These special curves are op-

timized to produce maximum efficiency over the elliptic curve operations. Any of

these EC equations would suffice as they are used in standards worldwide. How-

ever, Kobliz curve was selected due to accessible curve order, basis, and coefficients

that are open sourced by NIST [34]. The order and curve coefficients will be in

following section Elliptic Curves over GF (2m).

2.4 Elliptic Curves over GF (2m)

Secure ECC FPGA implementations are extremely valuable due to the need of

high-speed, low-cost, and rapid prototyping hardware, that can maintain high se-

curity asymmetric-key cryptography. Opposed to it’s predecessors, RSA and DSA,

12

CHAPTER 2. MATHEMATICAL PRELIMINARIES

ECC uses much smaller keys, lower power consumption, and smaller memory us-

age all while providing the same level of security in any public-key system. This

results in fewer clock cycles and reduced hardware overhead [45].

The security of ECC is based on the elliptic curve ECDLP; this allows ECC

applications to have a smaller key size compared to RSA because the ECDLP is

practically infeasible to solve versus the integer factorization problem [36].

2.4.1 Marginal Note on EC Discrete Logarithm Problem

The ECDLP is defined as the this following situation. Let an elliptic curve E

defined over the finite Field F, point P of order r and Q ∈ P , find k [0, 1, .., r− 1]

such that the scalar multiplication (SM) Q = kP .

The positive integer k is the discrete logarithm of Q base P , k = logPQ.

Research has been conducted to break the ECDLP and the most prominent attack

is the Pollard Rho method [22]. This method is improves the looping iteration-

based methods, but still tries to break this algebraic problem iteratively in 3
√

πm
2

cycles. As m, the bit size of 2m increases exponentially, this becomes exceedingly

unrealistic.

2.4.2 Curves and EC Group Theory

Below, Equation (2.4) is the pseudo-random curve; the NIST Kobliz curve (2.5) is

a special case of Equation (2.4) where b = 1. When b = 1, operations within the

finite field are highly simplified.

E : y2 + xy = x3 + ax2 + b, a, b ∈ GF (2m) (2.4)

EK : y2 + xy = x3 + ax2 + 1, a ∈ GF (2m) (2.5)

To begin computing ECC operations, the base point P (x, y) ∈ EK needs to be

selected. Many base points are applicable as long as they provide maximum order

with respect to the curve.

13

CHAPTER 2. MATHEMATICAL PRELIMINARIES

Figure 2.1: Kobliz Elliptic Curve - EK :y2 + xy = x3 + x2 + 1

To improve functionality of the EC, the cofactor should be minimized. The

finite number of points on the EC is n defined by Equation (2.6) where Fq is the

finite field.

Assuming a = 1, Equation (2.5), the cofactor f defined in Equation (2.7)

and graphically displayed in Figure 2.1. The order of the base point is r, which

multiplies point P to the theoretical point infinity. The order is a natural number

while infinity is depicted asO. The order is defined such that the minimum positive

prime integer r such that rP = O.

n = |#EK(Fq)− (q + 1)| ≥ 2
√
q (2.6)

f =
n

r
= 2 (2.7)

The identity element infinity implies P + O = P . Therefore P − P = O at

(x, 0) implies −P (x,−y). This is the modular compliment of base point P y-

coordinate. Other group laws within ECC are as follows. If x1 = x2 & y1 6= y2,

then y2 = x1 + y1 therefore P1 = −P2; if x1 of P1, then 2P1 = O. To add two

points on an elliptic curve E, one needs to check the simple condition of Q = P

or Q 6= P . If the points are equal, then point doubling follows.

14

CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.4.3 Point Operations

If P (x1, y1) = Q(x2, y2) ∈ EK , point doubling equations are needed to compute

2P (x3, y3) ∈ EK . Below in Equations (2.8), the set of Weierstrauss equations

defining point doubling in affine coordinates1. In Figure 2.2(a), a tangent line is

drawn from the point P that intersects the curve at point −R. Once reflected

upon the x-axis, the point 2P is found.

λ =
y1
x1

+ x1

x3 = λ2 + λ+ a

y3 = (x1 + x3)λ+ x3 + y1

(2.8)

(a) Point Doubling (b) Point Addition

Figure 2.2: Kobliz Elliptic Curve - Point Operations

When P (x1, y1) 6= Q(x2, y2) ∈ EK , point addition equations are needed to

compute P + Q = R(x3, y3) ∈ EK . Again, Weierstrauss equations defining point

addition in affine coordinates are Equations (2.9). In Figure 2.2(b), a tangent line

is drawn connecting P and Q that intersects the curve at point −R. Once reflected

upon the x-axis, the point R = P +Q is established.

λ =
y1 + y2
x1 + x2

x3 = λ2 + λ+ x1 + x2 + a

y3 = (x1 + x3)λ+ x3 + y1

(2.9)

1Affine coordinates are (x, y) which span an indefinite xy-plane. They are the realizable

coordinates compared to other methods like projective coordinates [8].

15

CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.4.4 ECC Overview and Vulnerability Insight

Understanding the necessary background of ECs is vital to recognize potential se-

curity threats on all levels. The hierarchy of ECC protocols is shown in Figure 2.3.

There are 3 sets of operations that build the echelon from the ground up. Firstly,

the multiplication and inversion methods under finite field arithmetic, second the

point operations, and lastly the scalar multiplication. As previously explained,

addition/subtraction is the same operation under GF (2) and is simply an XOR.

Each step in the hierarchy will be discussed in much greater detail while designing

the architecture in chapters 4 and 5.

Figure 2.3: ECC GF (2m) Hierarchy of Operations

The primitive operation exercising all lower operations is the scalar point mul-

tiplication. This SM is the pronounced task of popular protocols such as ECDH

or an EC digital signature algorithm (ECDSA). This makes this operation one of

the biggest security risks in ECC.

2.5 Statistical Analysis for Side-Channel Attacks

In reference to [38], the models and algorithms in this section are needed in differ-

ential power analysis (DPA) in order to carry out the analysis. These two concepts

are the essential basics behind DPA and are explained using the procedure of AES.

The Hamming Distance (HD) model is used to measure bus activity within the

16

CHAPTER 2. MATHEMATICAL PRELIMINARIES

selected device. This activity is directly related to the output power on the bus.

HD is the number of bit changes or bit inversions, in a binary word. With respect

to the next chapters analysis, the change in the output bit stream is the count 1’s

from logical XORs between two words and is calculated by the following Equation

(2.10). This count is defined as the Hamming Weight (HW).

DH =
k

∑

i=1

|xi − yi|, xi, yi ∈ [0, 1] (2.10)

This will give a precise digital average of any state with a system for further

statistical analysis. This simple yet powerful model will be used to map the hypo-

thetical power consumption values to the hypothetical intermediate values.

After the appropriate values are mapped, the resulting matrix must have a

strong correlation with the power traces previously captured at a specific key.

R =

∑n

i=1
(xi − x̄)(yi − ȳ)

√
∑n

i=1
(xi − x̄)2

∑n

i=1
(yi − ȳ)2

(2.11)

The correlation coefficient R, is calculated with the hypothetical power consump-

tion versus the traces.

17

Chapter 3

Side-Channel Attacks Against

Hardware

Side-Channel Attacks are invasive or non-invasive manoeuvres to exploit physical

leakages of information from hardware. Timing signals, register to register depen-

dencies, and physical power consumption are a few pieces of information that can

be easily obtained from hardware implementations through SCAs. Three rising

SCAs are the timing attacks, safe-error attacks, and differential power analysis.

These attacks all possess the ability to extract different pieces of information from

cryptographic accelerators.

“If you think technology can solve your security problems, then you don’t un-

derstand the problems and you don’t understand the technology” (B. Schneier,

2000).

In this chapter, the concepts of side-channel attacks will become clear and a

side-channel attack is performed on a notorious 128-bit encryption standard to

exploit it’s unique flaws. A description of steps needed to perform the attack on a

different system will be displayed.

18

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

3.1 Malicious Actions Against Hardware

As emerging techniques of attacks on hardware devices seem relentless, there are

three types that remain as the most pertinent issues. These attacks will be de-

scribed acknowledging physical weaknesses within the hardware and small issues

related to SPM algorithms.

3.1.1 Timing & Safe-Error Attacks

Timing attacks rely on the fact that operations on different inputs have a large

time variance [4]. This gives the attacker the non-invasive ability to measure the

time between computations of the attacked algorithm.

As shown in recent literature, [31, 32], timing attacks are sometimes focused

against software implemented cryptosystems. These attacks would rely on the

inter-process times through the state of the CPU’s cache as it reads and writes

data. This leads to leakage memory access patterns which can be made to make

data dependant look-up table and break the system at hand.

These methods are easily transferable to software-hardware SoC implementa-

tions as they rely on the CPU to transmit, receive, and store values in memory

while the hardware computes the encryption.

The timing attack employed against a hardware implementation needs a CPU

regularly communicating with it’s cache in order to effectively complete the hack.

Since the hardware implementation is not at the integration level, this attack will

be a candidate for future work as explained in Conclusions.

Safe-error attacks maliciously modify bits of a specific word in a specified regis-

ter [3] to determine if the registers are independent of one another. This invasively

shows the direct register dependencies that distinguishes parts or an entire algo-

rithm from another. This attack needs to physically tamper with the hardware

in order to falsify words, or to introduce a fake instruction [3] in the internal

19

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

arithmetic logic unit (ALU) to trigger a fault resulting in the adversary inquiring

sensitive information.

Safe-error attacks are categorized as computational safe-error (C Safe-error),

focused on tampering with the ALU or memory safe-error (M Safe-error) which

modifies CPU to memory address communication [6].

These attacks are primarily out of the scope of this work, but need to be

mentioned as they are a prominent SCA.

3.1.2 Zero Point Attacks

The Zero-Value Point (ZVP) attacks on ECC processors were introduced in [16].

The attackers choose a specific base point on an EC to produce the zero-value

coordinate in the scalar multiplication. The power consumption of the zero-value

multiplication will dramatically decreases therefore, exposing secret key distin-

guished by single observation of a set of power traces. This requires the attacker

to have physical access to the processor and or the CPU’s memory to tamper

with the embedded base point for the SPM. Having said that, this knowledge of

the ZVP power consumption can be applied with the help of another attack to

differentiate the key from intermediate scalar values.

3.1.3 Differential Power Analysis

Correlation power analysis (CPA) is widely notorious in the domains of embedded

security. CPA focuses on reading the leakage power from the encryption stage of

a device and relates it to the inputted data stream. This could be through elec-

tromagnetic radiation or passively sniffing output bus activity. It’s first derivative

was simple power analysis (SPA) which later became a shadow to it’s sibling, dif-

ferential power analysis (DPA) [24].

DPA was announced to the public in 1998 by researchers P. Kocher, J. Jaffe,

and B. Jun. It is a type of CPA where the attacker non-invasively reads the output

power consumption of the cryptographic processor to differentially compare those

20

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

results to potential state or key values. The assaulter then runs a series of statis-

tical processes giving the ability to learn inner-mechanisms or variables within the

core i.e. secret session and master keys.

This manoeuvre relies on the fact that internal switching of CMOS technology

consumes different amounts of power depending on different inputs’ operations.

This type of CPA would be a efficient, adaptable, and more importantly, a feasible

attack to a wide set of cryptosystems.

3.2 Novelty

The section titled Executing DPA on AES-128 is novel work that expands the

broader scope of the past research such as [25, 26, 33, 42] to detail exact algebraic

steps with explanation in order to successfully hack the hardware implementation

of AES-128. To the best of the authors knowledge, there is no research that out-

lines the detail of DPA to that of this thesis.

This detail is needed due to the elaborate steps and cryptographic insight of

where to attack and why. Understanding why the proposed attack works at a

hardware level is paramount for applying the practise for future research.

3.3 Executing DPA on AES-128

Due to the complexity of the AES and the fact that a brute-force attack is im-

possible in any life time, the encryption is viewed as an excellent option to handle

sensitive data for high-level security of 128-256 bits in reference to Table D.1.

In order to validate the security of data being processed through AES-128 in

electronic code book (ECB) configuration, the standard must be exposed to ex-

ploit it’s flaws to propose solutions to issues in both software and hardware. This

attack will uncover the vulnerability of the hardware implementation of the Ad-

vanced Encryption Standard to differential power analysis.

21

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

Figure 3.1: Block Diagram of AES-128 [38]

As a guideline for the process of AES, the block diagram of AES-128 is shown

above in Figure 3.1.

3.3.1 Experimental Setup

The three main hardware components of the attack include a cryptographic FPGA

evaluation board, an oscilloscope, and a computer. The Side-channel Attack Stan-

dard Evaluation Board (SASEBO)-GIII is the cryptographic research and devel-

opment board that is used to perform two tasks on two FPGAs. The data transfer

mitigation of plaintext and ciphertext are steered through Spartan-6, the con-

trolling FPGA, while Virtex-7, the processing FPGA, symmetrically encrypts the

plaintext from a master key established. The random data is manipulated in

software from a C# open-sourced script [50].

1. Cryptographic FPGA Evaluation Board: SASEBO-GIII

2. Oscilloscope: Agilent Technologies DSO-X 3012A at 50 M/s samples

22

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

3. Computer: Intel Xeon 64-bit 3.0 GHz Processor with 8 GB Memory

Below, in Figure 3.2, the board is labelled 1-6 and the labels are as follows. 1

output power pin of the hardware encryption bus, 2 output power pin that trig-

gers the oscilloscope set at 50 M/s samples to capture a power traces, 3 Virtex-7

FPGA, 4 Spartan-6 FPGA , and 5 & 6 is the Joint Test Action Group (JTAG)

port to program the the corresponding FPGAs electrically erasable programmable

read-only memory (EEPROM) with the combinational AES-128 implementation.

On the bottom left of the board, not labelled, is the universal standard bus

(USB) 2.0 that is the bi-lateral data transfer connection the communicates with

the Spartan-6.

The three main software components being used on are Xilinx ISE, Visual Stu-

dio, and Matlab.

Xilinx ISE is the design suite used to modify and compile Verilog HDL code

for the both FPGAs. The open-sourced HDL scripts were used from [50] since

the scope of this project is not to design a hardware implementation of AES-128

but rather exploit the standard’s flaws; Visual Studio is the environment of choice.

Matlab is utilized to develop the entire DPA attacking algorithm since it is tai-

lored to analyze and import very large matrices with ease to sort them accordingly.

The provided scripts from [50] are modified to establish a connection to the

evaluation board through the USB 2.0 and to display a graphical user interface

(GUI) that allows the user to view the hexadecimal values of the variables being

processed by the board; the GUI also allows the user to manipulate the AES-128

master key random 16-byte keys.

3.3.2 Framework Differential Power Analysis

The FPGA consumes characteristic power due to the exertion of words pushed

from the output pins of the Kintex-7 to the Spartan-6 as the switching activity

23

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

Figure 3.2: SASEBO-GIII

1 Output power encryption bus, 2 Output power trigger, 3 Virtex-7, 4 Spartan-6, and

5, 6 JTAG port to program EEPROMs

from internal signals changes.

The pin on the output of the encrypted text bus can be probed to read the

power traces. Each bit on the bus requires power in order to invert itself after each

clock cycle. This means that the power consumption is directly proportional to the

number of bit changes. Therefore, if one has a known state, ciphertext or plaintext,

and all hypothetical possibilities for a neighbouring state, they could can count the

number of bit changes between each hypothetical and the known state to corre-

late it to the power consumption in order to find out which trace it corresponds to.

The Kintex-7 performs an entire 1/10 rounds of AES-128 on 1 byte before

changing the values on the bus. This translates to investigating a whole round of

AES to get all hypothetical states at the neighbouring round. Due to the absence

of Mix-Columns, a GF (28) operation [41] in the 10th round, the simple choice to

use the ciphertext as the known value. Working backwards to get every hypothet-

ical value of station 9 labelled as ST9 as shown in Figure 3.3, will be executed in

next subsections. Using these values, the HD is obtained between the two refer-

24

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

Figure 3.3: Block Diagram of DPA Against AES-128

ence states and the correlation coefficient is used to match these distances to the

power consumption from their respective traces captured.

A momentous observation that enables this attack possible is that each byte of

the 16-byte key are independent of each other at each n-state and all operations

on them are essentially in parallel - this is true in software as well. Clearly this

is a large flaw in the algorithm and due to the nature of this attack there is no

byte-to-byte single state key dependencies, but rather state-to-state map below.

[B15(n), B14(n), ..., B0(n)] −→ [B15(n+ 1), B14(n+ 1), ..., B0(n+ 1)] (3.1)

There are 7 operations required in the developed algorithm and 3 of which

are inverse operations of the AES-128 algorithm. The other 4 are procedures to

develop hypothetical 1-byte keys, correlation coefficients, and lastly the inverse

sessional key.

Figure 3.3 above should be used in tangent with Figure 3.1 to understand the

concepts discussed and the operations that follow. To begin, the known 128-bit

25

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

ciphertext (CT) is split into 16 bytes as seen below.

CT =
(

Byte1 Byte2 Byte15 Byte16

CT1 CT2 ... CT15 CT16

)

3.3.3 Generating Hypothetical Keys

Working backwards, the first operation encountered is the Add-Round Key. Since

the 10th round sessional key is unknown and what is being sought, all 0-255 pos-

sibilities for each byte is generated below. All of the AES operations and the

correlations are computed on bytes, not bits, which is why it is sufficient to cap-

ture every hypothetical value of each byte rather than each bit of the possible

128-bit key.

Hyp.Keys =























Byte1

00000000

00000001

00000010
...

11111111













































Byte2

00000000

00000001

00000010
...

11111111























. . .























Byte16

00000000

00000001

00000010
...

11111111























3.3.4 Inverse Add-Round Key & Shift Row

The add-round key operation takes the input data and XORs it with the sessional

key in order to get the ciphertext output. The hypothetical keys and the ciphertext

are XORd in order to get the input in Equation (3.2).

A = CT ⊕Key ∈ [0, 1] (3.2)

Each ciphertext byte is XORd with its corresponding 256 possibilities of the

key. In other words, the first byte of the ciphertext is XORd with every guess in

byte one of the key and the rest of the bytes follow the same operation.

26

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

A =

































































Byte1






















CT1

CT1

CT1

...

CT1























⊕























00000000

00000001

00000010
...

11111111























































































































































Byte2






















CT2

CT2

CT2

...

CT2























⊕























00000000

00000001

00000010
...

11111111























































































. . .

































































Byte16






















CT16

CT16

CT16

...

CT16























⊕























00000000

00000001

00000010
...

11111111























































































To simplify the following steps, we name this matrix as A, which has the following

configuration.

A =























Byte1

A1[1]

A1[2]

A1[3]
...

A1[256]













































Byte2

A2[1]

A2[2]

A2[3]
...

A2[256]























. . .























Byte16

A16[1]

A16[2]

A16[3]
...

A16[256]























To perform the shift row operation, the 16 bytes of data are rearranged in a 4x4

matrix. Each row has a shift left operation of value 0, 1, 2, and 3, respectively. In

order to do the inverse shift row (ISR), Mat A is rearranged in a 4x4 formation

and each row is shifted right by 0, 1, 2, and 3.

27

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE











































































A1[1]
...

A1[256]





















A5[1]
...

A5[256]





















A9[1]
...

A9[256]





















A13[1]
...

A13[256]





















A2[1]
...

A2[256]





















A6[1]
...

A6[256]





















A10[1]
...

A10[256]





















A14[1]
...

A14[256]





















A3[1]
...

A3[256]





















A7[1]
...

A7[256]





















A11[1]
...

A11[256]





















A15[1]
...

A15[256]





















A4[1]
...

A4[256]





















A8[1]
...

A8[256]





















A12[1]
...

A12[256]





















A16[1]
...

A16[256]











































































ISR


y

B =











































































A1[1]
...

A1[256]





















A5[1]
...

A5[256]





















A9[1]
...

A9[256]





















A13[1]
...

A13[256]





















A14[1]
...

A14[256]





















A2[1]
...

A2[256]





















A6[1]
...

A6[256]





















A10[1]
...

A10[256]





















A11[1]
...

A11[256]





















A15[1]
...

A15[256]





















A3[1]
...

A3[256]





















A7[1]
...

A7[256]





















A8[1]
...

A8[256]





















A12[1]
...

A12[256]





















A16[1]
...

A16[256]





















A4[1]
...

A4[256]











































































To simplify the following steps, we name this matrix as B, which has the following

configuration.

28

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

B =











































































B1[1]
...

B1[256]





















B5[1]
...

B5[256]





















B9[1]
...

B9[256]





















B13[1]
...

B13[256]





















B2[1]
...

B2[256]





















B6[1]
...

B6[256]





















B10[1]
...

B10[256]





















B14[1]
...

B14[256]





















B3[1]
...

B3[256]





















B7[1]
...

B7[256]





















B11[1]
...

B11[256]





















B15[1]
...

B15[256]





















B4[1]
...

B4[256]





















B8[1]
...

B8[256]





















B12[1]
...

B12[256]





















B16[1]
...

B16[256]











































































3.3.5 Inverse S-Box

The S-box takes each byte of data and maps them to a given well-established

value. The inverse S-box is a standard 16x16 array that simply maps the inverse

output of AES’s Substitute Box operation. It takes the hex or decimal value of

each byte and exchanges it with a new value. It accomplishes this by selecting the

most significant 4 bits of the code word of each byte as the row of the standard

array and the least significant 4 bits as the column. Every byte in the Mat B is

remapped through the developed inverse S-box in order to get the new Mat C.

29

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

C =











































































sbox−1[B1[1]]
...

sbox−1[B1[256]]





















sbox−1[B5[1]]
...

sbox−1[B5[256]]





















sbox−1[B9[1]]
...

sbox−1[B9[256]]





















sbox−1[B13[1]]
...

sbox−1[B13[256]]





















sbox−1[B2[1]]
...

sbox−1[B2[256]]





















sbox−1[B6[1]]
...

sbox−1[B6[256]]





















sbox−1[B10[1]]
...

sbox−1[B10[256]]





















sbox−1[B14[1]]
...

sbox−1[B14[256]]





















sbox−1[B3[1]]
...

sbox−1[B3[256]]





















sbox−1[B7[1]]
...

sbox−1[B7[256]]





















sbox−1[B11[1]]
...

sbox−1[B11[256]]





















sbox−1[B15[1]]
...

sbox−1[B15[256]]





















sbox−1[B4[1]]
...

sbox−1[B4[256]]





















sbox−1[B8[1]]
...

sbox−1[B8[256]]





















sbox−1[B12[1]]
...

sbox−1[B12[256]]





















sbox−1[B16[1]]
...

sbox−1[B16[256]]











































































To simplify the following steps, we name this new matrix as C, which has the

following configuration.

C =











































































C1[1]
...

C1[256]





















C5[1]
...

C5[256]





















C9[1]
...

C9[256]





















C13[1]
...

C13[256]





















C2[1]
...

C2[256]





















C6[1]
...

C6[256]





















C10[1]
...

C10[256]





















C14[1]
...

C14[256]





















C3[1]
...

C3[256]





















C7[1]
...

C7[256]





















C11[1]
...

C11[256]





















C15[1]
...

C15[256]





















C4[1]
...

C4[256]





















C8[1]
...

C8[256]





















C12[1]
...

C12[256]





















C16[1]
...

C16[256]











































































30

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

3.3.6 Hamming Distance

At this point, Mat C corresponds to every possible value/state for each byte of

data at ST9, reference Figure 3.3 for the known ciphertext. Now the hamming

distance between each of these values and their corresponding ciphertext must be

calculated in order to get the number of bit changes on the bus between ST9 and

the ciphertext. Equation (2.10) is applied to calculate the HD. In order to get the

HD, all 256 values of byte 1 in Mat C are XORd with the first byte of ciphertext.

This will be repeated for all 16 bytes.

I =

































































Byte1






















C1[1]

C1[2]

C1[3]
...

C1[256]























⊕























CT [1]

CT [1]

CT [1]
...

CT [1]























































































































































Byte2






















C2[1]

C2[2]

C2[3]
...

C2[256]























⊕























CT [2]

CT [2]

CT [2]
...

CT [2]























































































. . .

































































Byte16






















C16[1]

C16[2]

C16[3]
...

C16[256]























⊕























CT [16]

CT [16]

CT [16]
...

CT [16]























































































To simplify the following steps, we name this matrix as I, which has the following

configuration.

I =























Byte1

I1[1]

I1[2]

I1[3]
...

I1[256]













































Byte2

I2[1]

I2[2]

I2[3]
...

I2[256]























. . .























Byte16

I16[1]

I16[2]

I16[3]
...

I16[256]























31

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

Using HW model described in the previous chapter, the count of the number of

bit changes is shown.

F =























Byte1

HW (I1[1])

HW (I1[2])

HW (I1[3])
...

HW (I1[256])













































Byte2

HW (I2[1])

HW (I2[2])

HW (I2[3])
...

HW (I2[256])























. . .























Byte16

HW (I16[1])

HW (I16[2])

HW (I16[3])
...

HW (I16[256])























In conclusion, the 256 hypothetical power consumption values for each byte is left

as seen in Mat F below. This entire process is repeated for every trace that is

captured.

F =























Byte1

F1[1]

F1[2]

F1[3]
...

F1[256]













































Byte2

F2[1]

F2[2]

F2[3]
...

F2[256]























. . .























Byte16

F16[1]

F16[2]

F16[3]
...

F16[256]























3.3.7 Correlation Coefficient

The columns of Mat F below are correlated against each sample point value’s

columns of the power traces. This is the reason why having a precise trigger

on the oscilloscope that occurs on same sample of the trace is important. The

waveforms must overlap over each sample to get the true bus change in power

consumption for the highest correlation. This correlation is repeated for all 256

hypothetical ST9 values.

32

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

The notation following is FTrace,ColumnF [Row of F] and TTraceNumber[Sample

Number]. These matrices are built for an example byte 1 of 16.

F1[1] =























F1,1[1]

F2,1[1]

F3,1[1]
...

Fn,1[1]













































T1[1] T1[2] T1[3] . . . T1[k]

T2[1] T2[2] T2[3] . . . T2[k]

T3[1] T3[2] T3[3] . . . T3[k]
...

...
...

. . .
...

Tn[1] Tn[2] Tn[3] . . . Tn[k]























F1[2] =























F1,1[2]

F2,1[2]

F3,1[2]
...

Fn,1[2]













































T1[1] T1[2] T1[3] . . . T1[k]

T2[1] T2[2] T2[3] . . . T2[k]

T3[1] T3[2] T3[3] . . . T3[k]
...

...
...

. . .
...

Tn[1] Tn[2] Tn[3] . . . Tn[k]























...

F1[256] =























F1,1[256]

F2,1[256]

F3,1[256]
...

Fn,1[256]













































T1[1] T1[2] T1[3] . . . T1[k]

T2[1] T2[2] T2[3] . . . T2[k]

T3[1] T3[2] T3[3] . . . T3[k]
...

...
...

. . .
...

Tn[1] Tn[2] Tn[3] . . . Tn[k]























The highest correlation among these hypothetical ST9 values will be the sessional

key result for the byte under analysis. Therefore, if the highest correlation occurs

using the F [41] values, that means that the sessional key has a value of 40−1, due

to the index of Matlab. This is because the key guesses were initially XORd into

the ciphertext with the values of 0-255 so in the end, the index of the successful

byte actually corresponds to the key value. Again, it is stressed that this algorithm

done for all 16 bytes of the key as they are independent of each other.

33

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

Exp.Keys =























Byte1

00000000

00000001

00000010
...

11111111













































Byte2

00000000

00000001

00000010
...

11111111























. . .























Byte16

00000000

00000001

00000010
...

11111111























3.3.8 Inverse Sessional Round Key

The result from the correlation above is the 10th round sessional key since we are

attacking the 10th round. This means that the sessional key needs to be an inverse

of 10 rounds in order to get the master key. The Python inverse sessional key open-

sourced script [51] for a given DPA result is used to provide the master key. This

can be done as the sessional key generator is predictable and easily calculated with

a given input string. The figure below shows the reverse operation on a 16-byte

string assuming that the sessional key DPA result is: ‘00 01 02 . . . 0F ’. The master

key is highlighted along with the expected DPA result both in hexadecimal.

Figure 3.4: 10 Rounds of Inverse Session Key

3.3.9 Results & Analysis of Vulnerabilities

The results of the DPA algorithm were previously discussed as the 10th sessional

key within AES-128. The last matrix of the algorithm gives a matrix of correlation

that shows the maximum of correlation for each guess from 0-255. When this max

correlation vector for each byte is illustrated, a graph is obtained in resemblance

34

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

Figure 3.5: 15,000 Traces Max Correlation Vector for Byte 4

to Figure 3.5. As an example, byte 4 will be analyzed.

Clearly there is a spike in correlation of the normalized vector to the traces

that is graphed in Figure 3.5. The spike has an index of 128, but since Matlab

indexes from 1 instead of 0, the proper first byte of the 10th round sessional key is

(127)10 or (7F)16. This matches the same key needed in Figure 3.4 to recover the

master key’s first byte ‘03’.

All bytes were broken using the same correlation matrices for their respective

bytes and are all visually shown for 15,000 traces in Appendix - 16-Byte Key DPA

Results. Of the 50,000 samples acquired, only the last 15,000 are used to free at

least a quarter of memory in the computer during the DPA calculations - this

greatly accelerates the attack.

The threshold of the amount of data needed to break the cipher was tested and

it was determined that approximately 8,000 traces are required. For clarity, the

data given is at 15,000 traces.

On a 3 GHz processor, it takes 50 minutes to obtain every set of 2,000 traces,

35

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

ciphertext data, and execute the DPA algorithm with the inverse sessional script.

After all of the data is imported to the computer, the process takes approximately

7 hours to run. These are extremely noble results compared to the only other

method to break AES-128 that takes billions of years.

The vulnerability analysis of where the power traces are susceptible to the DPA

attack is visually shown below in Figure 3.6. This is done by referencing back to

any power trace’s sample with an offset with respect to the key found in the DPA

algorithm.

Figure 3.6: Vulnerable Samples within a Power Trace

From the graph displayed above, the 9th and 10th round of the encryption shows

the last 15,000 samples that were the samples being attacked. The 1-16 index at

the bottom of the figure show the 16-byte key found and where exactly the trace

had a very high correlation with respect to the output data. The red stars on the

graph correspond to the sample values from 35,000-50,000, the samples of AES-128

in it’s final round.

36

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

3.3.10 Hardware Solutions Against DPA

Public and private-key systems in modern day have large risks to mitigate with

very few hardware implemented cost effective solutions. Examples of these solu-

tions can be categorized in two types. They are creating new logic families or

implementing an external circuit to work as a voltage-current buffer for the en-

crypting core eliminating the sensitive side channel on the system-level entirely.

Creating new logic families [27–29] such as MOS Current Mode Logic, Sense

Amplifier Based Logic, or Wave Dynamic Differential Logic, for encryption cores is

unrealistic and non-efficient since every logical component of the chip would need

to be re-designed and calibrated accordingly. The high silicon area and power

overhead required for these methods do not justify the implementation cost of re-

placing all gates in the hardware realization.

External circuits are a sensible solution but they carry the burden of a large

power consumption and have heavily bottlenecked throughput restraints in mod-

ern systems that need to be achieved.

In literature one of the most recognized and cited circuit is [30], a three-stage

switched capacitor current equalizer. Overbearing drawbacks of this circuit is

that it has a +44% power overhead and −100% degradation throughput efficiency.

This popular circuit does protect against a DPA over 10 x 106 power traces, but

it compromises strict performance standards that need to be met in any hardware

accelerator. Even an application specific integrated circuit (ASIC) on-board solu-

tion on the same encryption die struggle give the reliable results.

The risks against application specific hardware solutions seem to be endless

while more threats arise and hardware solutions generally cannot deliver results.

In the last chapter, other potential hardware-software solutions are proposed. The

scope of this work will enable future works in realizable solutions against present

and future threats. Understanding the inner workings of the specific algorithm,

in this case AES-128, along with the way the ASIC or FPGA execute operations

37

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

are the most important preliminaries to patch this vulnerabilities to prevent any

associated threats.

3.4 Related Applications

After understanding this attack on a complex symmetric cipher, it seems daunting

to yield transferable skills however, it is not since the same rules apply. Whatever

part of an algorithm that can release sensitive data in which any of the operations

at the desired state consume unique power can be broken using the same general

method. The method is as follows.

Generalized DPA Attack

1. Determine the closest exterior state, data in or out and byte-to-byte inde-

pendence.

2. Determine the desired interior state to be attacked.

3. Generate hypothetical values and or keys.

4. Calculate hamming distance from exterior state to interior state.

5. Calculate the correlation between hamming distance matrix versus the out-

put power consumption.

6. Acquire interior state information.

In the case of a ECC SPM multiplication, the process requires knowledge of

the present SPM algorithm being executed. As an example to analyze potential

threats, the Double-and-Add method, the founding SPM is shown in Algorithm 1.

When looking at the main operations of this loop, which is completely key

dependant, there are only two operations which dictate the final result on register

R2. Line 4 leaks a large amount of power since there is a point addition operation

stating that the current state of the binary key string is a 1. While if the key’s index

bit is a 0, point doubling, occurring on Line 6, will always consumes less power

38

CHAPTER 3. SIDE-CHANNEL ATTACKS AGAINST HARDWARE

Algorithm 1 Double-and-Add Scalar Multiplication

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ [0, 1],

Output: kP ∈ E

1: R1 = P ; R2 = 0;

2: for i = 0 to h− 1 do

3: if ki = 1 then

4: R2 = R1 +R2;

5: else

6: R1 = 2R1;

7: end if

8: end for

9: The final value is R2 = kP

compared with its counterpart. This may seem trivial, but after understanding

that point operations implemented in hardware consume distinctive amounts of

power, the volatile results become highly evident [25].

39

Chapter 4

Secure High-Level Architecture

The high-level design of any ECC processor determines whether or not it is vulner-

able to various SCAs. Though they all have risks, using proper techniques to lower

power consumption differences such as different coordinates over a finite plane and

a protected, highly regular SPM can ensure the safety of the unsuspecting hard-

ware.

In this chapter the point operations, proposed inverse operation, and scalar

point algorithms will be examined. A literature review is also completed to estab-

lish the most efficient designs that attempts to secure their respective architectures.

4.1 Previous Research & Review

There are numerous architectures of accelerated cryptographic processors for many

different applications. The usual top figures of merit include clock speed (MHz),

area, speed of SPM (s), small countermeasures against SCAs, and optimized low-

level multiplication and inversion operations. Typically the combination of efficient

algorithms and a well organized architecture present the best solutions for their

individual objectives.

The finite field layer of the hardware is the most influential decision in the entire

design [5]. This is due to the fact that the squaring and the inversion operations

within the layer require both major aspect of the multiplier, the multiplication

40

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

and reduction stages. Table 4.1 shows the recent, most prominent processors.

These processors from [5] are controlled by a finite state machine (FSM) or

a micro-programmable controller (MCC). Implementing a state driven design on

all levels is necessary. Next, FPGAs are the hardware platform of choice due to

the reconfigurability, modularity, and testing purposes to increase or decrease key

lengths. Clearly the binary polynomial basis fields are the most popular from

effortless transition to hardware. Key sizes range from 163-571 bits - the most

popular is 233-bit. The product of choosing this key is that the primitive tri-

nomial simplifies multiplication based operations at the finite field layer of the

architecture and will be further discussed in the next chapter, Low-Level Multi-

plier Implementation.

An inversion in the finite field layer is not performance hindering arithmetic

if the optimized coordinates for hardware are used. The coordinate system that

is the most popular is the projective coordinate system as seen in the above re-

view, specifically López-Dehab coordinates [5, 8, 11, 12]. When employing projec-

tive coordinates, it replaces all inversions within the point operations with added

multiplications over the new three dimensional plane. Therefore, if projective co-

ordinates are employed, the field inversion is only computed once after the SPM

is completed - this is so that the calculation can be realized in the original two

dimensional plane.

If Affine coordinates are used, the inversion operation is an extremely costly

low-level operation; the inversion when m ≥ 128 requires approximately 7 mul-

tipliers [39]. Below in Table 4.2, the amount of hardware operations needed to

compute the large point operation in GF (2m) [39].

41

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

T
ab

le
4.
1:

K
ey
n
ot
e
E
C
C

P
ro
ce
ss
or
s
in

L
it
er
at
u
re

R
ef
.

P
la
tf
or
m

C
on

tr
ol

B
as
is

B
it

C
lk

(M
H
z)

A
re
a
(S
li
ce
s)

S
M
(s
)

S
M

C
o
or
d
in
at
e

M
u
lt
./
In
v
.

P
ro
te
ct
ed

[5
]

[8
]

X
C
X
2V

60
00

F
S
M

B
in
.
P
ol
y.

16
3

93
.3

16
18
8

34
.1
1

L
óp

ez
-D

eh
ab

L
D
-P
ro
j.

M
S
D

S
P
A

&
T
im

in
g

[9
]

X
C
2V

80
00
4

-
B
in
.
P
ol
y.

23
3

62
.5

15
36
5

7.
2

M
on

tg
om

er
y

P
ro
je
ct
iv
e

K
ar
at
su
b
a
m
u
lt
.

S
P
A

&
T
im

in
g

[1
0]

X
C
X
5V

L
X
50

F
S
M

B
in
.
P
ol
y.

23
3

93
.3

30
73

-
B
in
ar
y
m
et
h
o
d

A
ffi
n
e

R
2L

S
h
if
t
m
u
lt
.

-

[1
1]

X
C
4V

F
X
10
0

F
S
M

B
in
.
P
ol
y.

57
1

93
.3

12
89
4

22
4

M
on

tg
om

er
y

L
D
-P
ro
j.

In
te
rl
ea
ve
d
m
u
lt
.

-

[1
2]

A
lt
er
a
S
tr
at
ix

II
F
S
M
/M

C
C

B
in
ar
y
P
ol
y.

16
3

16
3

14
28
0

11
.7
1

R
2L

,
L
2R

N
A
F

L
D
-P
ro
j.

It
oh

-T
su
ji
i
in
v
.

S
P
A

&
T
im

in
g

[1
3]

V
ir
te
x
-4

F
S
M

B
in
.
P
ol
y.

16
3

10
0

35
28

10
70

B
in
ar
y
m
et
h
o
d

A
ffi
n
e

In
te
rl
ea
ve
d
m
u
lt
.

S
P
A

&
T
im

in
g

[1
4]

V
ir
te
x
-6

M
C
C

P
ri
m
e

25
6

60
20
.8
k

6.
1

R
2L

,
L
2R

N
A
F

A
ffi
n
e
&

P
ro
j.

In
te
rl
ea
ve
d
m
u
lt
.

S
P
A

&
T
im

in
g
&

F
au

lt

[1
5]

B
al
sa

F
S
M

B
in
.
P
ol
y.

23
3

-
0.
80
25
m
m

2
91
9

M
on

tg
om

er
y

A
ffi
n
e

K
ar
at
su
b
a
m
u
lt
.

S
P
A

&
T
im

in
g

42

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

Table 4.2: Hardware Costs of Point Addition

Hardware Operation Affine (x,y) Projective (X,Y,Z)

Inversion 2 log k + 1 1

Multiplication 2 log k + 4 6 log k + 10

Cost: m ≥ 128 (I : M) 1:624 1:241

At last, the SPM and security will be reviewed. The scalar point multiplica-

tion’s speed is calculated on how long a design takes to complete a single m-bit

SPM with respective to the frequency of the clock.

Among the listed designs, the Binary Recoding Method reduces the number

of point additions recoding highest degree of polynomial a(x) = am−1x
m−1 + ...+

a1x + a0, xi ∈ GF (2) [10, 17]. The Right-to-Left & Left-to-Right Non-Adjacent

Form (NAF) further reduces point additions with precomputed LUTs in mem-

ory [12,14]. Both are computationally faster designs compared to the Double-and-

Add (Algorithm 1) by reducing the amount of point additions by adding a single

point double operation. The NAF form algorithm is a derivative of the Recoding

method, sharing the same SPM qualities. Algorithm 1 and the Recoding method

are equally unprotected against SCAs - these SPMs are never suitable when ex-

plicitly fighting SCAs.

The most attractive SPM is the Montgomery ladder method. Montgomery’s

algorithm is one of the fastest SM algorithm in practise due to the unique math-

ematical qualities it holds. This makes it the pinnacle of success for recent high-

speed architectures. Although this algorithm simplifies SPMs due to it’s highly-

regular complexion, it is vastly susceptible to modern timing and differential power

attacks [3, 35]. Though these reviewed designs state their resistance to certain

SCAs, they are not secure against the previous chapter’s DPA attacking method

especially if paired with a timing or ZVP attack1. The importance of the SPM

algorithm and point operations dictate the overall security of the processor.

1Since zero-value point attacks require the attacker to manipulate the base point pre-

programmed in the hardware’s memory making it unrealistic to test at this point in this research.

43

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

4.2 Secure Scalar Point Multiplication

Since it’s discovery in 1987, P. L. Montgomery’s ladder [6] has been the staple of

hardware designs as the optimized and arguably, the leading dynamic SPM algo-

rithm in ECC. What the ladder makes up for in pure computational speed and

regularity, it lacks in immunity from contemporary SCAs.

In 2009, M. Joye proposed a m-ary generalization to the Montgomery ladder

which would pave the way for a SCA resistant SPM algorithm [3].

This section will address the security of the two elite, left-to-right (L2R) SPM

algorithms with respect to timing and differential power attacks. Practising accel-

erators initiate countless SPMs in a single ECC protocol and the biggest security

vulnerability is the SPM gateway operation.

4.2.1 Montgomery’s Algorithm

The high-speed Algorithm 2 is Montgomery’s laddering method. It is heavily

dynamic and being used as the leading SPM without question. It’s vital invari-

ant property P = Y − X in every state leads to these keynote qualities. Mont-

gomery’s algorithm computes both (x, y) coordinates in any system i.e. affine or

projective, only depending on present and previous x coordinates mathematically

proven from [2]. Also, (x, y) coordinates of the next point on the curve can be

computed in parallel giving the option of a semi-pipelined design as shown in [7,9].

The highly-regular essence of this popular SM has been thought to be secure

because of its invariant states which protects it against simple power analysis and

safe-error attacks [6]. The architecture of Montgomery’s ladder is extensively ex-

plored in [7]. Advancements in malicious attacks against security cores make this

algorithm no longer safe.

At first glance of the loop on Lines 2-8, one can see regularity in both states.

However, output buses from registers X and Y carry different operations on both

44

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

Algorithm 2 Montgomery Scalar Multiplication [2]

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ [0, 1], kh−1 = 1

Output: kP ∈ E

1: Int: X = P ; Y = 2P ;

2: for i = h− 2 down to 0 do

3: if ki = 1 then

4: X = X + Y ; Y = 2Y ;

5: else

6: Y = X + Y ; X = 2X;

7: end if

8: end for

9: The final value is X = kP

states, Lines 4 & 6, enabling DPA the obvious measurement to release the loop

characteristics.

These characteristics, in reference to Generalized DPA Attack last chapter,

are susceptible to the correlation of generated hypothetical power with the ac-

tual output power of main registers X and Y . Since the targeted interior state is

known, the HD needs to be calculated from the output data to the hypothetical

scalars/keys once the algorithm finishes a single m-bit SPM. Below is a hypothet-

ical situation to break a key establishment with a DPA attack.

Attack Against a Key Establishment

To find the public-private key (scalar k) during a key establishment, successive

runs of 5-25 x 103 random scalars fed into the SPM system will calculate random

output points. The HD between the output scalars, of the output points, and hy-

pothetical power consumption will be calculated. This matrix will be correlated,

Equation (2.11), to the output power consumption of the overall output bus and

registers X and Y . Knowing the public base point P , the private key will be

exposed.

The attacker needs to be aware that each bit of the scalar is dependant on

45

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

previously indexed bits therefore all bits need to be analyzed as one set of data

which is the opposite compared to AES-128 where each byte is independent. DPA

paired with a timing attack focused on output register activity would breakdown

the movement of data from X ↔ Y grounding any system using the Montgomery

ladder to lose it’s overall authenticity.

4.2.2 Joye’s Algorithm with Hardware Design

Being a more secure byproduct of Montgomery’s ladder, Joye’s SPM, Algorithm

3, possesses many of the great qualities of Algorithm 2. Some of these qualities

include regularity, high-speed, and low hardware cost. However it does not have

the invariant quality of the ladder. The pertinent difference between them is that

register X is active twice sequentially in every state of the SPM loop and there is a

point addition correction on register X in the final step. This makes the algorithm

regular, but not invariant.

Algorithm 3 Joye’s Scalar Point Multiplication (L2R) [3]

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ [0, 1],

kh−1 = 1

Output: kP ∈ E

1: Int: X = (kh−2 + 1)P ; Y = 2P ;

2: for i = h− 3 down to 0 do

3: if ki = 0 then

4: X = 2X; X = X + P ;

5: else

6: X = 2X; X = X + Y ;

7: end if

8: end for

9: X = X + P ;

10: The final value is X = kP

The fact that there is only one register that holds sensitive information makes

it impossible to differentiate between state 1, Line 4 or state 2, Line 6. The 1-bit

46

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

ki register, the ith index of the scalar k, dictates the internal and external power

consumed by hardware just like Montgomery’s ladder. The difference is that in-

ternal register X acts as the buffer to the external power consumption rendering

a DPA attack obsolete.

If a timing attack were to be employed, it would not be able to characterize

any difference from the ki’s behaviour since both sequential commands realized

in hardware are blocking statements on the same register that result in identical

activity compared to the next i+ 1 loop index. Completed in a single clock cycle

plus a minuscule logic delay, both state 1 and 2 are identical. If it was possible

to deploy a fault resulting word or fake operation into the ALU to affect register

X, the attacker again would not be able to predict whether the first or second

blocking statement in either state 1 or 2 was executed with full certainty.

Figure 4.1: Joye’s SPM Hardware Block Diagram

Figure 4.1 shows the hardware concept design of Joye’s algorithm with mini-

mal complexity to lower the area. The synchronous control unit includes a counter

register (count), initialization signal/flag (int), and 1-bit ki key register.

If int = 1 by a reset (rst) which resets the internal ith index, the hardware will

initialize the registers X = (kh−2 + 1)P and Y = 2P .

In next clock cycle, int = 0 will enable the counter and Pt.Add where count

will increment while it jumps between states 1 and 2 of Algorithm 3 on the positive

47

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

edge of the clock until reaching (m − 2 + 1). After the final cycle concludes, the

next clock will compute the correction on register X. Finally, the output will be

available on the following clock cycle in register X = kP .

4.2.3 Comparison

The Table 4.3 below shows a comparison of the both Algorithm 2 and Algorithm

3 and how they negate the three major SCAs discussed.

Table 4.3: Comparison of SPM SCA Protection

Montgomery’s Algorithm Joye’s Algorithm

Invariant-Regular Regular

NOT resistant to Timing Attacks Resistant to Timing Attacks

NOT resistant to C, M Safe-Error Attacks Resistant to C, M Safe-Error Attacks

NOT resistant to Power Analysis Resistant to Power Analysis

Evidently, Montgomery’s algorithm has no resistance to the SCA attacks out-

lined while Joye’s is fortified. There are other SCAs that both algorithms are not

fully secure against, for example, M safe-error fault attacks [35]. Certainly Joye’s

algorithm is not as computationally fast as Montgomery’s due to its underlying

mathematics, but when the cryptographic cores main purpose is to maintain au-

thenticity, Joye’s would be more suitable in small applications requiring 128-bit

security.

Ultimately, the security will be maintained at the highest level of operation

achieved by the proposed hardware design modeling Joye’s SPM. Establishing the

rest of the hardware is imperative and will be the subsequent focus with the future

goal of an all-programmable system-on-chip (SoC) FPGA implementation.

48

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

4.3 Optimized Point Operations

After studying Chapter 2 and point operations’ algebra, a more profitable coor-

dinate system can be established for progressive hardware implementations. For

example, in the point doubling Equation (2.8) there are 2 multiplications and 1

inversion. This is extremely costly since an arithmetic inversion is the most expen-

sive operation in any ECC ALU implementation [8]. Point doubling and addition

Equations (2.8) (2.9) can be easily mapped to a more efficient plane to further

improve the functionality of the low-level hardware’s operability. All the following

derivations can be found from [39].

Recalling point infinity has no distinctive Affine coordinates, point P is mapped

to an existing projective plane such that,

P (x, y) = P (X, Y, Z), Z 6= 0 ∈ E (4.1)

in which point infinity is defined as O = (1, 0, 0). Any arbitrary point P (X, Y, Z)

still carries the characteristics of O + P = P + O = P . In addition, −P =

(X1, X1 + Y1, Z1) is very similar to the Affine representation of −P .

This coordinate system needs to be applied to reduce the amount of finite field

inversions discussed in Table 4.2. The most favoured type of projective coordinates

is the López-Dehab (LD) representation where (x, y) = (X/Z, Y/Z2), Z 6= 0 ∈ E

and preferably Zb = 1, to simplify operations2 [39]. Below, the forward conversion

is shown by Equations (4.2) and the curve of Equation (2.5) is now mapped to

(4.3) as follows:

Zb = 1

X = xZ

Y = yZ2

(4.2)

EK : Y 2 +XY Z = X3Z + aX2Z2 + Z4, a ∈ EK (4.3)

Using LD-coordinates institutes the point doubling and addition equations to

2Zb is the Z-coordinate of the base point P .

49

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

be mapped accordingly with a = 1 for an optimal cofactor. The following sub-

sections will cover the hardware developed of the datapath in order to design the

point operations appropriately.

The analysis of different projective coordinates are explored in [7]. The memory

and power consumption of LD-coordinates are the lowest among the top projective

systems reviewed in recent literature3.

Just as in the synchronous control unit in Joye’s algorithm, register count in

point double and addition will increment every clock cycle to initiate the subse-

quent operations within datapath upon the reset signal. The focus will be on

the datapath design rather than the control unit since the designs are parallelized

compared to traditional serial designs [8, 12, 19].

4.3.1 Point Double with Datapath Schematic

Equations (2.8) are now mapped to it’s LD form with a set of three equations.

The resulting point 2P (X3, Y3, Z3) requires squaring operations to replace the prior

inversion operation. Equations (4.4) are as follows, where X3, Y3, Z3 ∈ EK .

Z3 = X2

1
Z2

1

X3 = X4

1
+ Z4

1

Y3 = Z4

1
Z3 +X3(Z3 + Y 2

1
+ Z4

1
)

(4.4)

Below shows the schematic of the LD - point doubling circuit. It requires

3 multiplication (Mj), 5 squaring (Sj), and zero inversion operations within the

curve’s finite field. This design needs all 3 m-bit XOR gates along with all of the

other operating blocks, Sj and Mj, to be independent. No more than a single

operating block and one m-bit XOR will be computed under one clock cycle. The

design shown in Figure 4.2.

3Jacobian, Standard, and Montgomery projective coordinates are the other top projective

systems besides Lópex-Dehab.

50

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

Figure 4.2: LD - Point Double Datapath Schematic

On the first clock cycle, this circuit will square all three inputs X1, Y1, Z1 in

parallel. On the next cycle, the outputs X3 and Z3 are computed and will be avail-

able on count = 2. Y3 is available on following cycle as it is the last computation

after X3 and Z3. From looking at Equations (4.4), the next point x, y coordinates

X3 and Y3 depend on prior computations. The critical paths in Figure 4.2 start

through the two squaring operations on X1 or Z1 that lead to the first XOR on the

output of S2 and S3. From here, there are multiple paths that end at Y3 requiring

that same amount of logical delay resulting in a critical latency of 1 multiplication

and 2 squaring operations.

4.3.2 Point Addition with Datapath Schematic

Lastly, Equations (2.9) are mapped to the projective plane using LD-coordinates.

Equations (4.5) show the flow of operations within the set with intermediate reg-

isters A-G. The point addition of P +Q = R(X3, Y3, Z3) is as follows:

A = Y2Z
2

1
+ Y1

C = Z1B

Z3 = C2

X3 = A2 +D + E

G = (X2 + Y2)Z
2

3

B = X2Z1 +X1

D = B2(C + Z2

1
)

E = AC

F = X3 +X2Z3

Y3 = (E + Z3)F +G

(4.5)

51

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

where the datapath’s design is below. Intermediate registers A-G are labelled on

the hardware corresponding with resulting output. In total, 8 multiplication, 5

squaring, and again, zero inversion operations are required to compute the point

addition in this parellelized manner.

Requiring 5 clock cycles to complete, an improvement to the parallel design

of 8 cycles in [39], this datapath has been broken into ten sections for increased

speed and functionality.

In order, the output coordinates of next point R begin with Z3 becoming avail-

able when count = 2. The X3 is available after the following clock cycle when

count = 3. The critical latency is dependant on the calculations of M1,M2,M3,

onward to the operation of X3, and ending through M7 and the last m-bit XOR.

The Y3 is available on the following cycle after count = 4. The bottleneck in

this design is when computing X3 during the count = 0-2 cycles due to the three

multiplication operations and no squaring. It is quite evident that the point addi-

tion operations consumes a more considerable amount of power compared to the

point double since there is more than twice as many compulsory multiplication

operations. The critical latency is 4 multiplication operations.

4.3.3 Review of Hardware

FPGA designs are crucial because of the dynamic nature of the designing process

towards ECC processors. The designs must be robust to provide rapid prototyping

to test different key lengths, curve coefficients, the finite field, mixed-coordinates4,

and finite field multipliers. Generally speaking, the more specific the application

of the processor, the more efficient it can be.

Both proposed designs utilize a parallel architecture requiring a synchronous

state machine controller which can provide the high-level datapath to have efficient

4Mixed coordinates are typically used to reduce the number of multiplications using Frobenius

maps to lower the critical path latency, instead of using a single projective coordinate system

during point operations [12].

52

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

F
ig
u
re

4.
3:

L
D

-
P
oi
n
t
A
d
d
it
io
n
D
at
ap

at
h
S
ch
em

at
ic

53

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

results. No inversion operations need to be computed due to the LD-coordinates

selected. This may seem minuscule, but when implemented on a NIST medium

scale curve such at K-233 or K-283 [34], the amount of inversions become unrealis-

tic to implement on an affordable FPGA due to speed and complexity restrictions.

The HDL pseudo-code for the datapath designs can be found in Appendix - Verilog

HDL Pseudo Scripts.

The reasoning for designing both operations with individual squaring and mul-

tiplication blocks is because the targeted Kintex-7 FPGA has plenty of space

available. The serial multiplier implemented in the following chapter consumes

less than 0.5% of area after synthesis and before place & route. What this high-

level design lacks in area can be ignored due to a small serialized multiplier enabling

the overall architecture to be tested at an average speed SPM.

4.4 Multiplicative Inverse

The isolated inverse operation within this architecture is the last operation com-

puted after the entire SPM is completed. It is only computed once to act as the

conversion from LD-coordinates back to Affine. Since the EC scalar point infor-

mation to be used in ECC protocols resides on the two dimensional plane, the

conversion is crucial. The backwards conversion is as follows:

xQ =
X

Z

yQ =
Y

Z2

(4.6)

where xQ and yQ are the Affine coordinates of the scalar multiplication point

Q = kP .

To execute this backwards conversion, there are two exclusive inversions 1

Z
and

1

Z2 since (Z−1)2 mod 2m 6= (Z−1 mod 2m)2. To accomplish this, the Extended

Euclidean Algorithm (EEA) needs to be computed over GF (2m).

54

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

4.4.1 Binary Extended Euclidean Algorithm

The binary EEA is a simplified version of Euclid’s algorithm to find coefficients

x and y such that ax + by = gcd(a, b). In the case of finding the multiplicative

inverse for polynomials, a = A(x) and b = P (x) where y = 1, the inverse is found

by solving the previous equation for x. Algorithm 4 can be found in [39] but the

modified version below is developed for a logical transition to a hardware imple-

mentation.

The output of Algorithm 4 is A−1(x) and is found by these major steps. Within

the inner while loops, operand registers U and V are divided by x until they cannot

be divided by a whole number, hence mod x = 0. Both loops can be developed in

parallel hardware as long as the (U, V 6= 1) condition is true. A serialized design is

of greater benefit since the inversion is, again, only computed once and speed gain

would be infinitesimal compared to the overall computational time. This solitary

algorithm is the final step and the true output of any projective coordinate based

SPM processor.

4.5 High-Level Summary

The most efficient high-level operations were discussed and broken down into re-

lated blocks of the progressing design.

Joye’s algorithm proved to be superior to Montgomery’s ladder from a SPM

security aspect. The point doubling and addition were outlined using the LD-

coordinates to create a customized datapath circuit for each point operation.

Lastly, the ideal binary multiplicative inverse, the EEA, was explained and modi-

fied to better fit the use of the proposed architecture.

55

CHAPTER 4. SECURE HIGH-LEVEL ARCHITECTURE

Algorithm 4 Extended Euclidean Algorithm in Hardware

Input: Primitive Poly. P (x), Poly. A(x) ∈ GF (2m)

Output: A−1 mod P (x)

1: Int: U = A(x); V = P (x); G = 1; H = 0;

2: while (U, V 6= 1) do

3: while (U mod x = 0) do

4: U ← shiftRegRight(U);

5: if (Gmod x = 0) then

6: G ← shiftRegRight(G);

7: else

8: G ← shiftRegRight(G⊕ P);

9: end if

10: end while

11: while (V mod x = 0) do

12: V = shiftRegRight(V);

13: if (H mod x = 0) then

14: H ← shiftRegRight(H);

15: else

16: H ← shiftRegRight(H ⊕ P);

17: end if

18: end while

19: if [deg(U) > deg(V)] then

20: U ← U ⊕ V ; G ← G⊕H;

21: else

22: V ← V ⊕ U ; H ← H ⊕G;

23: end if

24: end while

25: if U=1 then

26: Output← G;

27: else

28: Output← H;

29: end if

56

Chapter 5

Low-Level Multiplier

Implementation

In this chapter, the implementation of 233 & 283-bit comparable finite field multi-

pliers is presented. As the low-level operations, they are one of the most essential

building blocks towards the efficiency of the ECC processor. Surrounded by many

options of multipliers for various applications, the classic parallel and a popular

serial multiplier will be implemented. A special case of the parallel multiplier will

lead to the development of a squaring operator.

The sections will begin with an introduction of choosing the correct key size

for relatable applications, dealing with strict throughput constraints, and con-

trasting both multipliers with their respective synthesis results. The overall SPM

design proposed will be outlined to highlight the interconnected parts of the entire

hardware design.

5.1 Finite Field Multiplier

Recalling from Table 4.1, the key size ranges from 163-571 bits where the most

popular is 233 bits. Recent designs [9, 10, 15] express the large computational ad-

vantage of choosing a 233-bit key with a polynomial basis providing the primitive

trinomial of t233+ t74+1. This trinomial provides a great level of symmetric secu-

rity while reducing the complexity of the circuit and increasing the speed of any

57

CHAPTER 5. LOW-LEVEL MULTIPLIER IMPLEMENTATION

operation using the field multiplier [14].

The area is reduced from having a single middle element, t74, rather than the

NIST approved pentanomial, t283 + t12 + t7 + t5 + 1 [34] by over 30% on larger

FPGA designs. The use of a pentanomial is the only way to increase key sizes with

a polynomial basis to the 283-bit standard level while the 233-bit key has benefits

geared towards performance upgrades.

Since the overall goal is to attack the entire proposed architecture, the multi-

plier serves purposes on a smaller scale which contradicts what the architectures

of [5] suggest. Established algorithms that provide speed and area should be fur-

ther explored for their appropriate merits [39] in different devices, but are presently

not scrutinized. From Table 5.1, the two types of multipliers selected can be seen

to have very different qualities.

Table 5.1: Parallel vs. Serial Finite Field Multiplier

Multiplier Field Clock Cycles Circuit Complexity (Gates)

Parallel GF (2m) 1 m2 ANDs, m2 − 1 XORs

Serial GF (2m) m 2 m-bit regs, m ANDs, m+ 1 XORs

Serial multipliers such as Interleaved [13], Karatsuba [9], and Montgomery se-

quential methods all accomplish the field multiplication within [m/32,m] clock

cycles. This range consists of small increments when processing multiples of 32-bit

data streams [40]. While the Interleaved and Karatsuba multiplier are slightly

faster than Montgomery’s smaller multiplier, shown in Table 4.1, all three with

respect have relatively the same performance to size ratio making them all a viable

choice.

The following designs will be achieved on a Kintex-7 FPGA having 218,600

LUTs, 437,200 flip-flop registers, and 350,000 programmable logic cells. The Zynq-

7000 AP SoC (XC7Z045) embodies this FPGA for seamless data transfer to and

from the ECC processing circuit. The on-chip 32-bit Cortex-A9 ARM CPU will

require a throughput controller as there are a fixed amount of bonded I/O pins on

58

CHAPTER 5. LOW-LEVEL MULTIPLIER IMPLEMENTATION

the FPGA. Since ECC uses key sizes well over 128 bits, a first in first out (FIFO)

controller has been made to mitigate input data traffic.

5.1.1 FIFO for Large Keys

A FIFO is a digital circuit that buffers large input data onto a register stack into

equal length words, in this case 32-bit words, to output the words in the sequential

order that they were addressed. Specifically, this synchronous 32-bit FIFO is the

throughput solution that can be used as the top module for both 233 & 283-bit

keys. The FIFO controller and 32-bit buffering registers are shown below in Figure

5.1.

Figure 5.1: 32-bit FIFO Schematic

Having a depth of 8 and 9 bits respectively, the design can be modified by

updating the internal counter to accommodate either bit size. This circuit after

synthesis consumes 38 LUTs as logic and 43 registers as flip-flops - this circuit is

≤ 0.2% of the total slices making it infinitesimal. The HDL code found for this

design can be found in Appendix - Verilog HDL Scripts: 32-bit FIFO.

5.1.2 Parallel Multiplication and Squaring

The most primary design for multiplication is the classical parallel in and out

design. It consists of a multiplication and reduction stage. The 233 & 283-bit

multiplying module (top) has an output of 2m− 2 bits that will feed into the final

reduction module (bottom) that reduces the polynomial to the original 233 & 283

59

CHAPTER 5. LOW-LEVEL MULTIPLIER IMPLEMENTATION

Figure 5.2: Parallel m-bit Multiplier [40]

bits as seen in Figure 5.2 - the circuit diagram shows the hardware required.

Both stages of the overall parallel multiplier will be tested with both key sizes.

Having the same structure with larger word lengths will show to be a drastic in-

crease in area. The 233-bit multiplication and reduction circuit after synthesis

consumes 127,948 LUTs as logic and 698 registers as flip-flops. This is too large

for any FPGA that has high scale modules since it consumes 58.53% of the total

slices. The 283-bit multiplier after synthesis consumes 187,235 LUTs as logic and

848 registers as flip-flops. This would consume 85.65% of the total slices which

leaves no room for any other operations. This design does not utilize any gates

more than once hence sacrificing a lot of area to complete the entire operation

within one clock cycle. A more suitable multiplier to be attacked by SCAs would

be a serial based design to cut down on the dramatic area consumption.

233-bit Squaring Module

A useful piece of hardware that can be extracted from the 233-bit multiplier is the

reduction module for a squaring operator. The parallel squaring circuit is devel-

oped by replacing the multiplying module with a smaller, concurrent assignment

datapath module. The script can be found in the blocking statement shown below.

60

CHAPTER 5. LOW-LEVEL MULTIPLIER IMPLEMENTATION

// Squaring Module

module classic_polySquare(

input [232:0] a,

input [232:0] f_x,

input clk,

output [232:0] z);

integer i;

reg [2*233-2:0] d;

// Polynomial Squaring

always @ (posedge clk)

begin

d[0] <= a[0];

for (i = 1; i <= 232; i = i + 1)

begin

d[2*i-1] = 0;

d[2*i] = a[i];

end

end

// Polynomial Reduction

poly_reduc a1 (d,f_x,clk,z);

endmodule

After synthesis the squaring circuit uses 79,343 LUTs as logic, 0 registers as

flip-flops consuming 36.3% of the total slices. Even though this percentage is still

very high for a small portion of the processor, a modified serial version of the

previous point operation circuits could utilize this single cycle squarer for secure

high-speed device.

A note on the reduction module is that the primitive polynomial will not need

to exceed m+1 bits since the highest m-bit polynomial degree always exists hence

reducing the size of register for the primitive string.

61

CHAPTER 5. LOW-LEVEL MULTIPLIER IMPLEMENTATION

5.1.3 Montgomery Multiplication and Reduction

The sequential Montgomery multiplier over GF (2m) is modelled by the following

Equation 5.1 where A,B,R ∈ GF (2m) [40].

C(x) = A(x)B(x)R−1 mod f(x) (5.1)

The element R needs to satisfy gcd(R, f(x)) = 1 which is always true in

GF (2m). String R needs to be cleverly selected to reduce the amount of inversions

and should be derived from the primitive polynomial f(x) = xm + am−1x
m−1 +

...+ a1x+ a0.

If R is selected to model the monomial R = xm, then R = am−1, ..., a1, a0. A

multiplication by xm is accomplished by shifting the string left by m bits; therefore

an inversion of this monomial is simply a shift to the left by m bits. This multiplier

can be easily and efficiently implemented in hardware by using the following Algo-

rithm 5; this algorithm is based on the proposed method in [40] but is translated

into hardware operations. The m bits of shifting mean that a single Montgomery

multiplication will take exactly m cycles.

Algorithm 5 Binary Montgomery Multiplication in Hardware

Input: A(x), B(x), f(x) ∈ GF (2m)

Output: C(x) = A(x)B(x)x−m mod f(x)

1: Int: C ← 0;

2: C0 ← C[0]⊕ AiB[0];

3: for i = 0 to m− 1 do

4: C = C(x)⊕ AiB(x);

5: C = C(x)⊕ C[0]f(x);

6: C = shiftRegRight(C);

7: end for

The algorithm above will loop for m cycles to flag, with it’s control unit, when

the correct result is available on register C. Line 4 shows that register C is XORd

with the register B if the 1-bit register Ai is true. Line 5 shows that if the previous

62

CHAPTER 5. LOW-LEVEL MULTIPLIER IMPLEMENTATION

index C[0] before the loop is true, then the value of register C is XORd with the

(m− 1)-bit primitive polynomial f(x). The last step of the loop on Line 6 shows

a single shift right by 1 bits representing the division of register C by monomial x.

The script in Verilog HDL is shown below that models the datapath of Algorithm

5 - the remaining code that is the control unit can be seen in Appendix - Verilog

HDL Scripts: Serial Montgomery Multiplier.

// Datapath Module

module mont_datapath(

input [232:0] c, b,

input a_i,

input [232:0] f_x,

output reg [232:0] new_c);

reg previous_c0;

integer i;

always @ (*)

begin

previous_c0 <= c[0] ^ (a_i & b[0]);

for (i = 1; i <= 232; i = i + 1)

new_c[i-1] <= c[i] ^ (a_i & b[i]) ^ (f_x[i] &

previous_c0);

end

new_c[232] <= previous_c0;

end

endmodule

The multiplier circuit is comprised of the small datapath circuit scripted above

and a FSM controller. A register transfer level (RTL) design of the entire 233-bit

control unit surrounding the datapath is below in Figure 5.3. The RTL schematic

of the multiplier is mostly made of the control unit due to small datapath as de-

scribed in Algorithm 5 and highlighted below.

63

CHAPTER 5. LOW-LEVEL MULTIPLIER IMPLEMENTATION

F
ig
u
re

5.
3:

23
3-
b
it
M
on

tg
om

er
y
M
u
lt
ip
li
er

R
T
L
S
ch
em

at
ic

64

CHAPTER 5. LOW-LEVEL MULTIPLIER IMPLEMENTATION

Figure 5.4: 233-bit Montgomery Multiplier RTL Datapath

A fragment of the 233-bit datapath is shown in Figure 5.4. In the middle of

the figure it is visible that the AND operation is computed on register Ai and B[i]

before XORing the result with the previous C[0] AND f(x) to get the respective

register C[i], in the script as new c[i], as previously explained.

The 233-bit Montgomery multiplication with integrated reduction after synthe-

sis consumes 475 LUTs as logic and 935 registers as flip-flops. This is an amazing

result and is as expected from Table 5.1. There is a 58.1% reduction of area com-

plexity since it only is 0.43% of the total slices. Similarly, the 283-bit multiplier

only consumes 576 LUTs as logic and 1135 registers as flip-flops with a combined

0.52% of the total area. Respectively, the multipliers take 233 and 283 cycles to

complete.

5.2 Summary of the Connected System

The following subsections will examine the multipliers implemented and review

the comprehensive architecture.

65

CHAPTER 5. LOW-LEVEL MULTIPLIER IMPLEMENTATION

5.2.1 Multiplier Comparison

Prior to the place-and-route implementation phase in the design, the synthesis re-

sults are listed below. All of the designs are synthesized separately, therefore there

will be small reductions in sizing after the place-and-routing stage is completed in

the future.

Table 5.2: Post Synthesis Multiplier Results on Kintex-7

Multiplier Control Unit Area of Hardware (LUT, Reg) I/O

233-bit Parallel - 58.53% , 0.16% 257.73%

283-bit Parallel - 85.65% , 0.19% 312.98%

233-bit Parallel Sq. - 36.3% , 0% 193.09%

233-bit Montgomery FSM 0.43% , 0.21% 258.56%

283-bit Montgomery FSM 0.52% , 0.26% 313.81%

The choice of the two operand multiplier from both compared designs is the

binary Montgomery multiplier. In terms of a speed-area ratio and future works

of the proposed design, Montgomery’s design is far superior. As for the squaring

design, Montgomery offers a serialized squaring method that builds off of the pre-

existing multiplier which may be more efficient in larger scale devices compared

to the parallel design shown above.

These specific multiplier are restricted due to a maximum of 32-bit I/O. Con-

sequently, they need to be serial in serial out (SISO) multipliers since data flow

is serially fed into and out of the hardware module. From Table 5.2 it is striking

that all designs practically use double the amount of the bonded I/O that the

FPGA can physically provide. This is because the FIFO was not wrapped over

the highest level module during simulation - the I/O percentage is listed to show

the dire need of a top level FIFO module.

A comparison of the singular Montgomery multiplier versus recent serialized

multipliers is provided in Appendix - Verilog HDL Scripts: Serialized Montgomery

Multiplier Comparison.

66

CHAPTER 5. LOW-LEVEL MULTIPLIER IMPLEMENTATION

5.2.2 Overview of Architecture

The novelty of this design revolves around using Joye’s algorithm for SPM. To the

best of the author’s knowledge there are no published FPGA designs that readily

use this secure SPM to protect against SCA threats. Below is a tree diagram of

the hierarchy throughout the past two chapters and as it falls down to the base

finite field multiplier.

ECDH & ECDSA Protocols

Extended Euclidean Inversion

Joye’s Scalar Point Multiplication

LD - Point Double

Montgomery Multiplication

LD - Point Addition

Montgomery Multiplication

Previously, the finite field inversion operation was needed at the lowest level

alongside the multiplier, but after using the LD-coordinate, the inversion was the

final conversion step of the SPM algorithm. The tree above completes the novel

secure ECC SPM processor and solidifies the end of the resulting work.

67

Chapter 6

Conclusions

In the final chapter, a discussion of the contributions is made along with many

areas that should be explored with the aid of this research. These areas will

include the development a software platform for a validation of the cryptosystems,

an analysis for masking, and hiding indirect data leakages in various cryptographic

schemes.

6.1 Summary of Contributions

List of Contributions

1. A platform to develop and test SCAs against a wide range of cryptosystems

2. A successful DPA SCA against AES-128 to show the susceptibilities and

weaknesses of cryptographic hardware from multiple aspects and propose an

approach to attack other systems

3. Propose a secure, robust, and small scale ECC SPM architecture resistant

to modern SCAs

4. A hardware design of a parallel K-233 & K-283 point doubling and addition

datapath in López-Dehab coordinates

5. A tested and synthesized hardware design of a dynamic 32-bit FIFO

6. A tested and synthesized hardware design of a 233-bit squaring module for

large scale devices

68

CHAPTER 6. CONCLUSIONS

7. A tested and synthesized hardware design of both a parallel and serial mul-

tiplier over GF (2233) & GF (2283)

6.2 Future Work

The future work for this research has a number of areas that will highly impact

the domain of embedded security.

6.2.1 Hardware Design

Most importantly, the remaining pieces of the hardware design and implementa-

tion need to be completed. The design of the extended euclidean algorithm is

not new work but is an essential step in recovering useful information from the

three dimensional place of projected coordinates. Secondly, the control unit of

the point doubling and addition operations needs to be created - this design will

be small since they are parallel by design. Further development of a SIPO point

operation design would also be needed if the overall implementation does not fit

on the desired FPGA. Concluding the hardware designs, a full implementation

of Joye’s algorithm needs to be developed from the proposed design to compare

SCA resistance with it’s counterpart, Montgomery’s SPM algorithm. Once the

SPM algorithms are implemented in hardware, the SCAs can proceed. There will

be adjustments of the global clock when the hardware design reaches it’s phyical

limits and will probably range from 50 to 500 MHz. These designs are highly

recommended to be implemented on an existing SoC such as, but not limited to,

the Zynq-7000. It is highly attractive due to the seamless software integration of

the on-chip ARM processor using pre-existing wrapping software from Xilinx Vi-

vado Design Suite to intercommunicate the FPGA design with the ARM processor.

Note: The acclaimed HDL to be written in the future in most cases cannot

be written manually. The original HDL is written in Appendix - Verilog HDL

Scripts, but has very large for loops which can put a large strain on the design

suite’s compiler. The solution to this is to unroll every loop in the HDL code to

be written from an automated C script that populates every output register from

69

CHAPTER 6. CONCLUSIONS

the multiplying module by creating .v files from a file pointer in a .c file. An ex-

ample of this technique is in Appendix - C Scripts - Convert to Verilog Script and

is highly recommend to be used when writing any HDL for cryptographic purposes.

If once the FPGA designs are fully-functional and can perform a SPM in com-

parable time to the recent literature of [5], then it would be interesting to create an

application specific integrated circuit (ASIC) in either complementary metal-oxide-

semiconductor (CMOS) 0.18µm or 65nm technology. Another pathway would be

to integrate the ASIC design with an existing micro-controller to test the circuit

once fabricated for further exploration within accelerated cryptography.

6.2.2 Software-Hardware Integration Against SCAs

An entire customized cryptographic library is needed to test all possible input

over all keys desired with vectors ≥ 2m of the data inputted. Unlike other com-

mon software suites such as OpenSSL, the library needs to have the low-level

access to change existing multiplying algorithm and scalar point multiplication in

an automated fashion to verify hardware results correctly. Alternatively, a poten-

tial avenue of research could also include the capabilities to connect the proposed

hardware system with the common all-programmable interface of the OpenSSL

library.

A software solution of the finite field inversion technique may be more effi-

cient to compute it sequentially after the SPM circuit has results. This could cut

the time needed to perform a successful SPM since hardware design can be time

consuming.

6.2.3 Masking to Prevent CPA Attacks

One method of hiding sensitive power traces of cryptosystems on a reconfigurable

device involves randomizing the inner cipher or high-level process in order to ruin

the relationship between how each trace is executed. This is done by performing

a random amount of meaningless operations before, during, and after the targeted

process. However, there is a couple issues when implementing this method to

70

CHAPTER 6. CONCLUSIONS

protect AES-128 specifically. The first issue is that the AES-128 hardware design

is combinational so an entire round of AES-128 is performed in one clock cycle

and these fake operations can only be inserted in between rounds. This makes it

slightly easier for the hacker to realign the waveforms and re-establish the correct

overlap of traces. The second issue is that these fake operations greatly affect the

throughput of the system, hence only a finite amount of these operations can be

performed.

Another method is to make the power consumption random or equalize through-

out traffic throughout the targeted process. Firstly, increasing the noise of the

system can be done for randomizing the power consumption. To accomplish this,

one would need to run multiple random operations simultaneously. A disadvan-

tage to this sort of modification is that there is no such thing as a truly random

number generator in hardware therefore a hacker can still find patterns within

the system. Making the power consumption equal at each state within cryptosys-

tems’ processes is essentially the only sure way to mask a key or other important

information against DPA while maintaining the throughput of the original imple-

mentation. This could be accomplished with a optimal switched-capacitor design

similar to [30], mentioned in chapter 3, and implemented in CMOS technology

A conceptual but interesting technique to prevent any CPA attack against

AES-128 could be created from interconnecting byte-to-byte dependencies with

the Add-Round Key operation. This would make the algorithm slower because of

the theoretically added serial computations in the Add-Round Key generator, but

it would make DPA useless therefore greatly increasing it’s security.

In the future when designing an FPGA implementation to protect AES-128, it

is crucial to select pins that are located on the same type of I/O bank as the ciphers

output pins - ideally the same pins. This ensures the same amount of power is

being used to invert a fake output as the AES-128 output and hence, establishing

equalized power consumption. The bus changes must occur on the exact same

clock edge so that the power is consumed on the same state. These two features

71

CHAPTER 6. CONCLUSIONS

are the reason that a masked implementation of AES-128 is difficult to implement

on the SASEBO-GIII board specifically. This board utilizes a 1.5 V I/O bank to

transfer AES-128 data and does not have enough output pins available to execute

the mask.

72

Appendix A

DPA Data & Results

A.1 Power Trace to be Attacked

Figure A.1: Example of a Power Trace Captured at 50,0000 Samples

A.2 16-Byte Key Results

73

APPENDIX A. DPA DATA & RESULTS

Figure A.2: 15,000 Traces Max Correlation Vector for Byte 1

Figure A.3: 15,000 Traces Max Correlation Vector for Byte 2

74

APPENDIX A. DPA DATA & RESULTS

Figure A.4: 15,000 Traces Max Correlation Vector for Byte 3

Figure A.5: 15,000 Traces Max Correlation Vector for Byte 4

75

APPENDIX A. DPA DATA & RESULTS

Figure A.6: 15,000 Traces Max Correlation Vector for Byte 5

Figure A.7: 15,000 Traces Max Correlation Vector for Byte 6

76

APPENDIX A. DPA DATA & RESULTS

Figure A.8: 15,000 Traces Max Correlation Vector for Byte 7

Figure A.9: 15,000 Traces Max Correlation Vector for Byte 8

77

APPENDIX A. DPA DATA & RESULTS

Figure A.10: 15,000 Traces Max Correlation Vector for Byte 9

Figure A.11: 15,000 Traces Max Correlation Vector for Byte 10

78

APPENDIX A. DPA DATA & RESULTS

Figure A.12: 15,000 Traces Max Correlation Vector for Byte 11

Figure A.13: 15,000 Traces Max Correlation Vector for Byte 12

79

APPENDIX A. DPA DATA & RESULTS

Figure A.14: 15,000 Traces Max Correlation Vector for Byte 13

Figure A.15: 15,000 Traces Max Correlation Vector for Byte 14

80

APPENDIX A. DPA DATA & RESULTS

Figure A.16: 15,000 Traces Max Correlation Vector for Byte 15

Figure A.17: 15,000 Traces Max Correlation Vector for Byte 16

81

Appendix B

Matlab Script DPA

Available Upon Request of Author

82

Appendix C

C Scripts - Verilog Script

Generation

C.1 Parallel Multiplier

#include <stdio.h>

/**

Name : mk_poly_mult

Input : m-bit

Output : poly_mult.v file

Comment : Generate verilog code for an m-bit parallel

multiplier

Engineer: D.R. Lalonde

**/

void mk_poly_mult(int m);

int main(){

int m = 233;

mk_poly_mult(m);

return 0;

83

APPENDIX C. C SCRIPTS - VERILOG SCRIPT GENERATION

}

void mk_poly_mult(int m){

FILE *fd;

int k,i;

fd = fopen("poly_mult.v", "w");

// Module Declaration

fprintf(fd, "module poly_mult(\n");

fprintf(fd, "input [%d-1:0] a,\n", m);

fprintf(fd, "input [%d-1:0] b,\n", m);

fprintf(fd, "input clk,\n");

fprintf(fd, "output reg [2*%d-2:0] d);\n\n", m);

// Module integers and reg’s

fprintf(fd, "integer k,i;\n");

fprintf(fd, "reg a_b [2*%d-2:0][2*%d-2:0];\n", m,m); // a & b

for all a, b [m-1:0]

fprintf(fd, "reg xor_temp;\n\n");

//---

// AND Operations ---

fprintf(fd, "always @ (*) begin\n");

// dk = m-1, ... , 0

for(k = 0; k <= m-1; k++){

for(i = 0; i <= k; i++){

// a_b[k][i] = a[i] & b[k-i]

fprintf(fd, "a_b[%d][%d] = a[%d] & b[%d - %d];\n",

k,i,i,k,i);

}

}

84

APPENDIX C. C SCRIPTS - VERILOG SCRIPT GENERATION

// dk = 2*m-2, ... , m

for(k = m; k <= 2*m-2; k++){

for(i = k; i <= 2*m-2; i++){

// a_b[k][i] = a[k-i+(m-1)] & b[i-(m-1)]

fprintf(fd, "a_b[%d][%d] = a[%d - %d + %d-1] & b[%d -

(%d-1)];\n", k,i,k,i,m,i,m);

}

}

// d[0] has no XOR operation

fprintf(fd, "d[0] = a_b[0][0];\n\n");

// --

// XOR Operations ---

for(k = 1; k <= 2*m-2; k++){

if (k <= m-1){

fprintf(fd, "xor_temp = a_b[%d][0];\n",k);

for(i = 1; i <= k; i++){

fprintf(fd, "xor_temp = a_b[%d][%d] ^ xor_temp;\n",

k,i);

}

}

else {

fprintf(fd, "xor_temp = a_b[%d][%d];\n",k,k);

for(i = k + 1; i <= 2*m-2; i++){

fprintf(fd, "xor_temp = a_b[%d][%d] ^ xor_temp;\n",

k,i);

}

}

fprintf(fd, "d[%d] = xor_temp;\n", k,k);

}

85

APPENDIX C. C SCRIPTS - VERILOG SCRIPT GENERATION

fprintf(fd, "end\n");

fprintf(fd, "endmodule");

fclose(fd);

}

C.2 Parallel Reduction

#include <stdio.h>

/**

Name : mk_poly_reduc

Input : m-bit

Output : poly_reduc.v file

Comment : Generate verilog code for an m-bit parallel

classical multiplier

Engineer: D.R. Lalonde

**/

void mk_poly_reduc(int m);

int main(){

int m = 233;

mk_poly_reduc(m);

return 0;

}

void mk_poly_reduc(int m){

86

APPENDIX C. C SCRIPTS - VERILOG SCRIPT GENERATION

FILE *fd;

int i,j;

fd = fopen("poly_reduc.v", "w");

// Module Declaration

fprintf(fd, "module poly_reduc(\n");

fprintf(fd, "input [2*%d-2:0] d,\n", m);

fprintf(fd, "input [%d:0] f_x,\n", m);

fprintf(fd, "input clk,\n");

fprintf(fd, "output reg [%d-1:0] c);\n\n", m);

// Module integers and reg’s

fprintf(fd, "integer i,j;\n");

fprintf(fd, "reg matR [%d-1:0][%d-2:0];\n", m,m); // a & b for

all a, b [m-1:0]

fprintf(fd, "reg matR_temp [%d-1:0][%d-2:0];\n", m,m); // a &

b for all a, b [m-1:0]

fprintf(fd, "reg xorcount;\n\n");

//---

// Reduction matrix R ---------------------------------------

fprintf(fd, "always @ (*) begin\n");

// matR intilization

for(j = 0; j <= m-1; j++){

for(i = 0; i <= m-2; i++){

fprintf(fd, "matR[%d][%d] = 1’b0;\n", j,i);

}

}

for(j = 0; j <= m-1; j++){

fprintf(fd, "matR[%d][0] = f_x[%d];\n", j,j);

}

// matR population

87

APPENDIX C. C SCRIPTS - VERILOG SCRIPT GENERATION

for(i = 1; i <= m-2; i++){

for(j = 0; j <= m-1; j++){

if(j == 0){

fprintf(fd, "matR_temp[%d][%d] = matR[%d-1][%d-1] &

matR[%d][0];\n", j,i,m,i,j);

fprintf(fd, "matR[%d][%d] = matR_temp[%d][%d];\n",

j,i,j,i);

}

else{

fprintf(fd, "matR_temp[%d][%d] = matR[%d-1][%d-1] ^

(matR[%d-1][%d-1] & matR[%d][0]);\n",

j,i,j,i,m,i,j);

fprintf(fd, "matR[%d][%d] = matR_temp[%d][%d];\n",

j,i,j,i);

}

}

}

// --

// Polynomial Reduction -------------------------------------

for(j = 0; j <= m-1; j++){

fprintf(fd, "xorcount = d[%d];\n",j);

for(i = 0; i <= m-2; i++){

fprintf(fd, "xorcount = xorcount ^ (d[%d+%d] &

matR[%d][%d]);\n", m,i,j,i);

}

fprintf(fd, "c[%d] = xorcount;\n", j);

}

fprintf(fd, "end\n");

88

APPENDIX C. C SCRIPTS - VERILOG SCRIPT GENERATION

fprintf(fd, "endmodule");

fclose(fd);

}

C.3 Parallel Polynomial Multiplier

#include <stdio.h>

/**

Name : mk_classic_polyMult

Input : m-bit

Output : classic_polyMult.v file

Comment : Generate verilog code for an m-bit parallel

classical multiplier

Engineer: D.R. Lalonde

**/

void mk_classic_polyMult(int m);

int main(){

int m = 233;

mk_classic_polyMult(m);

return 0;

}

void mk_classic_polyMult(int m){

FILE *fd;

int i,j;

89

APPENDIX C. C SCRIPTS - VERILOG SCRIPT GENERATION

fd = fopen("classic_polyMult.v", "w");

// Module Declaration

fprintf(fd, "module classic_polyMult(\n");

fprintf(fd, "input [%d-1:0] a,\n", m);

fprintf(fd, "input [%d-1:0] b,\n", m);

fprintf(fd, "input [%d:0] f_x,\n", m);

fprintf(fd, "input clk,\n");

fprintf(fd, "output [%d-1:0] z);\n\n", m);

// Wire declaration

fprintf(fd, "wire [2*%d-2:0] d;\n", m);

// Polynomial Multiplication

fprintf(fd, "poly_mult a0 (a,b,clk,d);\n");

// Polynomial Reduction

fprintf(fd, "poly_reduc a1 (d,f_x,clk,z);\n");

fprintf(fd, "endmodule");

fclose(fd);

}

90

Appendix D

Verilog HDL Scripts

D.1 Parallel Polynomial Squarer

// poly_reduc.v is needed

module classic_polySquare(

input [282:0] a,

input [282:0] f_x,

input clk,

output [282:0] z

);

integer i;

reg [2*283-2:0] d;

// Polynomial Squaring

always @ (posedge clk)

begin

d[0] <= a[0];

for (i = 1; i <= 283-1; i = i + 1)

begin

d[2*i-1] = 0;

91

APPENDIX D. VERILOG HDL SCRIPTS

d[2*i] = a[i];

end

end

// Polynomial Reduction

poly_reduc a1 (d,f_x,clk,z);

endmodule

D.2 Serial Montgomery Multiplier

// Computes the poly multiplication A(x) B(x) R**(-1) mod

f(x), GF(2**233)

// Output not correct, very close

module mont_datapath(

input [232:0] c, b,

input a_i,

input [232:0] f_x,

output reg [232:0] new_c

);

reg previous_c0;

integer i;

always @ (*)

begin

previous_c0 <= c[0] ^ (a_i & b[0]);

for (i = 1; i <= 232; i = i + 1)

new_c[i-1] <= c[i] ^ (a_i & b[i]) ^ (f_x[i] &

previous_c0);

92

APPENDIX D. VERILOG HDL SCRIPTS

new_c[232] <= previous_c0;

end

endmodule

// Montgomery Control

Unit--

module mont_mult(

input [232:0] a,

input [232:0] b,

input [232:0] f_x,

input clk, go, reset,

output reg int_done, done_mult,

output reg [232:0] z

);

/* wire [8:0] w_aa, w_bb, w_cc, w_new_c;

always @ (w_aa) aa = w_aa;

always @ (w_bb) bb = w_bb;

always @ (w_cc) cc = w_cc;

always @ (w_new_c) new_c = w_new_c;*/

reg [232:0] aa, bb, cc;

wire [232:0] n_c;

// Datapath

mont_datapath md1(.c(cc), .b(bb), .a_i(aa[0]), .f_x(f_x),

.new_c(n_c));

reg incr, shift_right;

93

APPENDIX D. VERILOG HDL SCRIPTS

// Counter

reg [3:0] count; // decimal 5

always @ (posedge clk or posedge reset)

begin

if (reset)

count <= 0;

else

begin

if (incr)

count <= 0;

else if (shift_right)

count <= count + 1;

end

end

// Shift Register A

always @ (posedge clk)

begin

if (reset)

aa <= 0;

else

begin

if (incr)

aa <= a;

else

aa <= {1’b0, aa[232:1]};

end

end

// Register B

always @ (posedge clk)

begin

if (reset)

bb <= 0;

94

APPENDIX D. VERILOG HDL SCRIPTS

else

if (incr)

bb <= b;

end

// Register C

reg c_en;

always @ (posedge clk or posedge incr)

begin

if (incr | reset)

cc <= 0;

else

if (c_en)

begin

cc <= n_c;

z <= cc;

end

end

// FSM

reg [2:0] state;

always @ (state)

begin

case (state)

0: begin

incr <= 0;

shift_right <= 0;

int_done <= 1;

c_en <= 0;

end

1: begin

incr <= 0;

95

APPENDIX D. VERILOG HDL SCRIPTS

shift_right <= 0;

int_done <= 1;

c_en <= 0;

end

2: begin

incr <= 1;

shift_right <= 0;

int_done <= 0;

c_en <= 0;

end

3: begin

incr <= 0;

shift_right <= 1;

int_done <= 0;

c_en <= 1;

end

endcase

end

// Next state

always @ (posedge clk or posedge reset)

begin

if (reset)

state <= 0;

else if (clk)

begin

case (state)

0:

if (!go)

state <= 1;

else

state <= 0;

96

APPENDIX D. VERILOG HDL SCRIPTS

1:

if (go)

state <= 2;

else

state <= 1;

2:

state <= 3;

3:

if (count == 232)

begin

state <= 0;

done_mult <= 1;

end

else

state <= 3;

endcase

end

end

endmodule

D.3 32-bit FIFO

// 32-bit FIFO for 233 bits of information -> 256-bit

capability

module sync_fifo (

input [31:0] in_fifo,

input rd_en,

input wr_en,

input clk,

input reset,

97

APPENDIX D. VERILOG HDL SCRIPTS

output reg [31:0] out_fifo,

output empty,

output full

);

// 4 bits to count to decimal 8 (depth)

reg [3:0] p_rd, p_wr;

// Declare the fifo memory (RAM that allow read and write at

the same time)

// creates an array of 8 elements of 233 bits

reg [31:0] mem_fifo [7:0];

// Flags

reg [4:0] counter_fifo; // 4

bits to count to decimal 8 (depth) + 1 bit for space

assign empty = (counter_fifo == 0); //

Completely empty

assign full = (counter_fifo == 8); // ’’

// Sequential circuit that checks empty & full flags

always @(posedge clk or negedge reset)

begin

if (~reset)

counter_fifo <= 0;

else if((!full && wr_en) && (!empty && rd_en))

counter_fifo <= counter_fifo; // If

read and write

else if (!full && wr_en)

counter_fifo <= counter_fifo + 1; //

Write -> increment

else if (!empty && rd_en)

98

APPENDIX D. VERILOG HDL SCRIPTS

counter_fifo <= counter_fifo - 1; //

Read -> decrement

end

// Sequential circuit - READING

always @(posedge clk or negedge reset)

begin

if(!reset)

out_fifo <= 0;

else

if (!empty && rd_en) // Not

empty and READ

out_fifo <= mem_fifo [p_rd];

end

// Sequential circuit - WRITING

always @(posedge clk)

if (!full && wr_en)

mem_fifo[p_wr] <= in_fifo;

// Sequential circut - read/write POINTERS

always @(posedge clk or negedge reset)

begin

if(!reset)

begin

p_wr <= 0;

p_rd <= 0;

end

else

begin

// Not full and WRITE -> incr. write pointer

if(!full && wr_en)

p_wr <= p_wr + 1;

99

APPENDIX D. VERILOG HDL SCRIPTS

// Not empty and READ -> decr. read pointer

if(!empty && rd_en)

p_rd <= p_rd + 1;

end

end

endmodule

D.4 Serialized Montgomery Multiplier Compar-

ison

This comparison displays the Area-Delay Product of the amount of LUTs and reg-

isters present in the Kintex-7 needed after synthesis of the Montgomery multiplier

when compared to recent literature. This comparison is not entirely valid due to

the architecture not being synthesized as a whole, resulting in the use of this table

to be strictly used as a general guide.

Table D.1: Serialized Multiplier Comparison

Multiplier Key (Bits) Clock (MHz) Area-Delay (slice*sec)

Karatsuba [52] 233 625 0.111

Interleaved [53] 283 264 -

Montgomery [54] 233 115.47 1.086

Montgomery [55] 163 132.5 1.098

This work: Montgomery 233 Approx. 250 0.00000564

This work: Montgomery 283 Approx. 250 0.00000684

100

Appendix E

Verilog HDL Pseudo Scripts

E.1 Binary Extended Euclidean Inversion

module EEA_test(

input [282:0] a,

input [283:0] f_x,

input clk,

input reset,

output reg [282:0] z

);

// Datapath

reg [283:0] r, s, u, v;

reg [8:0] d; // [log283:0]

reg [283:0] r_q, s_q, u_q, v_q; // New registers

reg [8:0] d_q; // [log283:0]

always @ (posedge clk)

begin

//_______________________________

// Alg for Inv in GF(2**m): 3 - 6

if (r[283] == 0)

101

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

begin

r_q <= {r[282:0], 1’b0}; // cyclic

shift right 1

u_q <= {u[282:0], 1’b0}; // ’’

s_q <= s; // same

since rm = 0 - unchanged

v_q <= v; // ’’

d_q <= d + 1;

end

//________________________________

// when d = 0

else

begin

if (d == 0)

begin

if (s[283] == 1)

begin //

Combined operations

r_q <= {s[282:0] ^ r[282:0], 1’b0}; //

Line: 9, 12, 14

u_q <= {v[282:0] ^ u[282:0], 1’b0}; //

Line: 10, 15

end

else

begin

r_q <= {s[282:0], 1’b0};

u_q <= {v[282:0], 1’b0};

end

s_q <= r;

v_q <= u;

102

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

d_q[0] <= 1’b1; // d_q

<= (0=> ’1’, others => ’0’); vdhl

d_q[283:1] <= 0;

end

//________________________________

// when d = otherwise

else

begin

r_q <= r;

u_q <= {1’b0, u[283:1]}; //

Cylc shift left 1, Line: 18 (division)

if (s[283] == 1)

begin

s_q <= {s[282:0] ^ r[282:0], 1’b0}; //

Line: 9

v_q <= v ^ u; //

Line: 10

end

else

begin

s_q <= {s[282:0], 1’b0}; //

Line: 12

v_q <= v;

end

d_q <= d - 1; //

Line: 19

end

end // 1st if

z <= u[282:0];

103

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

end

endmodule

E.2 Point Double

// Pt. Doubling in LD coords

// Y**2 + XYZ = X**3z + X**2Z**2 + a Z**4 LD-Elliptic Curve

mapping

// // P (X, Y, Z) = Q (X, Y, 1) ... 2P = (X3, Y3, Z3)

/* 1. Z3 = X1**2 Z1**2

2. X3 = X1**4 + Z1**4

3. Y3 = b Z1**4 Z3 + X3 (a Z3 + Y1**2 + b Z1**4)

*/

// --

module pt_double (

input in_x1, in_y1, in_z1,

input f_x,

input clk,

input reset,

output reg x3, y3, z3,

output reg infinity

);

// ---

reg [282:0] x1, y1, z1;

reg [282:0] a, b, c;

reg [1:0] count;

reg done;

104

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

wire [2*283-2:0] w_x1, w_z1, w_y1, w_z3, w_x1_1, w_z1_1,

w_x3, w_a, w_b, w_c,

w_y3, w_y3_1;

// 1. Z3 = X1**2 Z1**2

// **

classic_polySquare s0 (.a(x1), .f_x(f_x), .clk(clk),

.z(w_x1)); // clk0

classic_polySquare s1 (.a(z1), .f_x(f_x), .clk(clk),

.z(w_z1)); // clk0

classic_polyMult m0 (.a(w_x1), .b(w_z1), .f_x(f_x),

.clk(clk), .z(w_z3)); // clk1

// 2. X3 = X1**4 + Z1**4

// ***

classic_polySquare s2 (.a(w_x1), .f_x(f_x), .clk(clk),

.z(w_x1_1)); // clk1

classic_polySquare s3 (.a(w_z1), .f_x(f_x), .clk(clk),

.z(w_z1_1)); // clk1

// 3. Y3 = Y3 = b Z1**4 Z3 + X3 (a Z3 + Y1**2 + b Z1**4)

// ***

classic_polySquare s4 (.a(y1), .f_x(f_x), .clk(clk),

.z(w_y1)); // clk0

classic_polyMult m1 (.a(w_z1_1), .b(w_z3), .f_x(f_x),

.clk(clk), .z(w_a)); // clk2

classic_polyMult m2 (.a(w_x3), .b(w_b), .f_x(f_x),

.clk(clk), .z(w_y3)); // clk2

// What #clk edge is present, for specific wires XOR

always @ (posedge clk && !done)

begin

if (reset)

begin

105

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

count <= 0;

done <= 0;

x1 <= in_x1;

y1 <= in_y1;

z1 <= in_z1;

end

else

begin

if (count == 1)

begin

x3 <= w_x1_1 ^ w_z1_1; // 2. 1st clock

cycle, x1 XOR z1 = X3

b <= w_z1_1 ^ w_z3 ^ w_y1; // 3. 1st clock

cycle, z1 XOR z3 = b

end

if (count == 2)

begin

y3 <= w_a ^ w_y3; // 3. 2nd clock

cycle, a XOR wire y3 = y3

end

end

count <= count + 1;

end

// @ wire changes, make the corresponding register

available... in order of the design

// 1.

always @ (w_z3)

z3 = w_z3;

// 2.

always @ (w_x3)

x3 = w_x3;

// 3.

always @ (w_b)

106

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

b = w_b;

always @ (w_y3_1)

begin

y3 = w_y3_1;

done = 1;

end

// NEEDS MORE WORK

// Check for infinity

always @ (posedge clk && done)

begin

if (x3 && y3 == 0)

if (z3 == 1)

infinity <= 1;

end

endmodule

E.3 Point Addition

// Pt. Addition in LD coords

// Y**2 + XYZ = X**3z + X**2Z**2 + a Z**4 LD-Elliptic Curve

mapping

// P (X, Y, Z) ~= Q (X, Y, 1) ... xP = P + Q =(X3, Y3, Z3)

/* 1. A = Y2 Z1**2 + Y1 2. B = X2 Z1 + X1

3. C = Z1 B 4. D = B**2 (C + a Z1**2), a =

1

5. Z3 = C**2 6. E = A C

7. X3 = A**2 + D + E 8. F = X3 + X2 Z3

9. G = (X2 + Y2) Z3**2 10. Y3 = (E + Z3) F + G

*/

107

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

// --

module pt_add (

input in_x1, in_y1, in_z1,

input in_x2, in_y2,

input f_x,

input clk,

input reset,

output reg x3, y3, z3

);

// --

reg [282:0] x1, y1, z1, x2, y2;

reg [282:0] a, b, c, d, e, f, g, y3_1;

reg [1:0] count;

reg done;

wire [282:0] w_z1, w_a, w_b, w_x1, w_x2_1, w_x2, w_y2,

w_g, w_a_1, w_d, w_c, w_a_2, w_e,

w_d_1, w_x3, w_z3, w_y3, w_z3_1, w_z3_2,

w_f, w_g_1, w_y3_1, w_y3_2;

// 1. A = Y2 Z1**2 + Y1

// **

classic_polySquare s0 (.a(z1), .f_x(f_x), .clk(clk),

.z(w_z1)); // clk0

classic_polyMult m0 (.a(w_z1), .b(y2), .f_x(f_x),

.clk(clk), .z(w_a)); // clk1

// 2. B = X2 Z1 + X1

// **

108

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

classic_polyMult m1 (.a(z1), .b(x2), .f_x(f_x),

.clk(clk), .z(w_a)); // clk0

// 3. C = Z1 B

// **

classic_polyMult m2 (.a(z1), .b(w_b), .f_x(f_x),

.clk(clk), .z(w_c)); // clk1

// 4. D = B**2 (C + a Z1**2)

// **

classic_polySquare s1 (.a(w_b), .f_x(f_x), .clk(clk),

.z(w_b_1)); // clk1

classic_polyMult m3 (.a(w_d), .b(w_b_1), .f_x(f_x),

.clk(clk), .z(w_d_1)); // clk1

// 5. Z3 = C**2

// **

classic_polySquare s2 (.a(w_c), .f_x(f_x), .clk(clk),

.z(w_z3)); // clk1

// 6. E = A C

// **

classic_polyMult m4 (.a(w_c), .b(w_a_1), .f_x(f_x),

.clk(clk), .z(w_e)); // clk2

// 7. X3 = A**2 + D + E

// **

classic_polySquare s3 (.a(w_a_1), .f_x(f_x), .clk(clk),

.z(w_a_2)); // clk2

// 8. F = X3 + X2 Z3

// **

classic_polyMult m5 (.a(x2), .b(w_z3), .f_x(f_x),

.clk(clk), .z(w_z3_1)); // clk2

109

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

// 9. G = (X2 + Y2) Z3**2

// **

classic_polySquare s4 (.a(w_z3), .f_x(f_x), .clk(clk),

.z(w_z3_2)); // clk3

classic_polyMult m6 (.a(w_z3_2), .b(w_g), .f_x(f_x),

.clk(clk), .z(w_g_1)); // clk4

// 10. Y3 = (E + Z3) F + G

// **

classic_polyMult m7 (.a(w_f), .b(w_y3), .f_x(f_x),

.clk(clk), .z(w_y3_1)); // clk3

// What #clk edge is present, for specific wires XOR

always @ (posedge clk)

begin

if (reset)

begin

count <= 0;

done <= 0;

x1 <= in_x1;

y1 <= in_y1;

z1 <= in_z1;

x2 <= in_x2;

y2 <= in_y2;

end

else

begin

if (count == 0)

begin

b <= x1 ^ w_x2_1;

g <= x2 ^ y2;

end

110

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

if (count == 1)

begin

a <= w_a ^ y1;

d <= w_z1 ^ w_c;

end

if (count == 2)

begin

x3 <= w_a_2 ^ w_e ^ w_d_1;

y3_1 <= w_e ^ w_z3;

end

if (count == 3)

f <= w_x3 ^ w_z3_1;

if (count == 4)

y3 <= w_g_1 ^ w_y3_1;

end

count <= count + 1;

end

// @ wire changes, make the corresponding register available

// CLK 0

// 2.

always @ (w_b)

b = w_b;

// 9.

always @ (w_g)

g = w_g;

// CLK 1

// 1.

always @ (w_a_1)

a = w_a_1;

// 4.

always @ (w_d)

d = w_d;

// CLK 2

111

APPENDIX E. VERILOG HDL PSEUDO SCRIPTS

// 7.

always @ (w_x3)

x3 = w_x3;

// 10.

always @ (w_y3)

y3_1 = w_y3;

// CLK 3

// 8.

always @ (w_f)

f = w_f;

// CLK 4

// 10.

always @ (w_y3_2)

y3 = w_y3_2;

endmodule

112

Bibliography

[1] Dell EMC, ”A Cost-based Security Analysis of Symmetric and Asymmetric

Key Lengths”, RSA Laboratories, 2010.

[2] P. L. Montgomery, ”Speeding the pollard and elliptic curve methods of factor-

ization”, Mathematics of Computation, vol. 48, no. 177, pp. 243– 264, 1987.

[3] M. Joye, ”Highly regular m-ary powering ladders”, International Workshop on

Selected Areas of Cryptography, Springer Berlin Heidelberg 2009.

[4] D. Freeman, ”Pertinent Side Channel Attacks on Elliptic Curve Cryptographic

Systems”, IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 55-63,

March 2011.

[5] I. H. Hazmi, F. Zhou, F. Gebali, ”Review of Elliptic Curve Processor Archi-

tectures”, IEEE, 78-1-4673-7788-1/15, 2015.

[6] M. Joye, S. Yen, ”The Montgomery Powering Ladder”, Laboratory of Cryp-

tography and Information Security (LCIS), Springer-Verlag Berlin Heidelberg

2003

[7] A. Sghaier, M. Zeghid, B. Bouallegue, A. Baganne, M. Machhout, ”Area Time

Efficient Hardware Implementation of Elliptic Curve Cryptosystem”, 2015

[8] Y. Dan et al., “High-performance hardware architecture of elliptic curve cryp-

tography processor over gf(21̂63),” Journal of Zhejiang University Science A,

vol. 10, no. 2, pp. 301–310, 2009.

[9] C. Puttmann et al., “Hardware accelerators for elliptic curve cryptography,”

Advances in Radio Science, vol. 6, no. 10, pp. 259–264, 2008.

113

BIBLIOGRAPHY

[10] M. Amara and A. Siad, “Hardware implementation of elliptic curve point

multiplication over gf(2m) for ecc protocols,” International Journal for Infor-

mation Security Research (IJISR), vol. 1, no. 3, 2011.

[11] M.A.Fayed, ”A security coprocessor for next generation IP telephony: archi-

tecture, abstraction, and strategies”. University of Victoria, 2007.

[12] K. Jarvinen, “Optimized fpga-based elliptic curve cryptography processor for

high-speed applications,” INTEGRATION, the VLSI journal, vol. 44, no. 4,

pp. 270–279, 2011.

[13] M. Morales-Sandoval, “A reconfigurable and interoperable hardware architec-

ture for elliptic curve cryptography,” Ph.D. dissertation, Tesis de Doctorado,

Instituto Nacional de Astrofısıca, Optica y Electronica, Mexico, 2008

[14] K. Ananyi et al., “Flexible hardware processor for elliptic curve cryptography

over nist prime fields,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions, vol. 17, no. 8, pp. 1099–1112, 2009.

[15] S. Zeidler et al., “Design of a low-power asynchronous elliptic curve cryptog-

raphy coprocessor,” in Electronics, Circuits, and Systems (ICECS), 2013 IEEE

20th International Conference on., pp. 569–572 IEEE, 2013.

[16] T. Akishita, T. Takagi, “Zero-Value Point Attacks on Elliptic Curve Cryp-

tosystem,” Sony Corporation, Ubiquitous Technology Laboratories, Technische

Universitat Darmstadt, Fachbereich Informatik, Germany

[17] R. Karri, K. Wu, P. Mishra, Yongkook Kim, “Fault-based side-channel crypt-

analysis tolerant Rijndael symmetric block cipher architecture,” Defect and

Fault Tolerance in VLSI Systems, 2001. Proceedings. 2001 IEEE International

Symposium, 2001.

[18] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their applica-

tions, Cambridge University Press, 1994.

[19] A. Irwansyah, V.P. Nambiar, M. Khalil-Hani, “An AES Tightly Coupled

Hardware Accelerator in an FPGA-based Embedded Processor Core ,” 2009

International Conference on Computer Engineering and Technology, 2009.

114

BIBLIOGRAPHY

[20] H.W. Lenstra, R.J. Schoof Jr., ”Primitive normal bases for finite fields,”Math-

ematics of Computation, 48: 217–231, 1987.

[21] A. F. Diego, S. L. Paulo, M. Barreto, R. E. Jefferson, ”A note on high-

security general-purpose elliptic curves,” Computer Science Dept, University

of Braśılia, Cryptology ePrint Archive, Report 2013, 647 (2013).

[22] S. Ezzouak, M. Elamrani, A. Azizi, ”Improving Pollard’s Rho Attack on Ellip-

tic Curve Cryptosystems” IEEE Transactions, 978-1-4673-1520-3/12, c©2012

IEEE

[23] P. C. Kocher, ”Timing attacks on implementations of Diffie–Hellman, RSA,

DSS, and other systems,” Proc. CRYPTO, vol. 1109, pp.104–113, 1996

[24] P. C. Kocher, J. Jaffe, B. Jun, ”Differential Power Analysis,” technical re-

port, 1998; Advances in Cryptology - Crypto 99 Proceedings, Lecture Notes In

Computer Science Vol. 1666, M. Wiener, ed., Springer-Verlag, 1999.

[25] M. Alioto, S. Member, M. Poli, S. Rocchi, ”A General Power Model of Dif-

ferential Power Analysis Attacks to Static Logic Circuits,” IEEE TRANS-

ACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,

VOL. 18, NO. 5, May 2010.

[26] W. Shan, X. Fu, Z. Xu, ”A Secure Reconfigurable Crypto IC With Coun-

termeasures Against SPA, DPA, and EMA,” IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYS-

TEMS, vol. 34, no. 7, July 2015.

[27] K. Tiri, I. Verbauwhede, “A logic level design methodology for a secure DPA

resistant ASIC or FPGA implementation,” Proc. Conf. Design, Automation

and Test in Europe, IEEE Computer Society, Washington, DC, pp. 10246,

2004.

[28] Z. Toprak, Y. Leblebici, “Low-power current mode logic for improved DPA-

resistance in embedded systems,” Proc. IEEE Int. Symp. Cir. Sys., pp.

10591062, 2005.

115

BIBLIOGRAPHY

[29] M. W. Allam, M. I. Elmasry, “Dynamic current mode logic (DyCML): A new

low-power high-performance logic style,” IEEE J.Solid-State Circuits, vol. 36,

no. 3, pp. 550558, Mar. 2001.

[30] C. Tokunaga, D. Blaauw, “Securing Encryption Systems With a Switched Ca-

pacitor Current Equalizer,” IEEE JOURNAL OF SOLID-STATE CIRCUITS,

vol. 45, no. 1, January 2010

[31] D. A. Osvik1, A. Shamir, E. Tromer2 “Cache Attacks and Countermeasures:

the Case of AES,” Department of Computer Science and Applied Mathematics,

Weizmann Institute of Science, Rehovot 76100, Israel revised 2005

[32] D. Bernstein “Cache-timing attacks on AES” Department of Mathematics,

Statistics, and Computer Science (M/C 249) The University of Illinois at

Chicago, 2005

[33] X. Duan, Q. Cui, S. Wang, H. Fang, G. She, ”Differential Power Analysis

Attack and Efficient Countermeasures on PRESENT,” 2016 8th IEEE Inter-

national Conference on Communication Software and Networks, 2016

[34] NIST ”Recommended Elliptic Curves for Federal Government Use,”

http://csrc.nist.gov, 2004.

[35] H. Yue, ”Efficient Scalar Multiplication Against Side Channel Attacks Using

a New Binary Representation”, 1st Seminar - University of Windsor, 2016.

[36] M. Yasuda, ”On the Strength Comparison of ECC and RSA”, SHARCS 2012

(Special-Purpose Hardware for Attacking Cryptographic Systems), Fujisa Lab-

oratories Ltd., 2012.

[37] H. Wu, ”AES: Advanced Encryption Standard”, Chapter 5: Data Security

and Cryptography - University of Windsor, 2015.

[38] F. K. Gürkaynak, Side Channel Attack Chapter 3: Secure Cryptographic

Accelerators, 2006

[39] Rodriguez-Henriquez, F., Saqib, N.A., Diaz Pérez, A., Koc, C.K., ”Crypto-

graphic Algorithms on Reconfigurable Hardware”, Springer, 2007.

116

BIBLIOGRAPHY

[40] Jean-Pierre Deschamps, José Luis Imaña, Gustavo D. Sutter, ”Hardware Im-

plementations of Finite-Field Arithmetic”, The McGraw-Hill Companies, Inc.,

2009.

[41] C. Paar, J. Pelzl, ”Understanding Cryptography”, Springer, 2010.

[42] S. Mangard, E. Oswald, T. Popp, ”Power Analysis Attacks – Revealing the

Secrets of Smart Cards”, Springer, 2007.

[43] V. Miller, ”Use of Elliptic Curves in Cryptography”, Advances in Cryptology-

CRYPTO 85 Proceedings, Springer, pp. 417-426, 1986.

[44] N. Koblitz, ”Elliptic Curve Cryptosystems”, Mathematics of Computations,

vol. 48, no. 177, pp. 203-209, 1987.

[45] Leboeuf, Karl Bernard, ”GPU and ASIC Acceleration of Elliptic Curve Scalar

Point Multiplication” (2012). Electronic Theses and Dissertations. Paper 5367.

[46] (2016) Cryptography Stack Exchange. [Online]. Available:

http://crypto.stackexchange.com

[47] (2016) Safe Curves - Choosing safe curves for elliptic curve cryptography.

[Online]. Available:

https://safecurves.cr.yp.to

[48] (2016) Internet stats - Live internet feed. [Online]. Available:

http://www.internetlivestats.com/internet-users

[49] (2016) NSA - CSA - NSA Security Assurance. [Online]. Available:

http://www.nsa.gov/what-we-do/information-assurance/

[50] (2016) DPA Contest, “DPA Contest v4” [Online] Available:

http://www.dpacontest.org/home/ Accessed July 2016.

[51] (2016) Chip Whisperer, “Open-Sourced SCA tools” [Online] Available:

https://newae.com/tools/chipwhisperer/ Accessed June 2016.

[52] R. Bilal and M. Rajaram, “Design and evaluation of parallel, scalable, curve

based processor over binary field,” WSEAS Transactions on Computers, vol.

10, no. 10, pp.353–365, 2011.

117

BIBLIOGRAPHY

[53] M.A.Fayed, ”A security coprocessor for next generation IP telephony: archi-

tecture, abstraction, and strategies”. University of Victoria, 2007.

[54] R. Bilal and M. Rajaram, “Design and evaluation of parallel, scalable, curve

based processor over binary field,” WSEAS Transactions on Computers, vol.

10, no. 10, pp. 353–365, 2011.

[55] Y. W. R.Li, “Fpga based unified architecture for public key and private key

cryptosystems,” Frontiers of Computer Science, vol. 7, no. 3, pp. 307–316, 2013.

118

Vita Auctoris

Dylan was born in May 1994, in Windsor, Ontario. He received his B.A.Sc. and

M.A.Sc. degrees in Electrical and Computer Engineering from the University of

Windsor in 2016 and 2017 respectively - Windsor Ontario, Canada.

His research interest includes cryptography, side-channel attacks, information and

algorithm security, automotive cyber-security, FPGA and ASIC accelerators, and

analog circuit design.

119

	Private and Public-Key Side-Channel Threats Against Hardware Accelerated Cryptosystems
	Recommended Citation

	tmp.1497903847.pdf.qeRC2

