2,591 research outputs found

    Slowness learning for curiosity-driven agents

    Get PDF
    In the absence of external guidance, how can a robot learn to map the many raw pixels of high-dimensional visual inputs to useful action sequences? I study methods that achieve this by making robots self-motivated (curious) to continually build compact representations of sensory inputs that encode different aspects of the changing environment. Previous curiosity-based agents acquired skills by associating intrinsic rewards with world model improvements, and used reinforcement learning (RL) to learn how to get these intrinsic rewards. But unlike in previous implementations, I consider streams of high-dimensional visual inputs, where the world model is a set of compact low-dimensional representations of the high-dimensional inputs. To learn these representations, I use the slowness learning principle, which states that the underlying causes of the changing sensory inputs vary on a much slower time scale than the observed sensory inputs. The representations learned through the slowness learning principle are called slow features (SFs). Slow features have been shown to be useful for RL, since they capture the underlying transition process by extracting spatio-temporal regularities in the raw sensory inputs. However, existing techniques that learn slow features are not readily applicable to curiosity-driven online learning agents, as they estimate computationally expensive covariance matrices from the data via batch processing. The first contribution called the incremental SFA (IncSFA), is a low-complexity, online algorithm that extracts slow features without storing any input data or estimating costly covariance matrices, thereby making it suitable to be used for several online learning applications. However, IncSFA gradually forgets previously learned representations whenever the statistics of the input change. In open-ended online learning, it becomes essential to store learned representations to avoid re- learning previously learned inputs. The second contribution is an online active modular IncSFA algorithm called the curiosity-driven modular incremental slow feature analysis (Curious Dr. MISFA). Curious Dr. MISFA addresses the forgetting problem faced by IncSFA and learns expert slow feature abstractions in order from least to most costly, with theoretical guarantees. The third contribution uses the Curious Dr. MISFA algorithm in a continual curiosity-driven skill acquisition framework that enables robots to acquire, store, and re-use both abstractions and skills in an online and continual manner. I provide (a) a formal analysis of the working of the proposed algorithms; (b) compare them to the existing methods; and (c) use the iCub humanoid robot to demonstrate their application in real-world environments. These contributions together demonstrate that the online implementations of slowness learning make it suitable for an open-ended curiosity-driven RL agent to acquire a repertoire of skills that map the many raw pixels of high-dimensional images to multiple sets of action sequences

    Hypothesis-based image segmentation for object learning and recognition

    Get PDF
    Denecke A. Hypothesis-based image segmentation for object learning and recognition. Bielefeld: Universität Bielefeld; 2010.This thesis addresses the figure-ground segmentation problem in the context of complex systems for automatic object recognition as well as for the online and interactive acquisition of visual representations. First the problem of image segmentation in general terms and next its importance for object learning in current state-of-the-art systems is introduced. Secondly a method using artificial neural networks is presented. This approach on the basis of Generalized Learning Vector Quantization is investigated in challenging scenarios such as the real-time figure-ground segmentation of complex shaped objects under continuously changing environment conditions. The ability to fulfill these requirements characterizes the novelty of the approach compared to state-of-the-art methods. Finally our technique is extended towards online adaption of model complexity and the integration of several segmentation cues. This yields a framework for object segmentation that is applicable to improve current systems for visual object learning and recognition

    Perceptual grouping by proximity and orientation bias: experimental and modelling investigations

    Get PDF
    Grouping by proximity is the principle of perceptual organization by which the elements of a visual scene which are closer in space tend to be perceived as a coherent ensemble. Research into this topic makes substantial use of the class of stimuli known as dot lattices. The Pure Distance Law (Kubovy et al., 1998) predicts that the probability of grouping by proximity in these stimuli only depends on the relative inter-dot distance between competing organizations. Despite much effort to explain how grouping by proximity is shaped by the basic organization of visual stimuli, its neural mechanisms are still under debate. Moreover, previous studies reported that grouping in dot lattices also occurs according to an orientation bias, by which these stimuli are perceived along a preferred orientation (vertical), regardless of what predicted by the Pure Distance Law. The aim of this thesis is to shed light on the functional and neural mechanisms characterizing grouping by proximity in dot lattices, as well as the trade-off between proximity- and orientation-based grouping. Study 1 investigates the role of high-level visual working memory (VWM) in promoting for the shift between grouping by proximity and orientation bias. Both the quantity (load) and the quality (content) of the information stored in VWM shape online grouping for dot lattices. Study 2 presents a neural network model simulating the dynamics occurring between low- and high-level processing stages during dot lattices perception. The degree of synchrony between the units at low-level module has a key role in accounting for grouping by proximity. Overall, our results show that high-level (Study 1) and low-level (Study 2) operations contribute in parallel to the emergence of grouping by proximity, as well as to its reciprocity with orientation-based grouping

    An integrated theory of language production and comprehension

    Get PDF
    Currently, production and comprehension are regarded as quite distinct in accounts of language processing. In rejecting this dichotomy, we instead assert that producing and understanding are interwoven, and that this interweaving is what enables people to predict themselves and each other. We start by noting that production and comprehension are forms of action and action perception. We then consider the evidence for interweaving in action, action perception, and joint action, and explain such evidence in terms of prediction. Specifically, we assume that actors construct forward models of their actions before they execute those actions, and that perceivers of others' actions covertly imitate those actions, then construct forward models of those actions. We use these accounts of action, action perception, and joint action to develop accounts of production, comprehension, and interactive language. Importantly, they incorporate well-defined levels of linguistic representation (such as semantics, syntax, and phonology). We show (a) how speakers and comprehenders use covert imitation and forward modeling to make predictions at these levels of representation, (b) how they interweave production and comprehension processes, and (c) how they use these predictions to monitor the upcoming utterances. We show how these accounts explain a range of behavioral and neuroscientific data on language processing and discuss some of the implications of our proposal

    Towards a complete multiple-mechanism account of predictive language processing [Commentary on Pickering & Garrod]

    Get PDF
    Although we agree with Pickering & Garrod (P&G) that prediction-by-simulation and prediction-by-association are important mechanisms of anticipatory language processing, this commentary suggests that they: (1) overlook other potential mechanisms that might underlie prediction in language processing, (2) overestimate the importance of prediction-by-association in early childhood, and (3) underestimate the complexity and significance of several factors that might mediate prediction during language processing

    Learning the Structure of Continuous Markov Decision Processes

    Get PDF
    There is growing interest in artificial, intelligent agents which can operate autonomously for an extended period of time in complex environments and fulfill a variety of different tasks. Such agents will face different problems during their lifetime which may not be foreseeable at the time of their deployment. Thus, the capacity for lifelong learning of new behaviors is an essential prerequisite for this kind of agents as it enables them to deal with unforeseen situations. However, learning every complex behavior anew from scratch would be cumbersome for the agent. It is more plausible to consider behavior to be modular and let the agent acquire a set of reusable building blocks for behavior, the so-called skills. These skills might, once acquired, facilitate fast learning and adaptation of behavior to new situations. This work focuses on computational approaches for skill acquisition, namely which kind of skills shall be acquired and how to acquire them. The former is commonly denoted as skill discovery and the latter as skill learning . The main contribution of this thesis is a novel incremental skill acquisition approach which is suited for lifelong learning. In this approach, the agent learns incrementally a graph-based representation of a domain and exploits certain properties of this graph such as its bottlenecks for skill discovery. This thesis proposes a novel approach for learning a graph-based representation of continuous domains based on formalizing the problem as a probabilistic generative model. Furthermore, a new incremental agglomerative clustering approach for identifying bottlenecks of such graphs is presented. Thereupon, the thesis proposes a novel intrinsic motivation system which enables an agent to intelligently allocate time between skill discovery and skill learning in developmental settings, where the agent is not constrained by external tasks. The results of this thesis show that the resulting skill acquisition approach is suited for continuous domains and can deal with domain stochasticity and different explorative behavior of the agent. The acquired skills are reusable and versatile and can be used in multi-task and lifelong learning settings in high-dimensional problems
    corecore