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Zusammenfassung
Künstliche, intelligente Agenten, die über längere Zeitspannen autonom in
komplexen Umgebungen agieren und eine Vielzahl unterschiedlicher Auf-
gaben lösen können, sind von großem Interesse. Solche Agenten werden
während ihrer „Lebensspanne“ häufig mit Problemstellungen konfrontiert
sein, die zum Zeitpunkt ihrer Entwicklung nicht absehbar waren. Aufgrund
dessen ist die Fähigkeit, lebenslang neue Verhaltensweisen erlernen zu
können, eine wichtige Voraussetzung für diese Art von Agenten, da sie es
ihnen ermöglicht, mit unvorhergesehenen Situationen umzugehen.

Es wäre allerdings für einen Agenten sehr aufwändig, jede komplexe Ver-
haltensweise von Grund auf neu zu erlernen. Es ist naheliegender, Verhalten
als modular aufzufassen und den Agenten eine Reihe grundlegender Fähig-
keiten erlernen zu lassen, die als wiederverwendbare Verhaltensbausteine
dienen können. Solche Fähigkeiten können, nachdem sie erworben wurden,
ein schnelleres Erlernen von Verhalten und Adaptieren an neue Situationen
ermöglichen. Der Schwerpunkt dieser Arbeit liegt auf algorithmischen
Ansätzen für den Erwerb von Fähigkeiten, insbesondere darauf, welche
Fähigkeiten erworben werden sollen und wie der Erwerb dieser Fähigkeiten
vonstatten gehen kann. Das Erstere wird als „Entdeckung von Fähigkeiten“
und das Letzere als „Erlernen von Fähigkeiten“ bezeichnet.

Der Hauptbeitrag dieser Arbeit ist ein neuer, inkrementeller Ansatz für
die Entdeckung von Fähigkeiten, der für lebenslanges Lernen geeignet ist.
In diesem Ansatz lernt der Agent zunächst inkrementell eine Repräsen-
tation seiner Umgebung in Form eines Graphen und nutzt dann gewisse
Eigenschaften dieses Graphen wie dessen „Flaschenhälse“ als Grundlage
für die Entdeckung von Fähigkeiten. Diese Arbeit schlägt einen neuen
Ansatz für das Erlernen solcher Graph-basierter Repräsentationen vor, der
auf einem probabilistischen, generativen Modell basiert. Des Weiteren
wird ein neuer inkrementeller Clustering-Ansatz für die Identifizierung von
Flaschenhälsen in solchen Graphen vorgestellt.

Darauf aufbauend wird in der Arbeit ein neues intrinsisches Motivations-
system vorgeschlagen, das es einem Agent erlaubt, seine Zeit dynamisch
zwischen der Entdeckung und dem Erlernen von Fähigkeiten einzuteilen.
Dieses Motivationssystem zielt auf Szenarien ab, in welchen die Hand-
lungsfreiheit des Agenten nicht durch die Pflicht zur Erfüllung externer
Aufgaben eingeschränkt wird. Die Ergebnisse der Arbeit zeigen, dass der
resultierende Ansatz für den Erwerb von Fähigkeiten für kontinuierliche
Domänen geeignet ist und mit Stochastizität und variierendem explorati-
vem Verhalten eines Agenten umgehen kann. Die erworbenen Fähigkeiten
sind wiederverwendbar und vielseitig und können zum zeitgleichen Lösen
verschiedener Aufgaben und für lebenslanges Lernen genutzt werden.





Abstract
There is growing interest in artificial, intelligent agents which can operate
autonomously for an extended period of time in complex environments and
fulfill a variety of different tasks. Such agents will face different problems
during their lifetime which may not be foreseeable at the time of their
deployment. Thus, the capacity for lifelong learning of new behaviors is an
essential prerequisite for this kind of agents as it enables them to deal with
unforeseen situations.

However, learning every complex behavior anew from scratch would be
cumbersome for the agent. It is more plausible to consider behavior to
be modular and let the agent acquire a set of reusable building blocks for
behavior, the so-called skills. These skills might, once acquired, facilitate
fast learning and adaptation of behavior to new situations. This work
focuses on computational approaches for skill acquisition, namely which
kind of skills shall be acquired and how to acquire them. The former is
commonly denoted as “skill discovery” and the latter as “skill learning”.

The main contribution of this thesis is a novel incremental skill acquisition
approach which is suited for lifelong learning. In this approach, the agent
learns incrementally a graph-based representation of a domain and exploits
certain properties of this graph such as its bottlenecks for skill discovery.
This thesis proposes a novel approach for learning a graph-based repre-
sentation of continuous domains based on formalizing the problem as a
probabilistic generative model. Furthermore, a new incremental agglom-
erative clustering approach for identifying bottlenecks of such graphs is
presented.

Thereupon, the thesis proposes a novel intrinsic motivation system which
enables an agent to intelligently allocate time between skill discovery and
skill learning in developmental settings, where the agent is not constrained
by external tasks. The results of this thesis show that the resulting skill
acquisition approach is suited for continuous domains and can deal with
domain stochasticity and different explorative behavior of the agent. The
acquired skills are reusable and versatile and can be used in multi-task and
lifelong learning settings in high-dimensional problems.





Acknowledgements

Writing a PhD thesis is—at least nowadays—not an endeavor which an
author can accomplish in isolation; rather it is a work conducted by the
author but promoted by its environment, both its professional and its private
one. For this, I would like to express my gratitude to all the people that
have supported me.

First and foremost, I would like to thank my adviser Prof. Dr. Frank Kirch-
ner, who gave me the opportunity of working in his group in the last couple
of years, both as part of the DFKI RIC and the Robotics Group of the
University Bremen. Without his continuous encouragement for thinking
and rethinking my ideas, for reaching beyond the borders of a specific field
in order to see the overall picture, and for aiming at general approaches
rather than specific solutions, this thesis would not have become what it
is now. Equally important is the vivid and ambitious but at the same time
constructive atmosphere his lab has always exhibited during the years of
writing this thesis. The annual PhD retreats of the group have been im-
mensely helpful and I am glad that my adviser took each year a whole week
time for this.

I am also grateful for all the help, comments, and criticisms expressed by
my colleagues during the last years. In particular, I would like to thank
my dear colleague Dr. Yohannes Kassahun, who has been a continuous
source of inspiration during my years in Bremen, both in scientific as
well as philosophical topics. He has supported me ever since my first
day in Bremen, from writing the first scientific papers to finishing this
thesis. Reading this work entirely and giving uncounted helpful comments
and suggestions for refining it has been an invaluable help. I would also
like to thank my colleagues from the project BesMan, in particular Elsa
Andrea Kirchner, for several discussions on the biological principles of
skill acquisition and for shedding light onto the different usages of the term
skill in biology, psychology, and reinforcement learning. I also gratefully
acknowledge the partial funding of this work as a part of the project BesMan
under a grant of the German Federal Ministry of Economics and Technology
(BMWi, FKZ 50 RA 1217).

The progress of this thesis has been presented five times on the annual
PhD retreats of the DFKI RIC in the years 2009-2013 on Spiekeroog,
Wangerooge, and Juist. I would like to thank the other PhD students of
the group and the postdoctoral volunteers for their helpful feedback during
these retreats. In particular, I would like to thank Dr. José de Gea Fernández
and Dr. Jan Albiez for their feedback. Equally important was the feedback
of the external scientific community. I would like to express my gratitude
to all reviewers for their constructive and mostly balanced reviews of my



papers and to the journal editors and conference organizers for all their
efforts.

Quite important for this work has also been the software stack provided
by the open source community. The algorithms proposed in this thesis
have been implemented in the Python programming language, based on
the packages NumPy, SciPy, scikit-learn, and NetworkX. The figures of
this thesis have been created using matplotlib and Inkscape. The open
source frameworks pySPACE and MMLF, which are developed by the
Robotics Group of the University Bremen and the DFKI RIC, have been
of great value for automating the empirical evaluation of the proposed
approaches. Using LATEX for typesetting has simplified writing this thesis
and the corresponding papers immensely. GNU/Linux has served as a
stable operating system that did not “get in the way” too frequently.

Without the help of all these people (and many further ones which cannot
all be mentioned here explicitly), this thesis would not have been possible.
Since many of their suggestions, comments, and criticisms have contributed
to the approaches presented in this thesis, may it be directly or indirectly,
I found it appropriate to use the plural “we” rather than the singular “I”
during the presentation of the thesis’ main contributions.

Last but not least I would to express my gratitude to my family for their
support. I would like to thank my wife Silke for her aid during the last
years and for never losing patience when the undertaking of writing this
thesis became ever longer than expected over the years. My parents and my
sister have always supported and encouraged me, starting from my years
in school over my diploma studies in Münster to my time in Bremen. The
same is true for my grandfather and Gerda, who were always interested
in the content and progress of my work and encouraged me to finish it.
Without such a balanced and supportive private environment, writing this
thesis would have been much harder.

Jan Hendrik Metzen Bremen, December 2013



Contents

Page

CHAPTER 1 INTRODUCTION 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2 BACKGROUND 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Decision Making and Optimality . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Sequential Decision Problems . . . . . . . . . . . . . . . . . 11
2.2.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . 13
2.2.3 Optimal Behavior . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Value Function and Bellman Equations . . . . . . . . . . . . 15

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Temporal Difference Learning . . . . . . . . . . . . . . . . . 17
2.3.2 Function Approximation . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Direct Policy Search . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Hierarchical Reinforcement Learning . . . . . . . . . . . . . 21

2.4 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Graph Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . 28

CHAPTER 3 SKILL DISCOVERY 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Illustration: Towers of Hanoi . . . . . . . . . . . . . . . . . . 34
3.2 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Potential Benefits . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Desirable Properties . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Solution-Based Heuristics . . . . . . . . . . . . . . . . . . . 43
3.3.2 Factoring-Based Heuristics . . . . . . . . . . . . . . . . . . . 46



CONTENTS xii

3.3.3 Frequency-Based Heuristics . . . . . . . . . . . . . . . . . . 47
3.3.4 Graph-Based Heuristics . . . . . . . . . . . . . . . . . . . . . 47
3.3.5 Meta Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . 50

3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

CHAPTER 4 INCREMENTAL GRAPH-BASED SKILL DISCOVERY 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Transition Graph Generation . . . . . . . . . . . . . . . . . . 58
4.2.2 Linkage Criteria and Bottlenecks . . . . . . . . . . . . . . . . 60
4.2.3 Incremental Graph Clustering . . . . . . . . . . . . . . . . . 61
4.2.4 Skill Prototype Generation . . . . . . . . . . . . . . . . . . . 67

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Bottleneck Criterion . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Graph Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.4 Edge Weights . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.5 Cluster Accordance Analysis . . . . . . . . . . . . . . . . . . 75
4.3.6 Multi-task Learning . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CHAPTER 5 LEARNING GRAPH-BASED REPRESENTATIONS 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Graph-Based Skill Discovery in Continuous Domains . . . . . . . . . 86

5.2.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Likelihood of Transition Graph . . . . . . . . . . . . . . . . . 89
5.3.2 FIGE: Force-Based Iterative Graph Estimation . . . . . . . . . 90
5.3.3 Skill Prototype Generation . . . . . . . . . . . . . . . . . . . 94

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.1 Graph Likelihood . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.2 Skill Discovery . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Excursus: Representation Learning . . . . . . . . . . . . . . . . . . . 101
5.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5.2 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

CHAPTER 6 LIFELONG LEARNING AND INTRINSIC MOTIVATION 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Lifelong Learning and Intrinsic Motivation . . . . . . . . . . . . . . . 112



xiii CONTENTS

6.2.1 Lifelong Learning and Shaping . . . . . . . . . . . . . . . . . 112
6.2.2 Intrinsic Motivation . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.1 Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 Incremental Graph-Based Skill Discovery . . . . . . . . . . . 118
6.3.3 Intrinsic Motivation . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.1 2D Multi-Valley . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.2 Octopus Arm . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

CHAPTER 7 CONCLUSION AND OUTLOOK 133
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4 Closing Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

APPENDIX A DERIVATIONS 139
A.1 Derivation of Transition Graph Weights . . . . . . . . . . . . . . . . 139
A.2 Derivation of FIGE’s Update Equations . . . . . . . . . . . . . . . . . 140

LIST OF FIGURES 143

LIST OF ALGORITHMS 145

LIST OF SYMBOLS 147

BIBLIOGRAPHY 151



CONTENTS xiv



1
Introduction

“The beginning is perhaps more difficult than anything else, but keep heart, it
will turn out all right.”

Vincent van Gogh, letter to Theo van Gogh, 1873

1.1 MOTIVATION

EMBODIED agents like robots are used in increasingly complex, real-world domains,
such as domestic environments (Iocchi et al., 2012), health care (Okamura et al.,

2010), and extraterrestrial settings (Grotzinger et al., 2012). These environments are
often unstructured, populated by humans, and changing over time. At the same time,
robots are becoming increasingly sophisticated, both in terms of their hardware and
their control software, see, e.g., Lemburg et al. (2011) and Bartsch et al. (2012). A
simple, reactive control approach (Brooks, 1986) is not sufficient for these systems
as it lacks the ability to predict and control the environment on larger scales of time
and space. For this, agents must be able to build up both procedural and declarative
knowledge1 about the world and store this knowledge in a convenient way so that it
can be reused and adapted easily. This requires robotic control architectures which
allow learning, utilization, combination, integration, and adaptation of procedural and
declarative knowledge. A multitude of robot control architectures has been proposed
over the last years (see Murphy (2000) for a discussion and an overview). Figure 1.1
presents one example of a 3-layered, “hybrid” control architecture.

The focus of this work is one specific aspect of such a robotic control architecture:
the learning and generation of complex behavior. Complex behavior is considered to
be goal-directed, hierarchically organized, and based on generalization, transfer, and
analogy (Oudeyer et al., 2007). One building block for complex behavior is a set of
versatile, reusable skills. Skills are procedural knowledge of an agent (de Jong and
Ferguson-Hessler, 1996), i.e., they are a kind of knowledge that can be utilized directly

1While declarative knowledge refers to knowledge about facts in the world, i.e., that something is the
case, procedural knowledge denotes knowledge of how to perform some task in a close-to-optimal way.
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Figure 1.1 – A 3-layer robot control architecture. The lowest, “reactive” layer consists

of hard-wired connections between sensory stimuli and motor commands. This layer

allows fast and direct reaction to sensory input. The middle, “decision” layer contains

learned predictive models of senso-motoric relations, which are used amongst other for

internal generation of goals. Based on these self-generated goals and intrinsic motivation

mechanisms, more complex, adaptive behavior is generated based on a hierarchy of acquired

skills. The upper, “creative” layer of the architecture becomes important in novel situations,

where the agent discovers new correlations in its sensory input, or when internal models are

wrong. In this case, the creative layer may allow compensating for the errors by adapting

predictive models and modifying behavior generation. Moreover, extrinsic motivation is

continuously generated based on homeostatic need regulation and prediction of fitness-

enhancing events and provided as feedback to the reactive and decision layer, which may

use this feedback to modify behavior generation. Please refer to Köhler et al. (2012) for

more details.

for the performance of some task with a pre-determined result in a close-to-optimal way.

Skills are not inborn but acquired during the lifetime of an individual. Skill acquisition

(Speelman and Kirsner, 2005, Chapter 2) is a process that consists of the discovery of

novel, useful skills, learning to perform these skills in an efficient and reliable manner,

and being able to utilize the learned skills for the acquisition of more complex skills or

for solving external tasks.

How can a set of reusable skills be acquired autonomously? Taking inspiration

from humans, which can acquire skills of astounding sophistication (see Figure 1.2),

one can observe that humans develop in an autonomous open-ended manner through
lifelong learning (Oudeyer et al., 2007). Accordingly, open-ended, lifelong learning

is also considered to be a key prerequisite for employing artificial systems like robots

in complex, changing environments (Thrun and Mitchell, 1995; Silver et al., 2013).

Yet, to date no artificial system is (by far) equipped with similar capacities as human

beings in this regard. However, there is growing interest in several areas, most notably

in the field of developmental robotics (Weng et al., 2001; Lungarella et al., 2003; Asada
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(a) Girl learning to ride a bicycle.
Shaine Mata, CC BY-NC-ND 2.0 license

(b) 2.5 months old baby learns to grab objects.
www.flickr.com/people/_-o-_/

CC BY 2.0 license

(c) Woman making pottery.
Owen Lin, CC BY-NC-ND 2.0 license

(d) Man juggles.
www.flickr.com/people/Dvortygirl

CC BY-SA 2.0 license

(e) Handwriting a text.
Jeffrey J. Pacres, CC BY-NC-ND 2.0 license

(f) Rubik’s cube is a game where experts
players can use acquired skills to simplify a

hard search problem considerably.
Steve Rhodes, CC BY-ND 2.0 license

Figure 1.2 – Examples of acquired skills. Acquired motor skills may enrich the scope of
the learner’s behavior (a,b), may serve as basis for an occupation (c,d), and may be the basis
for more abstract, cognitive tasks (e,f). Examples are inspired by Figure 1.1 of Konidaris
(2011).

www.flickr.com/people/_-o-_/
www.flickr.com/people/Dvortygirl
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et al., 2009), of providing artificial systems with means for development and lifelong
learning. According to Oudeyer et al. (2007), development should be progressive
and incremental as well as autonomous and active. Development being progressive
and incremental means that first simple skills are acquired and, later on, successively
more complex skills are learned based on the more simple skills that have already been
acquired (“cumulative learning”). The development process is autonomous and active
if the system decides on its own which kind of skill it tries to acquire at a certain stage
of development rather than getting an externally shaped sequence of tasks.

For employing a developmental approach to skill acquisition in artificial agents, one
needs to address how skill acquisition can be implemented in a way which exhibits these
four properties identified by Oudeyer et al. (2007). For autonomous skill acquisition, the
agent needs to decide on its own which skills shall be acquired, i.e., which capabilities
are useful for it. This capacity is denoted as skill discovery. Dietterich (2000a) has
concluded that the discovery of hierarchical structures such as skills is the biggest open
problem in hierarchical reinforcement learning; it is also considered to be essential for
lifelong learning (Hengst, 2002). While a multitude of computational skill discovery
approaches has been proposed, most of these approaches do not allow progressive and
incremental development, are tailored to small and discrete problem domains, or cannot
be employed in a developmental setting1 (see Section 3.3).

How can the acquisition of skills exhibit the desirable property of being active?
This question is studied in the field of intrinsic motivation systems. The term “in-
trinsically motivated” stems from biology and one of its first appearances was in a
paper by Harlow (1950) on the manipulation behavior of rhesus monkeys. According
to Baldassarre (2011) “extrinsic motivations guide learning of behaviors that directly
increase [evolutionary] fitness” while “intrinsic motivations drive the acquisition of
knowledge and skills that contribute to produce behaviors that increase fitness only in a
later stage.” Intrinsic motivations contribute to learning not as a learning mechanism
per se, but rather as a guiding mechanism which guides learning mechanisms to acquire
behaviors that increase fitness. According to Baldassarre “[intrinsic motivations] drive
organisms to continue to engage in a certain activity if their competence in achieving
some interesting outcomes is improving, or if their capacity to predict, abstract, or
recognise percepts is not yet good or is improving...”. Thus, intrinsic motivation can
be seen as an integral part of skill acquisition that determines which of the discovered
skills shall be learned at a certain stage of development.

How can skills be acquired in an incremental and progressive way? The central
idea investigated in this thesis is that identifying and exploiting structure of a problem
domain allows the discovery of reusable, versatile skills in such an incremental and
progressive manner in a developmental setting. This idea is motivated by a multitude
of works which have shown that effective learning is only possible by exploiting
structure and regularities of a problem. For instance, Ashby (1956) recognized that

1In a developmental setting, an artificial agent is granted a developmental period, in which it can act
freely, before it is confronted with externally imposed tasks. In this developmental period, the agent may
acquire a collection of skills that it can reuse later on for learning to solve external tasks more efficiently.
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learning is worthwhile only when the environment shows some type of constraint
such as reoccurring sub-structures. The reason why structure is also considered to be
important for incremental and progressive skill discovery in developmental settings is
that (a) structure itself can be identified incrementally and be refined later on and (b)
the structure of a domain is independent of the task imposed onto an agent and can thus
also be discovered in a developmental setting.

Besides being interesting on their own, artificial systems with the capacity for
intrinsically motivated, lifelong learning of skills could also have a considerable practical
impact. For instance, a future domestic robot endowed with these capacities might learn
new skills during phases in which no explicit task is assigned to it. These novel skills
might enable the robot to solve future tasks more efficiently or even to solve tasks that
have been impossible to it originally. Similarly, robots employed in remote domains
such as extra-terrestrial exploration missions could benefit considerable from the ability
of lifelong learning: if such a remote robot would be confronted with a situation that
was not foreseen by its engineers it could learn autonomously how to deal with it rather
than requiring human mission operators to intervene. This can be crucial as manual
intervention is already cumbersome for nowadays missions to, e.g., the planet Mars, but
might become impractical for even more ambitious future missions that exhibit limited
communication bandwidth and high delay between mission operators and robots.

1.2 GOAL

Section 1.1 has motivated the interest in artificial agents with the capacity for au-
tonomous acquisition of novel skills. As discussed, skill acquisition in a lifelong
learning agent should be progressive and incremental as well as autonomous and active.
Moreover, such a skill acquisition module should be applicable in a broad range of
domains, in particular in domains that are continuous and stochastic. To the author’s
best knowledge, no skill acquisition approach proposed in prior work satisfies all of
these demands at the same time (see Section 3.3). The central idea of this thesis is
that identifying and exploiting structure of a problem domain can give rise to such a
skill acquisition approach. Accordingly, the goal of this thesis can be summarized as
follows:

Goal: Develop an incremental, self-motivated approach for skill acqui-
sition which is based on identifying and exploiting the structure of a
problem and which can be used in developmental and lifelong learning
settings in continuous and stochastic domains.

Based on a study of prior works (see Section 3.3), graph-based approaches for skill
discovery have been identified as promising candidates for achieving this goal since
graph-based representations allow naturally to capture structure that is present in a
problem. However, typical graph-based skill discovery approaches are neither incre-
mental nor suited for continuous domains. Furthermore, many existing skill acquisition
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approaches require that an external reward signal is provided and can thus not be em-
ployed in developmental and lifelong learning settings. Accordingly, for achieving the
stated goal, three subgoals have been identified:

SUBGOAL S1 Develop an incremental, graph-based skill discovery approach that can
identify skills at any time and allows an agent to acquire a collection of
skills which increases in both size and sophistication over time.

SUBGOAL S2 Extend graph-based approaches for skill discovery to continuous do-
mains.

SUBGOAL S3 Develop an intrinsic motivation mechanism that allows incremental
skill acquisition in the absence of external reward signals, e.g., in
developmental or lifelong learning settings.

This thesis restricts itself to domains which can be modeled as Markov Decision
Processes (see Section 2.2.2). This allows defining, studying, and comparing methods
in a solid and clearly defined theoretical framework.

1.3 STRUCTURE

Figure 1.3 shows the structure of this thesis. Chapter 2 and 3 provide the fundamentals
of this thesis. Chapter 2 defines the problem class addressed in this thesis, defines what
is considered as optimal behavior, and provides the required background in reinforce-
ment learning and graph theory. Chapter 3 gives a motivation for learning skills and
autonomous skill discovery, discusses advantages and disadvantages, and provides a
review of related works. Moreover, baselines and metrics used throughout this thesis
are defined.

Chapter 4, 5, and 6 contain the main contributions of this thesis. Chapter 4 addresses
subgoal S1 by proposing OGAHC, a novel incremental skill discovery method which
is based on learning a transition graph and is suited for discrete domains. Chapter
5 focuses on subgoal S2. For this, the new method FIGE is proposed which allows
estimating transition graphs in continuous domains that capture the domain’s dynamics
well. A derivation of FIGE based on maximizing the likelihood of a set of observed
transitions is given in Appendix A.2. Chapter 6 provides an incremental version of
FIGE and an extension of OGAHC to continuous domains. Furthermore, subgoal S3 is
addressed by proposing means for intrinsic motivation which allow an agent to trade-off
skill discovery and learning in developmental or lifelong learning settings. Chapter 7
provides a conclusion of this thesis by summarizing its main contributions and insights,
and a discussion of open problems and future work.

An overview over all figures of the thesis is given on page 143 and a summary of all
algorithms on page 145. A list of the symbols used throughout this thesis is provided
on page 147.
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Figure 1.3 – Schematic illustration of the thesis structure. Arrows from one chapter to

another one indicate that the former chapter provides background for the later one.
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1.4 CONTRIBUTIONS

This thesis consists of three main contributions, which address the identified subgoals.
These contributions are supported by publications in peer-reviewed conferences and
journals.

The first contribution is the development of a novel graph-based skill discovery
method entitled OGAHC, which achieves subgoal S1: OGAHC is incremental and can
identify skills at any time. Thus, it allows an agent to acquire a collection of skills
which increases in both size and sophistication over time. OGAHC discovers reusable and
versatile skills based on identifying bottlenecks of the domain. It is robust with regard to
stochasticity of the domain and the explorative behavior of the agent. Moreover, artificial
agents using OGAHC for skill discovery can considerably outperform other approaches
for learning solutions for externally imposed tasks in terms of sample-efficiency. This
contribution has been presented at the 10th European Workshop on Reinforcement
Learning (EWRL) in Edinburgh and has been published in a special issue of the Journal
of Machine Learning Research (JMLR):

• J. H. Metzen (2012b). “Online Skill Discovery using Graph-based Clustering.”
In: Journal of Machine Learning Research W&CP 24. Ed. by M. P. Deisenroth,
C. Szepesvári, J. Peters, pp. 77–88

Chapter 4 provides an extended and revised version of this work.
The second contribution addresses the identified subgoal S2: graph-based ap-

proaches for skill discovery are extended to continuous domains by a novel method
entitled FIGE. FIGE is based on formalizing the problem as a probabilistic generative
model and using a maximum likelihood-based approach for generating graphs that
capture the dynamics of a continuous domains. Using FIGE, graph-based skill discovery
and representation learning approaches developed for discrete domains can be extended
to continuous domains. The resulting methods are superior compared to prior work
and scale to high-dimensional problems. Furthermore, FIGE-based skill discovery
outperforms a baseline which learns flat task solutions without acquiring skills. This
contribution has been presented at the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) in
Prague and has been published in the corresponding proceedings:

• J. H. Metzen (2013). “Learning Graph-based Representations for Continuous
Reinforcement Learning Domains.” In: Proceedings of the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD). Ed. by H. Blockeel, K. Kersting, S. Nijssen, F.
Zelezny. Springer Berlin Heidelberg, pp. 81–96

The copyright of this paper is held by Springer Verlag; the paper is available under http:
//link.springer.com/chapter/10.1007%2F978-3-642-40988-2_6#. Chapter 5
provides an extended and revised version of this work.

http://link.springer.com/chapter/10.1007%2F978-3-642-40988-2_6#
http://link.springer.com/chapter/10.1007%2F978-3-642-40988-2_6#
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The third contribution corresponding to subgoal S3 consists of the development
of an intrinsic motivation mechanism that allows incremental skill acquisition in the
absence of external reward signals, e.g., in developmental or lifelong learning settings.
The developed intrinsic motivation mechanism governs the behavior of an agent during
skill acquisition such that the right amount of time is devoted to both skill discovery
and skill learning. By integrating this mechanism with OGAHC and FIGE, an incremental
skill acquisition approach is obtained that achieves the goal stated in Section 1.2.
The resulting approach outperforms learning a flat policy in two continuous, high-
dimensional control problems. This contribution has been presented at the International
Workshop on Intrinsic Motivations and Open-Ended Development in Animals, Humans,
and Robots (IMOD-2013) and has been published in the Frontiers of Neurorobotics
journal:

• J. H. Metzen and F. Kirchner (2013). “Incremental Learning of Skill Collections
based on Intrinsic Motivation.” In: Frontiers in Neurorobotics 7.11, pp. 1–12

Chapter 6 provides an extended and revised version of this work.
Additionally, the author has published several works in the area of skill learning

based on evolutionary policy search (Metzen et al., 2008a; Metzen et al., 2008b), the
combination of evolutionary approaches and model learning (Metzen and Kirchner,
2010; Metzen, 2012a), and generalizing and adapting learned skills to new tasks (Metzen
and Fabisch, 2013; Metzen et al., 2014):

• J. H. Metzen, M. Edgington, Y. Kassahun, F. Kirchner (2008a). “Analysis of
an evolutionary reinforcement learning method in a multiagent domain.” In:
Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS). Richland, SC, pp. 291–298

• J. H. Metzen, M. Edgington, Y. Kassahun, F. Kirchner (2008b). “Evolving
Neural Networks for Online Reinforcement Learning.” In: Proceedings of the
10th Conference on Parallel Problem Solving from Nature (PPSN X), pp. 518–527

• J. H. Metzen and F. Kirchner (2010). “Model-based direct policy search.” In:
Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). Toronto, Canada, pp. 1589–1590

• J. H. Metzen (2012a). “Model-based Evolutionary Policy Search for Skill Learn-
ing in Continuous Domains.” In: 10th European Workshop on Reinforcement
Learning (EWRL). Edinburgh, Scotland

• J. H. Metzen and A. Fabisch (2013). “Learning Skill Templates for Parameter-
ized Tasks.” In: 11th European Workshop on Reinforcement Learning (EWRL).
Dagstuhl, Germany

• J. H. Metzen, A. Fabisch, L. Senger, J. de Gea Fernandez, E. A. Kirchner (2014).
“Towards Learning of Generic Skills for Robotic Manipulation.” In: German
Journal of Artificial Intelligence (Künstliche Intelligenz) Special Issue "Transfer
Learning". Accepted
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2
Background

“I am always doing that which I cannot do, in order that I may learn how to do it.”

Pablo Picasso

2.1 INTRODUCTION

THIS chapter introduces the problem class addressed in this thesis, namely Markov
Decision Processes. Moreover, it defines what is considered as optimal behavior,

and provides the required background in reinforcement learning, graph theory, and graph
clustering. A discussion of the basic concepts of reinforcement learning is provided
since it is used throughout the thesis as the basic means for learning of behavior and
skills. The background in graph theory is important for this work since graphs are
used as primary means for representing structure and the presented graph clustering
approaches form the basis for some of the proposed methods that aim at exploiting this
structure.

2.2 DECISION MAKING AND OPTIMALITY

This section introduces Sequential Decision Problems and Markov Decision Processes,
and defines formally which behavior is considered as optimal.

2.2.1 Sequential Decision Problems

Sequential Decision Problems (SDPs) are a way to formalize problems in which an
autonomous agent aims at choosing a sequence of actions such that an external reward is
maximized.1 At each time step t, the agent perceives an observation ot of its environment
which forms the basis for his choice of the action at . The agent chooses its actions at

1In this work, reward is considered to be a real-valued scalar. This abstraction is used in most related
works and is typically sufficient despite the fact that biological models of reward systems are usually
more complex.
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Figure 2.1 – Agent-environment interface in an SDP: at each time step t, the agent receives

an observation ot of the environment’s current state st and a reward signal rt . It chooses

an action at based on the entire history of observations o0, . . . ,ot and its prior actions

a0, . . . ,at−1 according to its current policy πt . This action causes the environment to change

its state in the next time step to st+1 and yields reward rt+1. Both st+1 and rt+1 may depend

on the entire history of states and actions. Note that sensors and actuators of embodied

agents are typically considered as parts of the environment; because of this, the mapping O

of states onto observations is modeled as a part of the environment.

according to its current behavior policy πt , which maps observations to actions. The

agent’s actions cause a change of the environment’s state st to st+1. The observations

the agent perceives from the environment depend on this state of the environment.

Furthermore, the environment generates at any time step a scalar reward signal rt for

the agent. In the most general case, the state transitions Pt , the generation of rewards

Rt , the generation of observations Ot , and the agent’s policy πt can be stochastic, may

depend on the entire history of state, actions, and observations, and can change over

time (thus the subscript t). This process is depicted in Figure 2.1.

In the specific case in which the successor state st+1 and the reward rt+1 are com-

pletely determined by the history of state and actions until time t, i.e., are a function of

s0,a0, . . . ,st ,at , the environment is called deterministic. Otherwise, the environment is

called stochastic. Likewise, the agent is called deterministic if its policy is a function of

the history of observations and actions, and stochastic otherwise. In general, sequential

decision problems are open-ended, i.e., the agent might act in its environment indefi-

nitely. However, many SDPs have a natural termination situation; e.g., when a certain

state of the environment is reached or when a certain number of time steps has elapsed.

These problems are called episodic and the time step in which the SDP terminates is

denoted by T . Problems which are not episodic are denoted as continuing. In general,

one is interested in agents that learn, i.e., agents that can improve their behavior policy

πt over time such that more external reward is received.

Many challenging problems from the field of robotics and artificial intelligence

can be framed as SDPs, for instance: path planning, movement generation, object

manipulation, control, board and computer games, trading, and operations research (see

Section 2.3 for some examples).
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Figure 2.2 – Agent-environment interface in an MDP according to Sutton and Barto (1998):
in each time step t, the agent receives the environment’s current state st and a reward signal

rt and chooses an action at based on st according to its current policy πt . This action causes

the environment to change its state in the next time step to st+1 and yields reward rt+1.

2.2.2 Markov Decision Processes

An important subclass of SDPs are Markov Decision Processes (MDPs) (Puterman,

1994). MDPs are based on three assumptions: (a) Full Observability: The agent’s

observations ot at any time reveal a full description of the environment’s state st such

that at any point in time the agent can determine the current state of the environment.

Thus, there is not necessity to distinguish between observations and states and one can

simplify notation by assuming that the agent directly observe the environment’s state, i.e.,

ot = st . (b) Markov property: An action’s outcome depends solely on the current state

but not on the history of states and actions, i.e. Pt(st+1|s0,a0, . . .st ,at) = Pt(st+1|st ,at)
and Rt(s0,a0, . . .st ,at ,st+1) = Rt(st ,at ,st+1). (c) Time invariance: The state transition

probabilities Pt and the expected immediate rewards Rt are constant over time, i.e.,

Pt =Pt ′ and Rt =Rt ′ for all t, t ′. One can thus drop the subscript t and simply speak of the

state transition probability P and the expected immediate reward function R. Common

shorthand notations for P(st+1 = s′|st = s,at = a) and R(st+1 = s′,st = s,at = a) are

Pa
ss′ and Ra

ss′ .

In summary, one can specify an MDP M as a 6-tuple1 M= (S,A,Pa
ss′ ,R

a
ss′ ,S0,ST ),

where S is the set of states of the task (the state space), and A is the set of actions

available for the agent (the action space). The state transition probability distribution

Pa
ss′ determines how likely a transition from state s ∈ S to successor state s′ ∈ S is

when executing action a ∈ A. The immediate reward expectation Ra
ss′ specifies the

expected immediate reward r ∈ R when transitioning from state s to successor state s′
under executing action a. The start state probability distribution S0 : S→ [0,1] with∫
S S0(s)ds = 1 determines how likely an episode starts in a particular state s and the

terminal state probability distribution ST : S→ [0,1] specifies how likely an episode

1Note that the specification of an MDP is not standardized: many authors omit S0 and ST since S0

has no effect onto the optimal policy and value functions and ST is specific for episodic environments.

Moreover, the discount factor γ (see Section 2.2.3) is sometimes included in the MDP’s specification.
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terminates1 when the agent reaches a state s. Note that in deterministic environments
Pa

ss′ , Ra
ss′ , S0, and/or ST might also be considered as functions and written as, e.g.,

P(s,a) = s′ if executing action a in state s always leads to the successor state s′ (and
analogical for Ra

ss′ , S0, and ST ). An MDP is called continuous if either S or A are
continuous, otherwise it is called discrete or finite. In continuous MDPs, state and
action space are often real-valued vector spaces, i.e., S ⊆ Rns and A ⊆ Rna . . In this
case, ns is called the dimensionality of the state space and na the dimensionality of the
action space.

MDPs can be seen as an extension of Markov chains where the addition of actions
allows the agent to choose and the addition of rewards provides motivation to the agent.
Accordingly, if there would only be one action available in each state and all rewards
were zero, an MDP would reduce to a Markov chain.

2.2.3 Optimal Behavior

The behavior of an agent is specified by its internal behavior policy π . This policy
π(s,a) = π(at = a|st = s) specifies the probability of executing action a ∈A in state
s ∈ S. If an agent uses a deterministic policy, i.e., chooses always the same action in the
same state, its policy can also be considered as a function mapping states to actions and
written as π(s) = a . In general, one is interested in an optimal policy for a given MDP.
This requires specifying which behavior is considered to be optimal, for instance: is
choosing actions greedily such that the immediate reward is maximized optimal?

Different models of optimal behavior have been proposed (Kaelbling et al., 1996): in
the finite-horizon model, the agent should choose actions such that the expected reward
Eπ [∑

h−1
k=0 rt+k+1] for the next h steps is maximized under its policy π . This model has the

disadvantage that the agent might ignore the long-term consequences of its behavior, i.e.,
events beyond the horizon h are not taken into account, which is typically not desirable.
This issue is addressed by the infinite-horizon discounted model, in which the agent
should act such that the expected future reward Eπ [∑

∞
k=0 γkrt+k+1] is maximized. For

γ > 0, there is no horizon and all future reward is taken into account and thus, the agent
has to consider all long-term consequences of its behavior. The parameter γ ∈ [0,1) is
a so-called discount factor which ensures that the expected future reward is bounded
and controls whether the agent focuses more on the short-term (γ � 1) or the long-
term rewards (γ ≈ 1). A third model is the average-reward model, in which the agent
should act such that the expected long-term average reward lim

h→∞
Eπ [h−1

∑
h−1
k=0 rt+k+1] is

maximized. This work focuses on the infinite-horizon discounted model since it is the
most widely used model.

Related to the models of optimal behavior is the so-called temporal credit assign-
ment problem (Minsky, 1961): if the agent obtains a specific reward rt at time t, to
which extent are the actions it has taken so far eligible for this reward? Different
models address this issue differently: the finite-horizon model considers all actions
at−h, . . . ,at−1 eligible equally and all prior actions not eligible at all, while the infinite-

1Note that this notation also supports continuing environments by setting ST (s) = 0 ∀s.
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horizon discounted model considers actions taken longer ago less eligible than recent
actions, i.e., action at−k is considered to be eligible to extent γk−1.

The aggregate of the future rewards defined by a model of optimal behavior is
denoted as return, e.g., for the infinite-horizon discounted model the return is defined
as Rt = ∑

∞
k=0 γkrt+k+1. Thus, optimal behavior can be seen as the behavior which

maximizes the expected future return. One can formally define the optimal policies for
state s at time t as

π
∗
s = argmax

π

Eπ [Rt |st = s],

i.e., as the policies which maximizes the expected future return starting from state s.
Due to the property that MDPs are memory-less, there are policies π which are not only
optimal for some start states s but for arbitrary start states; one can thus denote these
policies as π∗. Note that there may be more than one optimal policy.

2.2.4 Value Function and Bellman Equations

One alternative to searching for an optimal policy in the space of all policies directly is
to learn an (action) value function. Value functions estimate how good it is for an agent
to be in a state. Analogously, an action value function estimates how good it is for an
agent to execute a specific action in a state. Formally, the value of a state (a state-action
pair) is the expected future return starting from this state (state-action pair) under the
respective model of optimal behavior when following a particular policy π . Formally,
the state value function for the infinite-horizon discounted model is defined as

V π(s) = Eπ [Rt |st = s] = Eπ

[
∞

∑
k=0

γ
krt+k+1|st = s

]
(2.1)

and the action value function as

Qπ(s,a) = Eπ [Rt |st = s,at = a] = Eπ

[
∞

∑
k=0

γ
krt+k+1|st = s,at = a

]
. (2.2)

The value functions are specific for a particular policy since future rewards depend
on future actions which are assumed to be chosen according to the policy.1 One can
show that all optimal policies share the same (action) value function and that this action
value function is Q∗(s,a) = maxπ Qπ(s,a). For all value functions, recursive equations
exist which are due to Bellman (1957). For the case of the optimal action value function,
this Bellman optimality equation is

Q∗(s,a) = ∑
s′

Pa
ss′

[
Ra

ss′+ γ max
a′

Q∗(s′,a′)
]
. (2.3)

1Note that this explicit dependence on the future actions is omitted in Equations 2.1 and 2.2 and is
indicated solely by the subscript π of the expectation.
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For any action value function Q, the difference of the left-hand side and the right-hand
side of this equation, i.e., ∑

s,a
p(s,a)

{
Q(s,a)−∑s′ Pa

ss′
[
Ra

ss′+ γ maxa′Q(s′,a′)
]}

with

p(s,a) being the probability of a state action pair, is denoted as Q’s Bellman error.
The optimal policy π∗ can be derived from Q∗ directly via

π
∗(s,a) =

1 if a = argmax
a′

Q∗(s,a′)

0 else
. (2.4)

If Pa
ss′ and Ra

ss′ are known to the agent, the agent can compute Q∗ (and thus π∗)
using Dynamic Programming (Bellman, 1957). Determining π∗ this way requires
computing Q∗, which consists of |S| · |A| values. If S or A are vector spaces, the size of
S or A grows exponentially with the number of dimensions; thus, learning the optimal
action value function becomes exponentially harder. This is denoted as the “curse of
dimensionality”. Furthermore, usually not all components of the MDP are known to the
agent; in such a situation where Pa

ss′ or Ra
ss′ are unknown, an agent can resort to one of

the reinforcement learning algorithms that are discussed in the next section.

2.3 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is based on ideas from neurobiology and behavioral
science and early works in RL were motivated by animal behavior and its neural basis
(Minsky, 1954; Klopf, 1972; Sutton and Barto, 1981). Moreover, RL is closely con-
nected to and inspired by the behavioristic concept of operant conditioning (Thorndike,
1911; Skinner, 1938). Thorndike (1911) states the “Law of Effect” for operant condi-
tioning in animals as follows:

“Of several responses made to the same situation, those which are ac-
companied or closely followed by satisfaction to the animal will, other
things being equal, be more firmly connected with the situation, so that,
when it recurs, they will be more likely to recur; those which are accom-
panied or closely followed by discomfort to the animal will, other things
being equal, have their connections with that situation weakened, so that,
when it recurs, they will be less likely to occur. The greater the satisfaction
or discomfort, the greater the strengthening or weakening of the bond.”

This section focuses on the technical aspects of computational RL; for some interesting
links to neurobiology please refer to Niv et al. (2005), who show that temporal difference
errors in predictions of future reward (see below) may be represented by phasic activities
of dopaminergic neurons in primates’ midbrains.

Computational RL focuses on methods for learning an optimal policy π∗. More
specifically, RL is about approximating optimal solutions to stochastic control problems
(typically modeled as MDP), usually without complete knowledge of the system being
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controlled. Furthermore, RL focuses on on-line, incremental learning algorithms rather
than batch-style algorithms. Because of this, RL fits well to the kind of learning seen in
animals and is well-suited for engineering control problems (Lewis and Vrabie, 2009).

Computational RL has been applied successfully to a multitude of challenging
problems. This section gives some examples, see http://umichrl.pbworks.com/w/
page/7597597/Successes%20of%20Reinforcement%20Learning for more. One
prominent area for applying RL is for learning optimal strategies for games. For in-
stance, Tesauro (1995) combined temporal difference learning with an artificial neural
network for learning the board game “backgammon”. The resulting system, denoted
as TD-Gammon, achieved a level of play which was very close to that of top human
backgammon players. Moreover, TD-Gammon required only minimal human knowl-
edge and was thus not affected by human prejudice. This allowed TD-Gammon to
explore successful strategies that had been ruled out by human players erroneously. By
this, TD-Gammon allowed advancing the theory of correct backgammon play. RL has
also been applied to other board games with varying success, e.g., othello (van Eck and
van Wezel, 2008), english draughts (Faußer and Schwenker, 2010), and chess (Thrun,
1995).

One further prominent area for RL applications is robotic control (Kober et al.,
2012). RL has been used to learn locomotion behaviors for legged robots: Kirchner
(1998) used a hierarchical RL approach for learning a gait on the six-legged robot “Sir
Arthur”, while Kohl and Stone (2004) used policy gradient RL on the four-legged AIBO
robot and outperformed hand-tuned gaits in terms of forward walking speed. Ng et al.
(2004) applied the RL method PEGASUS for learning a controller for sustained inverted
flight on an autonomous helicopter. Riedmiller et al. (2009) used RL for learning
behaviors in the context of robot soccer. Mülling et al. (2013) used RL for learning to
select and generalize striking movements in robot table tennis.

This section gives a brief overview over a subset of methods and concepts that have
been developed in (computational) RL. For more details, please refer to Sutton and Barto
(1998), Kaelbling et al. (1996), Bertsekas and Tsitsiklis (1996), and Heidrich-Meisner
et al. (2007).

2.3.1 Temporal Difference Learning

Temporal Difference (TD) learning (Sutton, 1988) methods are probably the most
popular model-free RL approaches. Model-free refers to the fact that TD learning
neither requires the specification of a model of the environment (in contrast to Dynamic
Programming methods which are based on Pa

ss′ and Ra
ss′) nor does it learn an explicit

model of the environment. Instead, TD learns a policy indirectly by first approximating
Q∗ and then deriving π∗ from Q∗ based on Equation 2.4. Since TD is model-free, the
only way for the agent to obtain information about the respective MDP is to interact
with its environment and to observe the successor state s′ and reward r when applying
an action a in state s. TD learning provides means for stochastically approximating Q∗

based on a set of quadruples (st ,at ,rt+1,st+1). Different TD learning methods differ
in the specific learning rules; the two most popular methods are Q-learning (Watkins,

http://umichrl.pbworks.com/w/page/7597 597/Successes%20of%20Reinforcement%20Learning
http://umichrl.pbworks.com/w/page/7597 597/Successes%20of%20Reinforcement%20Learning
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Algorithm 2.1 Q-Learning (Watkins, 1989).
1: Input: Initial Q(s,a), learning rate α ∈ (0,1], discount factor γ ∈ [0,1]
2: while True do
3: s∼ So(s) # Sample start state for the episode
4: repeat
5: a∼ π(a|s) # Sample action from policy, e.g., a policy ε-greedy in Q
6: s′ ∼ P(s′|s,a) # Stochastic state transition according to Pa

ss′
7: r ∼ R(r|s,a,s′) # Sample reward for state transition according to Ra

ss′
8: Q(s,a) = Q(s,a)+α[r+ γ maxa′Q(s′,a′)−Q(s,a)] # Q-learning update rule
9: s = s′ # Continue with successor state

10: until St(s) # Stop episode when state is terminal
11: Q(s,a) = 0 ∀a # Terminal states have value 0 for all actions
12: end while

1989) with the learning rule

Qt+1(st ,at)← Qt(st ,at)+αt

(
rt+1 + γ max

a′
Qt(st+1,a′)−Qt(st ,at)

)
(2.5)

and SARSA (Rummery and Niranjan, 1994) with the learning rule

Qt+1(st ,at)← Qt(st ,at)+αt (rt+1 + γQt(st+1,at+1)−Qt(st ,at)) . (2.6)

Both algorithms are iterative and on-line in that they update Qt in every time step
based on the current observation, the update requires constant time independent of the
number of observations seen, and memory consumption is bounded.The parameter αt is
a learning rate that typically decreases over time and controls how strongly the current
observation affects the action value function. Both algorithms bootstrap, i.e., they
compute their new estimate Qt+1 of action values based on their current estimate Qt . For
finite MDPs, the Q-learning update rule can be seen as a stochastic gradient descent on
the approximate Bellman error, with −(rt+1 + γ maxa′Qt(st+1,a′)−Qt(st ,at)) being
the Bellman error’s approximate stochastic gradient (Heidrich-Meisner et al., 2007).
Pseudo-code for Q-learning is given in Algorithm 2.1; SARSA is obtained by replacing
line 8 with the respective learning rule.

Model-free RL algorithms such as Q-Learning and SARSA are faced with the
exploration-exploitation dilemma: on the one hand, for convergence to the optimal
policy, they are required to try every state-action pair indefinitely often, i.e., they have
to explore their environment. On the other hand, the ultimate reason for learning is to be
able to act in a way such that the obtained reward is maximized, i.e., to choose actions
with maximal Q∗(s,a). At any point in time, the agent’s best guess for this is to choose
the action with maximal Qt(s,a), which is called exploitation. Thus, the agent is faced
with a trade-off between two different objectives, namely exploration and exploitation.
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One common way to deal with this is ε-greedy action selection:

πt(s,a) =

1− εt + εt/|A| if a = argmax
a′

Qt(s,a′)

εt/|A| else
. (2.7)

This stochastic policy is implemented easily by executing the greedy action a =
argmaxa′Qt(s,a′) with probability 1− εt (exploitation) and choosing an action uniform
randomly with probability εt (exploration). The main difference between Q-learning
and SARSA is that the former is off-policy and the latter is on-policy. Learning being
off-policy means that the agent can follow any policy, even one which chooses actions
uniform randomly, but Qt always approximates Q∗, the action value function of the
optimal policy. In contrast, for on-policy learning methods like SARSA, Qt will
converge to Qπ where π is the behavior policy which is used for action selection during
learning. Thus, SARSA will not learn the optimal action value function if the behavior
policy does not converge to the optimal but unknown policy as t→ ∞.

For arbitrary initialization of Q0, Q-Learning converges asymptotically to the op-
timal action value function Q∗ for any finite MDP if all state-action pairs from S×A

are executed infinitely often and the learning rate αt converges to 0 with
∞

∑
i=1

αni(s,a) = ∞

and
∞

∑
i=1

α2
ni(s,a) < ∞ for all s, a where ni(s,a) is the index of the i-th time action a is

executed in state s (Watkins and Dayan, 1992). Similar convergence proofs for SARSA
exist (Singh et al., 2000), which require additionally that the behavior policy becomes
greedy in the limit with infinite exploration; for instance, for ε-greedy action selection
with εt = 1/t, convergence to Q∗ is guaranteed.

There exist also non-gradient based, second-order TD learning methods like least-
squares temporal difference (LSTD) learning (Bradtke et al., 1996; Boyan, 2002).
LSTD does not require specifying a learning rate α and is stable for a broad range
of conditions where function approximation (see below) is required. Unfortunately,
LSTD can only learn state value function for fixed policies. Lagoudakis and Parr (2003)
have proposed an extension of LSTD called least-squares policy iteration (LSPI), which
allows learning action value functions for control problems, i.e., problems where the
policy is improved during learning. LSPI is an off-policy algorithm like Q-learning;
however, it reuses samples and has typically a lower sample-complexity, i.e., requires
less observations of the environment to learn an optimal policy. On the other hand, the
cost for each update is quadratic in the number of features as is memory consumption.
Accordingly, LSPI is often used in an off-line fashion, i.e., the action value function
and corresponding policy are not updated after every time step but less frequently.

2.3.2 Function Approximation

In domains with continuous state space, typically S ⊂ Rns with ns being the dimen-
sionality of the state space, the action value function can no longer be represented
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exactly since there are infinitely many states. Thus, some kind of approximate represen-
tation is required. Often, Q(s,a) is represented by a function Qθ that is parametrized
by θ ∈ Rd . The goal of learning is then to find a value θ ∗ ∈ Rd such that Qθ∗ be-
comes maximal, which implies that the corresponding greedy policy maximizes the
long-term reward, while at the same time approximately obeying the Bellman equation.
Note that employing function approximation typically implies that the optimal action
value function Q∗ and the optimal policy π∗ are no longer representable. Thus, only a
close-to-optimal policy π̃∗ can be learned which is optimal in the class of representable
policies Π = {πθ | θ ∈ Rd}, i.e., π̃∗ = argmax

π∈Π

Eπ [Rt ]. On the other hand, function

approximators allow generalizing over the state space such that experience collected in
one state allows the agent additionally to learn something about similar states.

A simple class of function approximators are linear function approximators. Linear
function approximators are based on a set of d features φ0(s,a), . . . ,φd−1(s,a) and
define the action value function to be Qθ (s,a) = ∑

d−1
i=0 θiφi(s,a). One way for defining

the features are tilings: a tiling is an exhaustive partition of the state space S. Each
element of the partition is called a tile and is the receptive field for one binary feature
φi(s,a). Usually grid-like tilings are used which make computing the indices of the
active features straightforward. For grid-like tilings, the computation of the action value
function becomes particularly easy: Qθ (s) is simply the weight θi of the feature φi that
is activated by s,a.

A drawback of tilings is that the value function has to be constant within one cell of
the grid and varies discontinuously at the border of such a cell. This drawback could in
principle be alleviated by increasing the resolution of the grid, i.e., by increasing the
number of features; however this would decrease generalization, increase the number of
parameters d to be learned, and thus increase the time until a suitable policy is learned.
“Cerebellar Model Articulation Controller” (CMAC) (Albus, 1975) present a partial
solution to this problem: instead of using one tiling, CMACs are composed of a set
of superimposed tilings. For the case of grid-like tilings, these tilings are often offset
randomly. This increases the resolution of the function approximator without decreasing
its generalization. A disadvantage of CMACs is that the number of superimposed tilings
has to grow in principal exponentially with the dimensionality if one wants to keep a
similar resolution level. Thus, CMACs are usually very good function approximators
for low dimensional problems but scale not easily to high dimensions.

One way of learning the optimal parameters θ ∗ for the function approximator is
to use (stochastic) gradient descent. For this, the gradient ∇θt Qt(st ,at) and a desired
target output vt , which can be for instance the one-step SARSA estimate of the return
vt = rt+1 + γQt(st+1,at+1), at time t are required. Based on this, the update rule for θ

becomes θt+1 = θt +α[vt−Qt(st ,at)]∇θt Qt(st ,at). For linear function approximation,
the gradient is simply ∇θt Qt(st ,at) = φ(st ,at). Thus, in this case the update rule can be
interpreted as computing the error [vt−Qt(st ,at)] and changing weight θi proportional
to this error and the activation of the respective feature φi(st ,at).

A general drawback of gradient descent-based learning is that it converges to local
optima which are not necessarily global optima if the objective function is not convex.
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More severely, gradient descent-based learning combined with off-policy learning
methods such as Q-learning may diverge when combined with function approximation
under certain circumstances (Baird, 1995). On-policy learning methods like SARSA,
on the other hand, converge provably under the similar conditions as required in discrete
domains. For more details regarding function approximation, please refer to Sutton and
Barto (1998, Chapter 8).

2.3.3 Direct Policy Search

While function approximation allows applying temporal difference-based learning in
domains with (low-dimensional) continuous state space, high-dimensional state spaces
and continuous action spaces remain challenging. The former is due to the “curse of
dimensionality” and the latter, inter alia, due to the requirement of finding an action
a that maximizes Q(s,a), which is non-trivial for continuous action spaces. Because
of this, so-called direct policy search (DPS) methods have become popular recently in
domains like robotics (Kober and Peters, 2010; Deisenroth et al., 2013).

DPS does not learn value functions but searches directly in the space of policies.
For this, a parametric policy representation is employed, i.e., a policy πθ parametrized
by a vector θ ∈ Rd . DPS typically does not bootstrap but searches directly for a policy
vector θ such that the expected return of πθ becomes maximal. For this, two problems
need to be addressed: how can the expected return of a policy πθ be determined and
how is the policy space searched efficiently? Typically, the expected return of a policy
is approximated by sampling returns for the specific policy by executing it for one or
several episodes. The expected return is then estimated based on these samples.

Different approaches for searching the space of policies have been proposed, ranging
from evolutionary computation (Whiteson, 2012) over reward-weighted regression
(Peters and Schaal, 2007; Kober and Peters, 2010) to information-theoretic policy
search (Peters et al., 2010). An empirical investigation revealing some of the advantages
and disadvantages of direct policy search and temporal difference learning is given by
Kalyanakrishnan and Stone (2011).

2.3.4 Hierarchical Reinforcement Learning

Even though convergence to optimality has been proven for several RL methods under
various conditions in the limit, the number of samples, i.e., interactions with the envi-
ronment, that are required for learning a close-to-optimal policy is often prohibitively
large because of the “curse of dimensionality”. A common approach to remedy this
large sample-complexity is to introduce different kinds of abstraction and hierarchical
structure into RL algorithms. The resulting methods form the field of Hierarchical
Reinforcement Learning (HRL), see Barto and Mahadevan (2003) for a good overview.
HRL is also supported by findings from neurobiology and has been proposed as basis
for psychological models as well as a framework for investigating the computational
and neural underpinnings of hierarchically structured behavior (Botvinick et al., 2009).
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By defining abstractions one generally introduces bias into the learning process,
which can reduce sample-complexity drastically. However, this comes at the price
of potentially not being able to represent and thus learn the optimal policy anymore
because of the employed abstractions. The choice of the right kind of abstraction is thus
crucial in order to reduce sample-complexity and at the same time allow representing
and learning close-to-optimal policies. For a general discussion of advantages and
disadvantages of employing an HRL approach, please refer to Chapter 3.

The most popular class of abstraction in HRL are temporal abstractions. When
using temporal abstractions, the agent need not choose an action at every time step but
might invoke temporally extended activities which take over control for several time
steps. Such an activity might be for instance “open door” or “dock to charger” in a
robotic application. Different terms have been proposed for temporal extended activities;
in this work, the term option (Sutton et al., 1999b) is used when discussing conceptual
details of activities and the term skill (Thrun and Schwartz, 1995) when speaking more
abstractly about them. A policy which builds upon temporal abstractions is also called
a hierarchical policy. By providing skills to the agent, the learning problem might
become easier for the agent since it only has to learn the right sequence of skills instead
of both how to execute the individual skills and how to sequence them.

A second kind of abstractions are spatial abstractions. Spatial abstractions are often
combined with temporal abstractions and make learning a skill more simple by allowing,
e.g., ignoring certain dimensions of the state space which are not relevant for the skill.
When using spatial abstractions, the so-called hierarchical credit assignment problem
needs to be addressed (Dietterich, 2000b): this problem refers to a situation where an
agent obtains a reward and must decide if a certain skill which is currently executed
is eligible for this reward. Since lower-level skills employ spatial abstractions, they
cannot always decide if they are eligible or if the responsibility lies on higher levels of
the architecture. On the other hand, higher levels of the architecture, which have the
required information, should not be bothered with all details of lower levels. This would
become impossible if they would have to decide for every reward who is eligible for it.

HRL requires also specifying which hierarchical policy is considered to be the
optimal one. The intuitive notion would be to consider a hierarchical policy to be
optimal if it accrues the same reward as the optimal flat policy π∗. However, because
of the abstractions employed in an HRL architecture, such a policy might not be
representable in a hierarchical fashion. Thus, this notion of optimality, which is denoted
as hierarchically optimal, is not useful in situations where abstractions are employed.
Moreover, hierarchically optimal policies often complicate transfer and reuse of learned
skills since the best skill policy on a lower level depends typically on requirements of
the higher level, task-dependent policy. A different concept of optimality is recursive
optimality, which requires solely that all policies on all layers of the architecture are
optimal in isolation. Note that this does not imply that the resulting hierarchical policy
is hierarchically optimal; recursively optimal hierarchical policies are not even unique
and there are some recursive optimal policies which accrue more reward than others.
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Nevertheless, recursive optimality is a useful concept in practice. Please refer to
Dietterich (2000b) for more details on the different optimality concepts.

Related to this is whether the temporal abstractions are used to actually abstract
the action space, i.e., the agent can only choose among the skills, or to augment the
action space, i.e., the agent can decide whether to invoke a skill or to learn on the lower
layer of primitive actions directly. When augmenting the action space, the agent can
always learn hierarchically optimal policies since it could eventually resort to learning
on the finest time scale; however, abstracting the action space is typically more useful
for reducing sample-complexity and for learning skills that are reusable in different
tasks. See Jong et al. (2008) for a discussion.

A further issue in HRL is the choice of the architecture: one can distinguish between
3-layer1 hierarchies, where skills (the middle layer) can only invoke primitive actions,
and more complex action hierarchies where skills can also invoke other skills. This
work focuses on 3-layer hierarchies. Learning in 3-layer hierarchies can be subdivided
into three parts: compositional learning, which deals with learning the agent’s overall
policy and involves skill utilization, skill learning, which aims at learning policies
for achieving the individual skills, and skill discovery, which deals with identifying
reoccurring subproblems of problem classes, whose solutions—the skills—are reusable
and simplify learning of solutions for future problems. Note that skill discovery is
qualitatively different in that it alters the temporal abstraction hierarchy itself by adding
new skills, while skill learning and compositional learning work on a fixed temporal
abstraction hierarchy. Not all works in HRL have addressed all three subfields jointly;
for instance, skill discovery (and sometimes skill learning) are omitted and subproblems
(and potentially solution policies for these problems) have been manually defined
beforehand. However, for a fully autonomous agent it is clearly desirable that it can
identify and learn new skills autonomously.

The remainder of this section presents popular frameworks proposed for HRL,
introduces a formalization of HRL based on Semi-Markov Decision Processes, and
gives an overview over corresponding learning methods. An overview over the works
in the field of skill discovery is given in Section 3.3.

2.3.4.1 Frameworks

The probably most popular approach to HRL is the options framework (Sutton et al.,
1999b), which formalizes skills as options. An option o =< Io,πo,βo > consists of the
following three components: the option’s initiation set Io ⊂ S determining the states
in which the option may be invoked, the option’s termination condition βo : S→ [0,1]
specifying the probability of option execution terminating in a given state, and the
option’s policy πo which defines the probability of executing an action in a state under
option o. In the options framework, the agent’s policy π may in any state s decide
not solely to execute a primitive action but also to call any of the options o ∈ O for

1The lowest layer consists of the primitive actions, the middle layer of the skills, and the highest
layer of the agent’s overall policy.
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which s ∈ Io. If an option is invoked, the option’s policy πo is followed until the option
terminates according to βo. Option policies might invoke other options (resulting in
hierarchies with more than 3-layers); it must be guaranteed though that in the end, the
option call sequence terminates by selecting a primitive action. If the option’s policy πo
chooses actions based solely on the current state, it is called a Markov option. Options
whose policies depend not solely on the current state but on the entire history of states,
actions, and rewards since the option was initiated are called semi-Markov. Note that
any policy that may invoke other options, such as the top-level policy π in a 3-layer
setting, is semi-Markov.

The option’s policy πo is defined relative to an option-specific “pseudo” reward
function Ro that may differ from the global external reward function (Dietterich, 2000b).
Skill learning consists of learning πo given a so-called skill prototype Ψo = (Io,βo,Ro),
while compositional learning refers to learning π given primitive actions and options.
Skill discovery, on the other hand, consists of choosing an appropriate skill prototype
Ψo for a new option o.

Besides the options framework, further notable approaches to HRL are Max-Q value
function decomposition (Dietterich, 2000b), Hierarchies of Abstract Machines (Parr
and Russell, 1997), Feudal RL (Dayan and Hinton, 1993), Compositional Q-Learning
(Singh, 1992b), and HQL (Kirchner, 1996). These frameworks are not discussed in
detail in this work, for an overview please refer to Barto and Mahadevan (2003).

2.3.4.2 Semi-Markov Decision Processes

The formal MDP theory is not directly applicable to HRL since it assumes that all
actions take one time step; unfortunately, extended activities like options employed in
HRL may take several time steps. In contrast, discrete time Semi-Markov Decision
Processes (SMDPs) (Howard, 1971; Puterman, 1994), which are an extension of MDPs,
can model temporally extended activities. SMDPs are like MDPs with the exception
that state transitions happen not immediately but after a random waiting time τ , where
τ is a positive integer for the discrete-time case. The state transition probability P is
a joint probability over the successor state s′ and the waiting time τ given the current
state and actions a, i.e., P(s′,τ|s,a). The expected reward R for executing action a in
state s gives the amount of discounted reward expected to accumulate over the waiting
time τ . The notion of optimal value functions generalizes to SMDPs as well, e.g.,

Q∗(s,a) = ∑
s′,τ

P(s′,τ|s,a)
(

R(s,a,s′,τ)+ γ
τ max

a′
Q∗(s′,a′)

)
, (2.8)

as do most Dynamic Programming algorithms. When using SMDPs to model HRL
problems, the environment itself is still an MDP and skill learning based on primitive
actions can still be performed by standard RL algorithms for MDPs. Compositional
learning, however, requires SMDP techniques since the options may take several time
steps. The resulting SMDP can be thus seen as induced by the underlying MDP and the
temporal abstraction hierarchy.
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Sutton et al. (1999b) introduced multi-time models of an option o, which generalize
Pa

ss′ and Ra
ss′ from the underlying MDP to the induced SMDP. This allows treating

compositional learning similarly to standard RL. The multi-time models are defined as

Ro
ss′ = EO

[
rt+1 + γrt+2 + . . .γτ−1rt+τ |E(o,s, t)

]
, (2.9)

where E(o,s, t) is the event that option o is invoked in state s at time t and t + τ is the
random time at which option o terminates, and

Po
ss′ =

∞

∑
τ=1

γ
τ p(s′, t + τ|E(o,s, t)), (2.10)

where p(s′, t + τ|E(o,s, t)) is the probability that option o terminates in state s′ at time
t + τ when invoked in state s at time t. Based on this multi-time models, the Bellman
equation for the optimal option value function Q∗O can be written as:

Q∗O(s,o) = ∑
s′

Po
ss′

[
Ro

ss′+max
o′

Q∗O(s
′,o′)

]
. (2.11)

For a given Q∗O, the optimal policy can be defined as the policy which picks the option
o = argmaxo′Q

∗
O(s,o

′). Note that primitive actions can mixed in this formulation with
options by considering them as one-step options.

2.3.4.3 SMDP Learning

Based on the Bellman equation for the optimal option value function Q∗O, Q-learning
can be extended to SMDPs (and thus to compositional learning) using the update rule

Qt+τ(st ,ot)← Qt(st ,ot)+αt

(
r+ γ

τ max
o′

Qt(st+τ ,o′)−Qt(st ,ot)

)
. (2.12)

This update is performed when option ot is invoked in state st and terminates after τ

time steps in state st+τ and obtained reward r = ∑
τ−1
k=0 γkrt+k+1 during execution. This

form of Q-learning in SMDPs is known as SMDP Q-learning (Bradtke and Duff, 1994)
and Macro Q (McGovern et al., 1997). Macro Q reduces to conventional Q-learning if
all options terminate immediately. On-policy learning using SARSA can be extended to
SMDPs accordingly.

A drawback of SMDP Macro Q-learning and SARSA are that they treat a temporally
extended activity like an option as an opaque, indivisible unit (Precup, 2000) and update
their action value function only when the option terminates, i.e., they learn only on the
SMDP level and not on the underlying MDP level. Furthermore, SMDP Q-learning
updates only the currently active option even though Q-learning itself is off-policy and
could thus in principle be used to update policies of several options at once based on a
single experience.
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These drawbacks are addressed by intra-option learning methods like, e.g., one-
step intra-option Q-learning (Precup, 2000). If the agent experiences a transition
(st ,at ,rt+1,st+1) on the MDP level while following policy π , then the following update
is applied for every Markov option o =< Io,πo,βo > with π0(st ,at) = π(st ,at):

Qt+1(st ,o)← Qt(st ,o)+αt (rt+1 + γUt(st ,o)−Qt(st ,o)) (2.13)

where Ut(s,o) = (1−βo(s))Qt(s,o)+βo(s)maxo′Qt(s,o′). The quantity Ut is an esti-
mate of the value of the state-option pair (s,o) which takes into account that the optimal
option o′ in s can only be invoked if o terminates. Precup (2000) has shown that for
deterministic Markov options, intra-option Q-learning converges to the optimal option
policies under similar preconditions as those required for Q-learning.

Off-policy learning of several option policies based on a single transition is clearly
very advantageous; unfortunately, it can only be used in settings where off-policy
learning algorithms exist which converge. Thus, the utility of intra-option Q-learning
is limited to domains which do not require function approximation since it may (and
actually does) diverge in this setting (see Section 2.3.2). There has been recent progress
in developing off-policy learning algorithms that are stable when combined with function
approximation, like, e.g., Greedy-GQ (Maei et al., 2010). The main requirement of
Greedy-GQ is that the behavior policy needs to be stationary. Potential future methods
which remove this requirement would be of great value for learning in HRL.

2.4 GRAPH THEORY

This section gives a brief introduction into graph theory and approaches for clustering
graphs into partitions of their vertices. This section follows mainly the notation used by
von Luxburg (2007), who also gives more details about the topics summarized in this
section.

2.4.1 Basics

We define a graph as G = (V,E) with vertex set V = {v1, . . .vn} and a set of edges
E ⊂V ×V . If for all vi,v j ∈V , (vi,v j) ∈ E⇔ (v j,vi) ∈ E, we call the graph undirected,
otherwise we call it directed. We denote an edge connecting vi and v j as ei j. The
cardinality of a graph is denoted by |G| and defined as |G| = |V |. Given a subset of
vertices A⊂V , we denote its complement V \A by A. A shorthand notation commonly
used is i ∈ A, which denotes the set of indices {i | vi ∈ A}.

We define a path connecting two vertices va,vb ∈ V in G as a sequence of edges
pG(va,vb) = (eai1 ,ei1i2, . . . ,ein−1b) with eai1,ei1i2, . . .ein−1b ∈ E. We say that this path
has length len(pG) = n. Among all paths connecting va and vb, the (not necessarily
unique) path p∗G(va,vb) with minimal length is called the shortest path. The geodesic
distance of va,vb in G is defined as dG(va,vb) = len(p∗G(va,vb)).
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We define a subgraph G′ ⊂ G as a graph G′ = (V ′,E ′) whose vertex set is a subset
of G’s vertex set, i.e., V ′ ⊂V , and whose edge set is E ′ = E∩ (V ′×V ′). We call G′ ⊂G
connected if any two vertices vi,v j ∈ V ′ are connected by a path in G′. We call G′ a
connected component of G if it is connected and has no edges to other nodes in V , i.e.,
(V ′× (V \V ′))∩E = /0. We call G a tree, if it consists of a single connected component
and removing any of its edges would split it into two connected components. We call
G a forest, if all of its connected components are trees. A multigraph is a graph which
may have more than one edge connecting two vertices vi,v j ∈V , i.e., E 6⊂V ×V .

Moreover, we define a weighted graph as G = (V,E,w), where w : E → R is a
function assigning to each edge a real-valued weight. The weight assigned to the
edge ei j is denoted by wi j. For an undirected graph, we have wi j = w ji and for two
unconnected nodes vi,v j ∈ V , we set wi j = 0. The weighted adjacency matrix of G

is the matrix W =
(
wi j
)

i, j=1,...,n. The degree of a vertex vi is defined as di =
n
∑
j=1

wi j.

Accordingly, we define the degree matrix as a diagonal matrix with the degrees on
the diagonal, i.e., D = diag(d1, . . . ,dn). For two subgraphs A,B⊂ G, which need not
necessarily be disjoint, we define W (A,B) = ∑

i∈A, j∈B
wi j. Furthermore, we define the

volume of a (sub-)graph G′ = (V ′,E ′) as vol(G′) = ∑
i∈V ′

di.

The sets A1, . . . ,Ak are called a partition of V if Ai 6= /0 ∀i, Ai∩A j = /0 ∀i 6= j, and
k⋃

i=1
Ai = V . We call such a partition P = {A1, . . . ,Ak} also a clustering of G and the

individual Ai a cluster. Moreover, [v]P ∈ P denotes the cluster to which node v has been
assigned, i.e., v ∈ [v]P. Given two partitions P1 and P2 of V , we say that P1 refines
P2 if and only if for all pairs of graph nodes (vi,v j) ∈ V ×V , [vi]P1 = [v j]P1 implies
[vi]P2 = [v j]P2 , i.e., all graph nodes being in the same cluster in P1 are necessarily also
in the same cluster in P2. We denote this with P1 ≤ P2, where the relation ≤ defines a
partial ordering on the set of all partitions of V , compare Jonsson and Barto (2006).

2.4.2 Graph Cuts

Graph cuts are based on defining an objective function on graph partitions, i.e., they
assign to every partition P= {A1, . . . ,Ak} of graph nodes V a scalar value. The partition
which minimizes this quantity is the optimal graph cut according to this criterion.
These objective functions are often based on the notion of a cut, which is defined as
cut(P) = 1

2 ∑
k
i=1W (Ai,Ai). The most direct way to define an objective function for

a partition is the MinCut objective: P∗ = minP cut(P) = minP 1
2

k
∑

i=1
W (Ai,Ai) . The

MinCut objective favors partitions in which each cluster is well separated from the rest
of the graph, i.e., where the weights of the edges which connect a cluster Ai with the rest
of the graph Ai are small. Unfortunately, the MinCut objective often results in partitions
in which most of the Ai consist of one or only a few nodes. This is often not desirable;
typically, one is interested in finding a partition in which each cluster is “reasonably
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large”. Two commonly used extensions of the MinCut objective that take the clusters’
size into account are RatioCut (Hagen and Kahng, 1992) and the normalized cut NCut
(Shi and Malik, 2000) :

RatioCut(P) =
k

∑
i=1

cut(Ai,Ai)

|Ai|
NCut(P) =

k

∑
i=1

cut(Ai,Ai)

vol(Ai)
, (2.14)

where cut(Ai,Ai) is shorthand notation for cut({Ai,Ai}). The two objective criteria
differ in how they measure the size of a cluster: while RatioCut measures the size of a
cluster by the number of nodes in this cluster, NCut uses the cluster’s volume as size.
Both criteria aim at choosing clusters of similar size—with the definition of size being
the main difference—and at the same time separating each cluster as well as possible
from the rest. Unfortunately, balancing both objectives makes minimizing RatioCut and
NCut NP-hard, see Wagner and Wagner (1993) for a discussion. Spectral Clustering
(see Section 2.4.3.1) provides means to find approximate solutions for these problems
in polynomial time.

There exists an interesting relationship between the NCut criterion and random
walks on graphs as pointed out by Meila and Shi (2001). For a random walk on a
graph, the transition probability of jumping from vertex vi to v j in one step is defined as
pi j =wi j/di. The corresponding transition matrix of the random walk is thus P=D−1W .
The following proposition according to von Luxburg (2007) holds:

Proposition 1 NCut via transition probabilities: Let G be connected and non bipartite.1

Assume that one runs the random walk (Xt)t∈N starting with X0 in the stationary dis-
tribution Π = di/vol(V ). For disjoint subsets A,B⊂V , denote by P(B|A) := P(Xt+1 ∈
B|Xt ∈ A). Then:

NCut(A,A) = P(A|A)+P(A|A)

See von Luxburg (2007) for a proof. Thus, finding a partition of a graph with minimal
NCut implies that a random walk on this graph has minimal probability of jumping
between vertices that belong to different clusters. This relationship between random
walks and NCuts is important for this work since finding a close-to-optimal NCut of
the sample transition graph (see Section 4.2.1) effectively partitions the MDP into
subproblems such that a randomly exploring agent would only very unlikely transition
from one of these subproblems into another one (see Section 3.1.1).

2.4.3 Graph Clustering

Since finding a graph partition with minimal NCut is NP-hard, several heuristics have
been proposed that determine partitions with close-to-minimal NCut. This subsection

1A graph G = (V,E) is called bipartite if its vertices V can be split into two disjoint subsets A,B such
that no edge in E connects two vertices that are both in A or both in B.
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Algorithm 2.2 Normalized Spectral Clustering (Shi and Malik, 2000).
1: Input: Graph G = (V,E,w) with |V |= n, number of clusters k
2: Lrw = In−D−1W # Random-walk graph Laplacian for G
3: # Matrix U ∈ Rn×k containing first k eigenvectors u1, . . . ,uk of Lrw as columns
4: U = EIGENDECOMPOSITION(Lrw,k)
5: y1, . . .yn = ROWS(U) # Denote the n rows of U by y1, . . .yn ∈ Rk

6: C1, . . . ,Ck = KMEANS((yi)i=1,...,n,k) # Cluster the yi into k clusters C1, . . . ,Ck
7: return Partition P= {A1, . . . ,Ak} with Ai =

{
v j|y j ∈Ci

}

presents three such heuristics: spectral clustering, PCCA+, and agglomerative hier-
archical clustering. An empirical comparison of these heuristics is given in Section
4.3.1.

2.4.3.1 Spectral Clustering

Spectral clustering (see von Luxburg (2007) for an overview) denotes a set of approaches
for creating a partition of a set of datapoints based on a similarity graph using methods
from spectral graph theory (Chung, 1996). The similarity graph contains the datapoints
as vertices and uses a pairwise similarity measure on these datapoints for defining the
edge weights. Spectral clustering aims at identifying a partition of the similarity graph
such that points in different clusters are dissimilar from each other while points in the
same cluster are similar to each other. This is typically formalized using RatioCut or the
normalized cut NCut; spectral clustering can thus be seen as a computational efficient
heuristic for finding close-to-optimal solutions for these NP-hard problems. In the
context of this work, spectral clustering is used in a slightly different context: instead
of clustering a similarity graph, spectral clustering is used to determine a partition of a
sample transition graph, which encodes the structure of an MDP.

Spectral clustering is based on graph Laplacian matrices. Different variants of these
matrices exist:

1. The unnormalized graph Laplacian matrix L= D−W .
2. The symmetrized graph Laplacian matrix Lsym = D−

1
2LD−

1
2 = In−D−

1
2WD−

1
2 .

3. The random-walk graph Laplacian matrix Lrw = D−1L= In−D−1W = In−P.
In the context of this work, Lsym is used as basis for identifying proto-value func-

tions in Section 5.5. Lrw can be used as basis for a spectral clustering algorithm to
approximate the partition with minimal NCut (see Algorithm 2.2). This algorithm can
be motivated from perturbation theory: in the ideal case, the between-cluster similar-
ities, i.e., the similarity of datapoints that belong to different clusters, are zero. In
this case, the eigenvectors uk of Lrw are the indicator vectors of these clusters (see
proof of Proposition 2 in (von Luxburg, 2007)) and the yi ∈ Rk will be 0 in all but one
dimension, in which they will have value 1. This dimension indicates the connected
component to which vi belongs. Thus, yi will be identical for all i where vi belong to
the same connected component and k-means clustering will assign them to the same
cluster which yields the “correct” partition for this ideal case. In a more realistic case,
one might still have distinct clusters in G but the between-cluster similarities will not
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Algorithm 2.3 PCCA+: Robust Perron Cluster Cluster Analysis (Deuflhard and Weber, 2005).

1: Input: Graph G = (V,E,w) with |V |= n, number of clusters k
2: T = D−1W # Stochastic random-walk matrix for G
3: # Matrix U ∈ Rn×k containing the k eigenvectors u1, . . . ,uk of T as columns
4: U = EIGENDECOMPOSITION(T,k)
5: y1, . . .yn = ROWS(U) # Denote the n rows of U by y1, . . .yn ∈ Rk

6: π = {argmaxi ||yi||2} # Select k rows, starting with row with maximal 2-norm
7: while |π|< k do
8: # Add row with maximal distance to hyperplane spanned by selected rows π

9: π = π ∪ {argmaxi/∈π

∣∣∣∣yi−Pspan{yπ}(yi)
∣∣∣∣

2} # Pspan{yπ}(yi): projection of yi on hyperplane
10: end while
11: χ =U×U−1

π # Multiply U with inverse of its k× k submatrix with rows π selected
12: return Partition P= {A1, . . . ,Ak} where Ai = {v j | argmaxl χ[ j, l] = i}

be exactly zero but only close to zero. Accordingly, the Laplacian matrices will be
“perturbed” versions of the ones in the ideal case whose eigenvectors will be close to
the ideal indicator vectors. The yi will also be slightly perturbed versions of the ideal
ones, i.e., most entries will be close to 0 and one entry indicating the cluster should be
close to 1. If the perturbations are not too strong, k-means clustering should be able to
recover the optimal partition also from the perturbed yi. See von Luxburg (2007) for a
summary of a more formal treatment of perturbation theory.

A loose upper bound on the computational worst-case complexity of normalized
spectral clustering is O(n3+kn), assuming that the eigendecomposition in line 4 requires
O(n3) and k-means clustering in line 6 requires O(kn), which is the case when the
number of iterations is constant in k and n.

2.4.3.2 Robust Perron Cluster Cluster Analysis

A further spectral clustering algorithm derived from perturbation theory is “Robust
Perron Cluster Cluster Analysis” (PCCA+) by Deuflhard and Weber (2005). PCCA+ is
similar to Algorithm 2.2, with the main differences being that (a) the spectral clustering
is not based on the random-walk graph Laplacian Lrw but based on a stochastic random
walk matrix T = D−1W and (b) that the rows are not clustered using k-means but by
projecting the rows onto a k-dimensional hyperplane and assigning the nodes to the
closest indicator vector (the closest simplex corner). PCCA+ is shown in Algorithm
2.3. A loose upper bound on the computational worst-case complexity of PCCA+ is
O(n3 + kn), assuming that the eigendecomposition in line 4 requires O(n3) and each
iteration of the loop in line 7-9 is in O(n).

2.4.3.3 Agglomerative Hierarchical Clustering

An alternative to spectral clustering for finding a partition with close to minimal NCut
is agglomerative hierarchical clustering (Hastie et al., 2008, Section 14.3.12), see
Algorithm 2.4. This algorithm starts by assigning all vertices into a separate cluster
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Algorithm 2.4 Agglomerative Hierarchical Clustering
1: Input: Graph G = (V,E,w), number of clusters k
2: P= {{v} | v ∈V} # Initially: one cluster per vertex
3: VD = {{v} | v ∈V}, ED = /0 # Optional: Initial nodes and edges of dendrogram
4: while |P|> k do
5: Mc = {(p1, p2) | (p1× p2)∩E 6= /0} # Merge-candidates: clusters connected in G
6: p∗1, p∗2 = argmax

p1,p2∈Mc

NCut(p1, p2) # Identify merge candidate with maximal NCut

7: P= (P\{p∗1, p∗2})∪{p∗1∪ p∗2} # Merge p∗1 and p∗2
8: # Optional:
9: VD =VD∪{p∗1∪ p∗2} # Add new cluster as node to dendrogram

10: ED = ED∪{({p∗1∪ p∗2}, p∗1),({p∗1∪ p∗2}, p∗2)} # Connect new node to its two source nodes
11: end while
12: return Partition P, Dendrogram D= {VD,ED}

and then iteratively merges greedily the pair of connected clusters with maximal NCut,1

i.e., the two clusters which have strong between-cluster similarity relative to the within-
cluster similarities. The algorithm stops once the partition consists of k clusters; the
resulting clustering should have small NCut since clusters with large NCut have been
merged early. However, due to the greedy nature of the algorithm, there is no guarantee
for finding the partition with minimal NCut.

This algorithm exploits situations in which the graph is only sparsely connected:
the size of the set of merge candidates identified in row 5 depends on how many of the
clusters are connected by an edge. If the graph is only sparsely connected, typically
only few clusters are connected in G, and thus the set of merge candidates is small. This
reduces the runtime of the algorithm since the argmax in row 6 goes over a smaller set.
Furthermore, agglomerative clustering can optionally also create a so-called dendrogram
D, from which the entire history of cluster merges can be recovered. The dendrogram
is a tree for k = 1 and a forest for k > 1.

In the general case, the computational worst-case complexity of this algorithm is in
O(n3). By using a more efficient version than is shown in Algorithm 2.4 where, among
other things, the list of merge-candidates Mc is implemented as a priority queue with
the NCut of the merge used as priority, this complexity can be reduced to O(n2 logn).
For specific linkage criteria like the single-linkage, the worst-case complexity can even
be reduced to be in O(n2). These linkages, however, will not be suited for the problems
discussed in this thesis. Please refer to Murphy (2012, Chapter 25.5.1) for more details.

1Note that this notion generalizes NCut from entire partitions to sub-partitions consisting of two
clusters, i.e., NCut(A,B) = cut(A,B)

vol(A) + cut(B,A)
vol(B) .
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3
Skill Discovery

“If I have seen further it is by standing on the shoulders of giants”

Sir Isaac Newton, letter to Robert Hooke, 1676

3.1 INTRODUCTION

THIS chapter introduces the problem of skill discovery. As discussed in Section 1.1,
the term skill denotes a piece of procedural knowledge which allows achieving

a specific result in a close-to-optimal way regarding criteria like reliability or speed.
In the context of computational HRL, skills are typically considered to be temporal
abstractions. Temporal abstractions have proven to allow speeding-up learning and
planning and building prior knowledge into artificial intelligence system, see, e.g.,
(Fikes et al., 1972; Sacerdoti, 1974; Korf, 1985; Iba, 1989) and have also been explored
in the context of MDPs (Singh, 1992a; Parr and Russell, 1997; Dietterich, 2000b;
Precup, 2000), see also Section 2.3.4.

This work discusses temporal abstractions in the options framework (Sutton et
al., 1999b). As discussed in Section 2.3.4 (see there for more details), within the
options framework, a skill is formalized as an option o = (Io,βo,πo) consisting of the
option’s initiation set Io ⊂ S determining the states in which the option may be invoked,
the option’s termination condition βo : S→ [0,1] specifying the probability of option
execution terminating in a given state, and the option’s policy πo which defines the
probability of executing an action in a state under option o. Moreover, the option’s
policy πo is defined relative to an option-specific reward function Ro. Skill learning
denotes the process of learning πo given the skill prototype Ψo = (Io,βo,Ro), while skill
discovery consists of choosing an appropriate skill prototype Ψo for a new option o.

Skill discovery approaches can be categorized according to the class of heuristic
which is used internally for discovering skills. Among these classes are: (a) solution-
based heuristics, which determine skills for a domain by introspecting successful
(potentially optimal) solutions and identifying common structures or specific properties,
(b) factoring-based heuristics, which try to exploit independence properties of state
space dimensions, (c) frequency-based heuristics, which compute local statistics of
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states for identifying subgoal states such as bottlenecks, and (d) graph-based heuristics,
which aim at identifying and exploiting the structure of a domain by representing the
structure explicitly as a graph. Heuristics from different classes can nevertheless yield
similar skills. For instance frequency-based and graph-based heuristics may lead to
similar skills since visit counts of states often coincide with graph-theoretic measures
like betweenness and both aim typically at identifying bottlenecks and use these as
option subgoals.

Section 3.2 discusses potential benefits and challenges of using a skill-based HRL
approach and which properties are desirable for autonomous skill discovery. Section
3.3 presents a review of related works in skill discovery, grouped by the underlying type
of heuristic, and discusses to which extent these works exhibit the desirable properties
identified before. Thereupon, Section 3.4 discusses how the performance of skill
discovery can be evaluated empirically. However, first an illustration of how exploiting
domain structure can be helpful for skill discovery in a classical domain is given.

3.1.1 Illustration: Towers of Hanoi

This subsection illustrates the idea of exploiting problem structure for decomposing a
problem into more simple subproblems based on the “Towers of Hanoi” (ToH) game.
This game consists of three stacks on which Np pieces are placed. These pieces have
different sizes and the movement of pieces is restricted such that only one piece may be
moved at a time and no piece may be placed on top of smaller pieces, i.e., pieces on the
same stack must always be ordered according to their size. In general, the task of an
agent playing the game is to find a sequence of moves of minimal length that transforms
a start state into a specific goal state.

Figure 3.1 shows an example of four states of ToH with Np = 5. The figure shows
that even though there is a large number of possible states of the game, the shortest
sequence of moves from start state s0 to goal state sG must traverse through the two
middle states since these are the only configurations in which the black piece can be
moved from Stack 0 to Stack 2 (this is in fact true for any pair of start and goal states
where the black piece is on Stack 0 in the start state and on Stack 2 in the goal state).
Thus, if this property of the domain is known to the agent, the general task of finding the
shortest path from start state s0 to goal state sG can be broken down into two subtasks:
(1) finding the shortest path from start state s0 to sa and (2) finding the shortest path
from sb to the goal state sG. However, typically one would like the agent to discover
this property of the domain on its own rather than giving this knowledge to it explicitly.

How can an agent identify this domain property autonomously? Figure 3.2 shows
the state transition graph of the ToH game for Np = 5. In this state transition graph,
every graph node corresponds to one state of the game and every edge to a possible
move between two states of the game; see Section 4.2.1 for a more formal definition.
Note that all edges are bidirectional since any move can be undone. A state transition
graph captures thus structure of the domain in the form of a graph.

If the transition graph is given, it can be split into densely connected subgraphs
by any of the clustering algorithms discussed in Section 2.4.3. One can show that the
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Figure 3.1 – Four states of “Towers of Hanoi” with 5 Pieces. Let s0 be the start state and sG

be the goal state. The shortest sequence of moves from s0 to sG must contain the two states
sa and sb since the black piece must be moved from Stack 0 to Stack 2 and this requires
that all other pieces are on Stack 1, which corresponds to sa and sb.

optimal clustering into k = 3 clusters for the NCut-linkage (see Section 2.4.2) is the one
shown in Figure 3.2. The edges connecting two nodes that belong to different clusters
correspond to the graph’s “bottlenecks”.1 The start state s0 of the example in Figure 3.1
lies in the “blue” cluster and the goal state sG in the “red” cluster. The edge connecting
the states sa and sb corresponds to one of the bottlenecks, namely to the one between the
blue and red cluster. Thus, the clustering of the state transition graph allows identifying
the desired domain property and thus, decomposing the problem into two subproblems.

In summary, one approach of exploiting problem structure for decomposing a
problem into more simple subproblems is to cluster the problem’s state transition
graph into densely connected subgraphs, consider the connections of these clusters as
bottlenecks, and try first to reach an appropriate subgoal—typically corresponding to
one of the identified bottlenecks—and only after this the actual goal state. The questions
addressed in this thesis are: (a) how can bottlenecks be identified in domains with
unknown state transition graphs and (b) how can this concept be extended from simple
toy problems like the ToH game to more challenging domains that resemble typical
real-world robotic control problems.

3.2 CONSIDERATIONS

This section motivates why a skill-based HRL approach can be useful for an agent,
which challenges need to be addressed, and which properties are desirable for a skill
discovery method.

3.2.1 Potential Benefits

This section addresses the question “why should an agent discover and learn a col-
lection of skills in the first place instead of solely learning monolithic task-solutions
directly?”. This question is important since from a computational point of view, discov-
ering and learning skills typically only increases computational demands and memory

1The term “bottleneck” will be defined more formally in Section 4.2.2; for now, a bottleneck in a
graph can be considered to be an edge which lies on the shortest path between many pairs of graph nodes.
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Figure 3.2 – State transition graph of “Towers of Hanoi” with 5 pieces. The graph is
annotated with typical start, goal, and bottleneck states. The coloring of the graph nodes
corresponds to the optimal clustering of the graph into k = 3 clusters.

consumption. Thus, this increased resource consumption of temporal abstractions must
be compensated by a considerable benefit elsewhere.

The first motivation for skill learning is the following: intuitively, a skill-based
approach is appealing since it allows the agent to learn in a way which resembles
classical divide-and-conquer approaches that have been proven successful for a va-
riety of problems: in the divide phase, a problem is split into a set of subproblems
(skill discovery) and solutions for these subproblems are determined (skill learning).
Thereupon, in the conquer phase, the solutions of the subproblems are combined to
a solution of the overall problem (skill utilization in the compositional learning of
the higher level policy). Solving the overall problem is simplified since it requires
the agent solely to chunk together sub-solutions which shortens the effective length
of the solution. For instance, Sutton et al. (1999a) have shown that the state-action
space of a complex mission planning task can be reduced from more than 24 billion
elements to less than a million elements by using temporal abstractions. Effectively,
choosing among higher-level skills allows the agent to take larger and at the same time
more meaningful steps through the search space of behavioral strategies than by simply
choosing between primitive actions (Barto et al., 2013).
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Related is the concept of modularity: many complex systems, be they man-made or
natural, are organized hierarchically from a set of modules, which have some degree
of mutual independence (Barto et al., 2013). Simon (1996) used the term “nearly
decomposable” to denote problems which can be solved by such a modular solution
close-to-optimally. Skills may be considered as the modular building blocks of goal-
directed behavior.

A further advantage of skills is that they allow the agent to employ spatial abstrac-
tions, i.e., that learning solutions for subproblems can be simplified in situations where,
e.g., some of the dimensions of the state space are irrelevant for certain subproblems
and need not be taken into account or several dimensions can be combined into a lower
dimensional representation (Dietterich, 2000c; Li et al., 2006; Barto et al., 2013). This
makes the subproblems lower-dimensional, which can be important because of the
“curse of dimensionality” (see Section 2.2.4). Note that a comparable monolithic policy
may not be able to use the same kind of state abstraction since the overall problem
may require intrinsically all state space dimensions and only the individual skills’ sub-
problems may be lower-dimensional. However, it should be noted that if solving the
subtasks is as difficult as solving the original task, the hierarchical decomposition can
actually make learning the optimal policy harder because of the additional complexity
added by the hierarchical credit assignment problem.

As discussed by McGovern et al. (1997), a further potential benefit of using skills in
RL is that they can offer a beneficial exploration bias to the stochastic policy of the agent.
For instance, the often used reach-subgoal options make the respective subgoal state
more prominent during learning: just picking the corresponding option once moves
the agent to the respective subgoal (given that the option is executed successfully).
This effectively modifies the random-walk connectivity of the MDP: every state in
the option’s initiation set gets now connected to the option’s subgoal, which is often
a bottleneck of the domain. This may help to reduce the “flailing” pattern which is
often observed for stochastically exploring agents. An example for this is shown in
Figure 3.3: while random exploration with only primitive actions visits every state
equally often (left plot), random exploration with primitive actions and options, which
lead to the domain’s bottlenecks, visit the bottlenecks and states on the path between
these bottlenecks considerably more often (middle plot). Further evidence for a positive
effect of a skill hierarchy onto exploration is given by Vigorito and Barto (2010) in a
structured domain in which random exploration is very unlikely to visit certain states.
Here, the skill hierarchy allows exploring the environment more intelligently by taking
advantage of the environment’s structure and to reach parts of the state space that are
not easily accessible via exploration based on primitive actions.

However, there is no guarantee that the explorative bias provided by temporal
abstractions is always helpful. Jong et al. (2008) present an empirical study on the
utility of temporal abstractions and provide examples where the explorative bias can be
even harmful. Figure 3.3 gives an example: if options can be invoked anywhere (middle
plot), the probability of visiting the goal state (the right upper graph node) by chance
is actually smaller than for the case of primitive actions only (left plot). Only when
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Figure 3.3 – Visit count under random walks in “Towers of Hanoi”: the plots show how
often states are visited under a random walk of length 105. Left plot: random walk with
primitive actions only. Middle plot: random walk with primitive actions and options for
reaching bottlenecks. Right plot: random walk with primitive actions and options for
reaching bottlenecks; options cannot be invoked in the vicinity of the goal state (right, upper
graph node). Probability of selecting an option was set to 0.05.

option execution is restricted to states that are not in the vicinity of the goal state, i.e.,
are separated by a bottleneck from the goal, the probability of visiting the goal state is
actually increased (right plot). Thus, using a hierarchical RL approach is not a panacea;
it requires some careful architectural choices and thus some domain knowledge to be
practical (see Section 3.2.2).

A further potential benefit of temporal abstractions is that they may accelerate the
propagation of action values (McGovern et al., 1997): since temporal abstractions like
options effectively reduce the temporal resolution of the high-level policy, rewards can
be propagated back more efficiently. For instance, in standard Q-learning, values are
propagated backwards one step per update while in Macro Q, they are propagated back
several time steps, more specifically: over τ time steps if the respective option lasted
for τ time steps. McGovern et al. (1997) show that this can considerably improve
sample-efficiency in a setup where reward is sparse and the value function is initialized
pessimistically. Note that the temporal resolution is increased again when learning the
option policies themselves. Thus, this benefit applies mainly on the upper layers of an
HRL architecture.

A further reason for creating options is that they allow transfer in multi-task settings,
in which the agent is faced with several different but related tasks (Thrun and Schwartz,
1995; Bernstein, 1999; Perkins and Precup, 1999; Pickett and Barto, 2002; Konidaris
and Barto, 2007; Mehta et al., 2008; Konidaris et al., 2012; Hawasly and Ramamoorthy,
2013). Transfer learning (Taylor and Stone, 2009) is considered to be significant for
both natural and artificial agents since many real world problems exhibit the multi-task
property: for instance, driving in a car each day to work is always slightly different
because of changing weather conditions, road conditions, or traffic. This causes a
slightly different but nevertheless related task each day. Transfer of knowledge can
make an agent “competent” (White, 1959) in such an environment, which means that
the agent can solve efficiently a multitude of tasks imposed on him in this environment.
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In the framework of RL, multi-task learning often corresponds to a set of MDPs
which share the same state-transition probabilities Pa

ss′ but differ in the rewards Ra
ss′

which encode the different tasks.1 In this case, options learned in one task can potentially
be reused in any of the other tasks; for instance, an option for reaching a bottleneck
like a doorway might be useful for a multitude of tasks. Thus, options allow that basic
capabilities are learned only once and reused later on, i.e., they make an agent more
competent. This can not be achieved easily with a flat policy. However, this comes at
the price that the freedom to select actions is reduced since task policies need to commit
to identical actions in the same state when using the same option. Thus, the class of
policies which are representable by a temporal abstraction hierarchy is typically smaller
than the class of flat policies.

Related to this is the motivation for using options in non-stationary environments,
where options may allow adapting policies more easily to (small) changes in the
environment (Digney, 1998; Stolle and Precup, 2002). In a changing environment, the
transition probability may change over time, i.e., Pa

ss′ may be non-stationary. A classical
example is a maze-world with several doorways, where doors may open or close at
certain points in time. While such a change may require that a flat policy is completely
relearned, which involves forgetting the old solution and learning a new solution more
or less from scratch, a hierarchical policy may get by with adapting the high-level policy
to use different options without modifying the options’ policies themselves.

Some authors (Konidaris and Barto, 2009; Barto et al., 2013) point out that in
continuous domains (and in large discrete domains), there is an additional represen-
tational benefit from using options: since continuous domains have infinitely many
states and/or actions, the agent must necessarily resort to an approximate solution of the
problem, e.g., by representing the value function by a function approximator (see Sec-
tion 2.3.2) or by using a parametrized policy representation (see Section 2.3.3 ). When
using such a fixed, flat parametric representation, there is typically a trade-off between
representability and learnability of policies: the more policies can be represented by
the parametric representation, the more parameters need to be learned, and the more
difficult it gets to find the optimal parameter values. By using options, the policy is
represented hierarchically instead of a monolithically. This frees the primary, top-level
policy from representing complex solution strategies for all parts of the state space
jointly by allowing the outsourcing of partial solutions into the options’ policies. At the
same time, the option policies can focus on a particular subset of the state space and can
thus employ function approximators with fewer basis functions. This is useful since it
breaks down a many-parameter problem into several problems with less parameters and
thus alleviates the curse of dimensionality. Konidaris and Barto (2009) call these skills
which can employ simpler function approximation techniques “lightweight options”.
Moreover, the authors provide empirical evidence that the benefit of hierarchical policy
representations can be considerable in continuous domains.

1There is also some work on learning options that are reusable in domains with differing Pa
ss′ , most

notably the work of Konidaris and Barto (2007), in which options are learned in a non-task-specific agent
space but can be used for learning solutions in the task-specific problem space.
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3.2.2 Challenges

While the former section has outlined several potential benefits of using a hierarchical
RL approach, it also briefly sketched some of the major challenges. This section
discusses these challenges in more depth. The first issue is the choice of a learning
architecture which determines how exactly options are integrated in the learning process.
Jong et al. (2008) argue that one has to carefully design at what point in time options
are introduced into the learning process, whether the high-level policy can choose
solely among options (abstraction) or among options and primitive actions directly
(augmentation), where in the state space which option can be invoked, and which
exploration mechanism is used. Thus, some experience with the options framework is
required for designing a learning architecture which allows the agent to actually profit
from a set of reusable skills. Related to the choice of the learning architecture is the
hierarchical credit assignment problem (see Section 2.3.4), which needs to be addressed
when the architecture employs spatial abstractions.

A second issue is the trade-off between compactness and representability of close-
to-optimal policies as discussed by Thrun and Schwartz (1995). The authors consider
the description length of policies in a multi-task scenario: policies for different tasks
which are based on shared skills have a more compact joint-representation, i.e., have
a smaller description length, since they share the same skills. Since learning requires
the agent to search the space of policies for an optimal one, a smaller policy space (one
with smaller description length) typically means that learning is more sample-efficient,
i.e., less interaction with the environment is required for finding the optimal policy
in the policy space. On the other hand, a hierarchical policy in a space with small
description length typically also suffers a performance loss, i.e., the performance of the
optimal hierarchical policy in a task can be worse than the performance of the optimal
flat policy. This resembles the situation in supervised learning, where model classes
with small capacity are good for situations with little training data but higher capacity
is desirable once more training data becomes available (von Luxburg and Schölkopf,
2011). However, it is well known that also models with small capacity, i.e., small
description length, can be optimal if the model class matches the respective problem
well. Similarly, a good choice of skill prototypes may allow both sample-efficiency and
(close-to) optimality. This emphasizes the need for good skill discovery approaches,
which generate temporal abstractions that reduce the description length considerably
without suffering a big performance loss.

A further issue when the agent is required to discover and learn skills autonomously
is learning speed, i.e., sample efficiency. Several authors have noted that the number of
samples required for identifying and learning useful skills can be considerably larger
than for learning a close-to-optimal policy (Singh, 1992b; Thrun and Schwartz, 1995).
The authors suspect that this is because discovering skills using their approach is much
harder than learning control. If this is the case, then why should skills be learned in the
first place? One possible use case is a scenario where an agent is faced with a sequence
of different but related tasks: while a skill learning agent would be less efficient in the
first tasks it could benefit in later tasks by reusing skills acquired earlier. However,
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in general it would be desirable to develop methods for skill discovery which allow
identifying and learning useful skill before a close-to-optimal task policy has been
learned.

A further requirement on the learned skills is that they should be reusable in different
but related tasks and thus be task-independent. However, skill discovery and skill
learning often take place concurrently to learning a task solution. Thus, two challenges
arise: how can one learn skills which are reusable, i.e., not specific for a given task,
when they are discovered and learned in a setting with externally imposed task? And:
how can one trade-off the learning of task-independent skills and task-specific solutions?
One approach to the first challenge is to ignore the reward in skill discovery since the
reward typically encodes the external task, i.e., to use an option-specific pseudo reward
Ro which is not based on the external reward. Related to this is the learning of skills
in a developmental setting (see Chapter 6), in which no external task is imposed onto
the agent but the agent can explore its environment freely. In such a setting, only skill
discovery approaches which do not identify skills based on properties of task solutions
and value functions are applicable. On the other hand, skill discovery offers great
potential in this setting since it allows continual learning by acquiring new skills based
on bootstrapping existing structural and procedural knowledge (Barto et al., 2013).

A further issue is the granularity of the skills, i.e., how many skills should be
learned. Clearly, learning only a single skill will not be very useful in most domains;
on the other hand, learning too many skills may cause a kind of overfitting where
skills become to specific and can hardly be reused. Furthermore, too many skills may
overly increase computational resource usage and may make learning the high-level
policies more difficult (Sutton et al., 1999b); this is known as “utility problem” or “skill
proliferation”. Pickett and Barto (2002) present an empirical comparison of different
choices for the number of skills and show that the resulting difference in performance
can be considerable. Thus, the specific choice of the number of skills is crucial but hard
to choose beforehand. It is thus desirable that skill discovery chooses the granularity
automatically during learning based on the domain properties.

A further critical factor is the timing of skill discovery, i.e., the point in time in which
skills are discovered and added to the hierarchical RL architecture. The timing is critical
since performing skill discovery too early may result in suboptimal skill prototypes due
to insufficient experience of the agent in the environment. Performing skill discovery
too late may be potentially harmful if the agent has already learned a close-to-optimal
task policy based on primitive actions and the new skills only lead to a digression from
this policy. Moreover, even if the options with optimal policies for reaching actual
bottlenecks are provided to the agent, providing the agent too early with these options
might interfere with a pessimistic initialization of the action value function (Jong et al.,
2008).

Lastly, continuous domains pose additional challenges for skill discovery as dis-
cussed by Konidaris and Barto (2009). These challenges arise mostly from the fact that
initiation sets Io and termination conditions βo of the skill prototypes cannot be defined
by sets of discrete states but must use some kind of generalization over the continuous
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state space. For instance, letting an option terminate successfully solely in a single goal
state is not viable since an agent may never visit the same state twice. Thus, the goal
must be an entire region of the state space, which raises the question how large the
region should be chosen: a too small region may be impossible to reach while a too
large region may make the option trivial. Similarly, initiation sets must be regions of
the state space with infinitely many states, which must be determined by skill discovery.
Moreover, since continuous domains require approximate representations of policies
and value functions, there may be a complex interdependency between the granularity
of skills and the capacity of policy representations.

3.2.3 Desirable Properties

Based on the challenges identified for skill-based HRL, this section identifies five
desirable properties for skill discovery:
PROPERTY P1 Skill discovery should be incremental. This means that skill discovery

must not be restricted to a single specific point in time during learning
but should rather be performed regularly. This addresses the challenge
of timing since choosing an appropriate frequency for skill discovery
is less critical than choosing a single point in time. Incremental
skill discovery methods also allow discovering skills of increasing
sophistication gradually.

PROPERTY P2 Skill discovery should be applicable in a developmental setting and
be able to identify skills which are reusable in several different tasks.
This requires that skills are identified based on exploring an environ-
ment without external reward feedback (or by ignoring the external,
task-specific reward feedback). This addresses the task-independence
challenge.

PROPERTY P3 Skill discovery should decide automatically how many skills are iden-
tified. This means that users need not have a good intuition about how
many skills are appropriate for a specific domain but can determine
the skill granularity based on more intuitive parameters like specifics
of a bottleneck. This addresses the challenge of skill granularity.

PROPERTY P4 Skill discovery should not require that the number of states is finite and
small but be able to handle infinitely large state spaces by taking some
kind of state similarity into account. This addresses the challenge of
domains with continuous state spaces.

PROPERTY P5 Skill discovery should be sample-efficient. While sample-efficiency is
not a binary criterion but rather one of degree, it is clearly desirable
that skills are discovered as early as possible; typically, before task
solutions are learned. This addresses the challenge of learning speed.

Note that subgoal S1 stated in Section 1.2 corresponds to the properties P1 and P3,
subgoal S2 corresponds to property P4, and subgoal S3 to property P2. Furthermore,
the methods proposed in this work have been developed explicitly with the aim of
being sample-efficient, i.e., exhibiting property P5. The challenges of choosing the



43 3.3 RELATED WORKS

learning architecture and the policy representation are not addressed here since they are
typically handled outside of skill discovery. The same holds true for the hierarchical
credit assignment problem.

3.3 RELATED WORKS

Most prior work on autonomous skill discovery is based on the concept of bottleneck
areas in the state space. Informally, bottleneck areas have been described as the border
states of densely connected areas in the state space (Menache et al., 2002) or as states
that allow transitions to a different part of the environment, the so-called access states
(Şimşek and Barto, 2004). A more formal definition is given by Şimşek and Barto (2009)
which define bottleneck areas as those states which are local maxima of betweenness—a
measure of centrality on graphs —on the state transition graph. Figure 3.4 gives an
illustration of betweenness in the Towers of Hanoi game (see Section 3.1.1): nodes of
the transition graph which correspond to states in which the largest piece can be moved
from one stack to an other have large betweenness (red color in graphic) while nodes
which correspond to states in which the second-largest piece can be moved from one
stack to an other have medium betweenness (yellow color in graphic). Other nodes have
considerably smaller betweenness. Thus, nodes with high betweenness correspond to
states that one would consider as bottlenecks intuitively. Other graph-based centrality
measures have been proposed as alternatives to betweenness, such as connection graph
stability and connection bridge centrality (Moradi et al., 2010).

Once bottleneck areas have been identified, typically one (or several) skills are
defined that try to reach this bottleneck from a local neighborhood of the bottleneck.
Since betweenness requires complete knowledge of the transition graph and is com-
putationally relatively expensive,1 several heuristics have been proposed to identify
bottlenecks. The next section gives an overview over related works in skill discovery
grouped by the class of heuristics being used and discusses which works exhibit which
of the properties identified in Section 3.2.3.

3.3.1 Solution-Based Heuristics

The class of solution-based heuristics is based on analyzing the structure of learned
policies or value functions; thus, there is no explicit definition of what constitutes a
bottleneck or subgoal state but subgoal states are identified based on properties of task
solutions. Typically, the learned policies need to be close-to-optimal. Furthermore,
some methods are tailored to multi-task settings and analyze the learned policies for
commonalities. This approach was pioneered by Amarel (1968) and Anzai and Simon
(1979), who created subgoal states by examining solutions of previous problems.

An early method from this class suited for MDPs is SKILLS (Thrun and Schwartz,
1995). SKILLS explicitly models the trade-off between policy description length and

1The computational complexity of the computation of the betweenness on a weighted graph with n
nodes and m edges lies in O(nm+n2 logn).
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Figure 3.4 – Betweenness for “Towers of Hanoi” with 5 pieces. Red nodes of the state
transition graph correspond to states with large betweenness, yellow nodes to medium
betweenness, and blue nodes to small betweenness.

performance loss (see Section 3.2.2) in a multi-task setting. SKILLS initializes skills
randomly and optimizes them using stochastic gradient descent such that description
length and performance loss are minimized. The description length is computed for
all policies in the multi-task problem jointly; this way, sharing temporal abstractions
between tasks can reduce description length. Performance loss is measured based on
a comparison to the optimal value functions (hence the requirement for first learning
optimal value functions). Empirical evaluations in maze worlds show that useful skills
can be learned which reduce the description length considerably without incurring a
large performance loss.

A similar approach is PolicyBlocks (Pickett and Barto, 2002), with the main differ-
ence being that PolicyBlocks takes redundancy explicitly into account while SKILLS ad-
dresses this only implicitly. Moreover, PolicyBlocks uses a greedy bottom-up approach
while SKILLS uses stochastic gradient descent. The authors show that PolicyBlocks
can outperform SKILLS and even manually designed options in multi-tasks scenarios
where the tasks differ considerably.

Kirchner (1995) proposed to identify subgoal states based on the so-called “Subgoal-
Utility” (SGU). The SGU is computed as follows: for any state st , k random actions are
performed and the Q-values of the k visited states are accumulated. This is compared
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with the accumulated Q-values of the states that are visited under k steps of the current
policy starting from st . If this difference (the SGU) is large, this indicates that st is
a state where the specific choice of actions is quite important and thus, the state can
be considered as a kind of access state to a new region of the state space. It has been
shown empirically in maze worlds that maxima of SGU are typically states in front of
doorways since in these states it is important that the agent takes the appropriate actions
to go through the doorways (Bieberstein, 2006). The SGU of any visited state is given
as an additional reward to the agent. This way, the agent is rewarded for visiting subgoal
states. In contrast to most other discussed approaches, SGU does not create explicit
skills but uses the discovered subgoal states for generating a kind of pseudo-reward,
which is used to boost learning. Thus, SGU can be considered as method for reward
shaping (Gullapalli and Barto, 1992).

A related approach is Q-Surfing (Kirchner and Richter, 2000): Q-surfing computes
so-called significance values based on the action value function Q. These significance
values are large in a state s if the difference between the value Q(s,a∗) of an optimal
action a∗ and the mean Q-value in this state is large. The authors show that, as the value
function converges, the significance values become large in bottleneck and corner states
of the domain. The authors use the significance values for speeding up the propagation
of Q-values in the planning phase of a model-based RL architecture; however, as
the significance values are indicators of bottlenecks, they could also be used for skill
discovery in principle (albeit not before the action value function is about to converge).

A more recently proposed skill discovery method is “skill chaining” (Konidaris and
Barto, 2009). Skill chaining has been designed explicitly for domains with continuous
state spaces. It produces chains (or more general: trees) of skills such that each skill
allows reaching a specific region of the state space, such as a terminal region or a region
where an other skill can be invoked. Skill chaining requires specifying an area of interest
(typically the terminal region of the state space) which is used as target for the skill
at the root of the tree. In the first step, a skill for reaching this goal is learned. Since
the domain is continuous and the capacity of the skill policy is bounded, the skill’s
policy can only learn a local solution.1 Skill chaining determines the set of states from
which the goal can be reached using this local solution, and uses this set as target area
for a second skill. This way, skill chaining learns incrementally, backwards from the
goal, a chain of skills from start to goal state. Thus, skill chaining can be considered
as a solution-based heuristic which identifies skills not only based on properties of
the environment but also based on the representational capacity of skill policies. In
discrete domains, where optimal policies can be represented exactly, skill chaining
would typically only learn a single, global skill. Two disadvantages of skill chaining are
that (a) it must be able to reach the goal state before any skill can be discovered and (b)
for multi-task domains with several goal regions or in developmental settings without
any goal state, it is unclear how the root of the skill tree should be chosen.

1Note that this is related to the description length versus performance loss trade-off: by using skill
policy representations with larger capacity, the policies could represent more complex and thus less local
behavior.
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Skill chaining can also be combined with learning-from-demonstrations: in this
case, the agent need not discover skills completely autonomous but is provided with
a set of example trajectories obtained by human demonstrations, which it splits into
simpler segments. These segments correspond to behavioral building blocks and are
mapped onto skills (Konidaris et al., 2010).

More recently, Hawasly and Ramamoorthy (2013) proposed “Incremental Learning
of Policy Space Structure” (ILPSS). ILPSS is devised for multi-task settings and tries
to exploit common structure in learned (not necessarily optimal) policies. It clusters
the regions of the state space which are preferred by successful task trajectories and
extracts the corresponding policies fragments for the regions. These policy fragments
form the basis for reusable options. ILPSS can be used in domains with continuous state
space but requires specifying the number of policy fragments. Not requiring optimal
policies but only ones which are able to reach the goal makes ILPSS slightly more
sample-efficient than similar approaches.

3.3.2 Factoring-Based Heuristics

A second class of heuristics are factoring-based approaches. These approaches generally
assume that the state space possesses a specific structure in the sense that there exists
conditional independence relations between some state variables (dimensions of the
state space) or that some state variables vary more frequently than others since they
correspond to information on lower levels.

Hengst (2002) proposed HexQ, a method which attempts to decompose an MDP
by dividing and abstracting the state space such that a hierarchy of simpler MDPs is
generated. For this, it assumes that some of the state variables (dimensions of the state
space) vary more frequently than others. An ordering of the state variables according to
this criterion is determined based on statistics obtained during a random exploration.
Thereupon, so-called exit states (corresponding to subgoal states) are determined in
which an action can cause a change in one of the less frequently changing state variables.
Based on this, the MDP is decomposed into several subproblems. One drawback of
HexQ is that a simple ordering of state variables may not always reflect the causal
relation of state variables adequately.

Variable Influence Structure Analysis (VISA) by Jonsson and Barto (2006) assumes
that there exist conditional independences between state variables for given actions and
that these are given to the agent in the form of a dynamic Bayesian network (DBN).
Based on this DBN, VISA creates a causal graph describing relationships of the state
variables and partitions this graph into strongly connected components. Note that this
partitioning is a partitioning of state variables and not of states themselves which would
be the case in the graph-based heuristics. As in HexQ, exit states for these partitions are
determined and options and state abstractions are generated based on this. While VISA
is quite sample-efficient, this is mainly because it requires that domain knowledge in
the form of a DBN is given by the user; thus, VISA not an autonomous skill discovery
approach.
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3.3.3 Frequency-Based Heuristics

A further class of heuristics are frequency-based approaches that compute local statistics
of states, for instance how frequently a state is visited. This heuristic was explored by
Korf (1985) and Iba (1989) for discovering macro-operators in deterministic search
problems. In the context of discovering skills in MDPs, Digney (1996) proposed to
consider states that are visited frequently as subgoal states. Similarly, Asadi and Huber
(2005) consider states as subgoals, which lie—under a given policy—on a considerably
larger number of paths than their potential successors.

McGovern and Barto (2001) proposed “Diverse Density”, which identifies bot-
tlenecks as those states that are visited frequently on successful but infrequently on
unsuccessful trajectories, where a trajectory is considered as successful when a goal
state is reached. Stolle and Precup (2002) propose a similar approach, with the main
difference being that a multi-task setting is assumed. The agent learns good policies for
each task (thus, this could also be seen as a solution-based heuristic) and counts how
often states are visited under these policies. States visited frequently are identified as
subgoal states. In contrast to diverse density, no differentiation between successful and
unsuccessful trajectories is made.

“Relative Novelty” (Şimşek and Barto, 2004) considers bottlenecks as those states
that allow the agent to transition to an area in the state space that is otherwise difficult to
reach from an other region. Relative novelty of a state under a state sequence is defined
as the ratio of the novelty of its successor states in this sequence to its predecessors,
where the novelty of a state set is inversely proportional to the square root of visits of
this state set before. In order to compensate for sampling bias, only states with large
relative novelty in a large proportion of state sequences are considered as subgoal states
(hence this approach is a frequency-based heuristic).

3.3.4 Graph-Based Heuristics

An other popular class of heuristics are graph-based approaches. Graph-based ap-
proaches are based on estimates of the state transition graph and aim at partitioning this
graph into subgraphs that are densely connected internally but only weakly connected
with each other. The extent to which a partitioning of a graph possesses this property
is determined by a so-called linkage criterion, often one of the graph cut objectives
discussed in Section 2.4.2.

Menache et al. (2002) have proposed Q-Cut, a top-down approach for partitioning
the global transition graph based on the max-flow/min-cut heuristic. They use the
RatioCut linkage (Hagen and Kahng, 1992) for determining bottlenecks. One disadvan-
tage of their approach is that it requires that two states are chosen as fixed source and
sink nodes for the graph cut calculation and that Q-cut can only split a graph into two
components. The latter issue can be resolved by Segmented Q-Cut, which uses Q-Cut
in a divide-and-conquer manner.

Şimşek et al. (2005) follow a similar approach but partition local estimates of the
global transition graph using a spectral clustering algorithm and use repeated sampling
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for identifying globally consistent bottlenecks. Due to the repeated sampling the
approach shares some properties with the frequency-based heuristics and is not very
sample-efficient. The graph partitioning is based on the Normalized Cut linkage (Shi
and Malik, 2000), see Section 2.4.2. In a follow-up, Şimşek and Barto (2009) employed
a similar approach but used betweenness (see Figure 3.4) instead of graph cuts for
bottleneck identification. Local maxima of betweenness of the overall graph are likely
to be local maxima of its subgraphs; thus, by identifying these local maxima in a
collection of subgraphs, the maxima of the overall graph can be recovered with high
probability. The authors use an interaction graph rather than a transition graph; this
interaction graph uses the expected rewards as edge weights and is thus not applicable
in a developmental setting.

Mannor et al. (2004) proposed a bottom-up approach that partitions the global
transition graph using agglomerative hierarchical clustering (see Figure 3.5 for an illus-
tration). Clustering can either be made based on topology using a non-standard linkage,
which tries to identify clusters of similar size which are only weakly interconnected, or
based on the homogeneity of the value function. The approach is non-incremental, i.e.,
the clustering can be executed only once and thus does not allow identifying skills at
different times during learning. The authors have evaluated their approach in the contin-
uous mountain car domain by uniformly discretizing the state space. However, such a
uniform discretization is suboptimal since it does not scale well to higher dimensional
state spaces due to the “curse of dimensionality”.

Kazemitabar and Beigy (2009) have proposed to detect strongly connected compo-
nents in a directed version of state transition graph and to consider the uni-directional
edges connecting two such components as bottlenecks. The authors show empirically
that the approach performs well in a small maze world. However, it is unclear how
well the approach would perform in domains with stochastic state transitions since
edge weights (corresponding to transition probabilities) are not taken into account. A
potential advantage of the algorithm is that it is a linear time algorithm in the number of
graph edges and nodes.

More recently, Mathew et al. (2012) proposed to identify metastable regions of
the state space, which correspond to clusters of the transition graph, by performing
spectral graph clustering using robust Perron cluster cluster cluster analysis (PCCA+)
(Deuflhard and Weber, 2005), see Section 2.4.3.2. Based on the metastable regions and
their connectivity, skill prototypes and a skill tree having the goal state as its root can
be defined. Again, the approach is non-incremental.

Ghafoorian et al. (2013) have proposed to identify bottleneck edges using Ant
Colony Optimization (ACO) (Dorigo et al., 2006). For this, the environment is explored
freely for some time and a state transition graph is formed. Bottleneck edges are
identified using ACO applied to this graph for fixed start and goal states. The approach
bears some similarity to the work of Menache et al. (2002), with the main difference
being that ACO is used instead of graph cuts. Because of the required initial exploration,
the method is not very sample-efficient.
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Figure 3.5 – Illustration of agglomerative hierarchical clustering in “Towers of Hanoi”.
Initially, all Np = 243 graph nodes are in separate clusters. Afterwards, two adjacent clusters
with minimal linkage are merged in each step. Shown are the clusterings of cardinality 81,
27, 26, 9, and 3. The clustering with cardinality 26 differs from the one with 27 clusters in
that the right-most cluster has been merged with one of its neighbor.
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Bacon and Precup (2013) have proposed a skill discovery approach based on label
propagation. In this work, a transition graph is created based on the transitions observed
in 100 episodes of Q-Learning. Groups of densely connected graph nodes, the so-
called communities, are identified using weighted label propagation (Raghavan et al.,
2007; Pang et al., 2009). The nodes of edges connecting two such communities are
used as subgoal states for options with the corresponding communities as initiation set.
While the approach is incremental in principle, it must not be invoked too early (the
authors propose to wait for 100 episodes) since this may cause to identify false positive
bottlenecks. The authors also present a concept for extending the algorithm to domains
with continuous state spaces by using the ε-net heuristic (Mahadevan and Maggioni,
2007) for graph construction (see also Section 5.2.1). However, no actual results are
shown for the continuous case.

3.3.5 Meta Heuristics

A kind of meta heuristic is presented by Niekum and Barto (2011): the method called
“Latent Skill Discovery” builds on top of any of the other heuristics for discovering
subgoal states and performs an infinite Gaussian mixture model clustering of these
subgoal states for determining how many options are created. This is important when
there are many subgoal states that actually correspond to the same option. This can
easily happen with frequency-based heuristics which compute statistics for individual
states. For graph-based heuristics, however, this issue is less problematic as partitioning
the graph into clusters will typically also yield an easy way of associating subgoal states
that correspond to the same subproblem.

3.3.6 Summary and Discussion

Which class of heuristics is best suited for achieving the goal stated in Section 1.2?
Table 3.1 gives a summary of the discussed works and to which extent they possess the
desirable properties identified in Section 3.2.3. One can see that none of the related
works exhibit all properties and is sample-efficient at the same time. Please note that
sample-efficiency is not an objective criterion; some reasoning for the assessment of
the methods is given in the next paragraphs. Please note also that the table does not say
anything about the quality of the discovered skills, i.e., whether they are reusable and
make learning on higher levels actually easier.

A disadvantage of the solution-based heuristics like SKILLS and PolicyBlocks is
that skills can only be defined once a close-to-optimal policy or value function (or an
entire set of those) have been learned or require at least that a task can been solved
successfully repeatedly like in skill chaining. Thus, identifying and learning useful
skills is often slower than learning optimal policies and thus not sample-efficient at all.
Accordingly, the learned skills can only be useful later on in subsequent tasks or if the
environment changes and policies need to be adapted. While still useful, this limits the
utility of skill discovery overly since skill discovery should be able to identify skills
before optimal value functions are learned.
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incremen-
tal

develop-
mental

automatic
granular-

ity

continu-
ous

domains

sample-
efficient

SOLUTION-BASED

(Thrun and Schwartz, 1995) ∼ − − − −
(Kirchner, 1995) X − X − ◦

(Kirchner and Richter, 2000) X − X − ◦
(Pickett and Barto, 2002) − − X − −

(Konidaris and Barto, 2009) X − X X ◦
(Hawasly and Ramamoorthy, 2013) X − − X ◦

FACTORING-BASED

(Hengst, 2002) X X X − ◦
(Jonsson and Barto, 2006) − ∼ X − ++

FREQUENCY-BASED

(Digney, 1996) X X X − ◦
(McGovern and Barto, 2001) X − X − ◦

(Stolle and Precup, 2002) − − − − ◦
(Şimşek and Barto, 2004) X X X − ◦

GRAPH-BASED

(Menache et al., 2002) X X X − ++
(Mannor et al., 2004) − X X ∼ +
(Şimşek et al., 2005) X X X − ◦

(Şimşek and Barto, 2009) X − X − ◦
(Kazemitabar and Beigy, 2009) − X X − +

(Mathew et al., 2012) − X X − +
(Ghafoorian et al., 2013) − − X − ◦

(Bacon and Precup, 2013) ∼ X X ∼ +
OGAHC (Chapter 4) X X X − ++
FIGE (Chapter 5) − X X X +

OGAHC + IFIGE (Chapter 6) X X X X ++

Table 3.1 – Overview over skill discovery approaches. Shown is which approach possesses
which of the desirable properties identified in Section 3.2.3. X denotes that a method
exhibits a property, − that it does not exhibit a property, and ∼ that it exhibits a property
but with some caveats. Sample-efficiency is assessed ranging from bad (-) over average
(o) and good (+) to excellent (++). OGAHC, FIGE, and IFIGE are methods proposed in this
work.
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Factoring-based heuristics are not applicable in all kinds of MDPs since they assume
that there exists conditional independence relations between some state variables or
that some state variables vary more frequently than others. Moreover, they require
either an initial phase of random exploration (making them less sample-efficient) to
determine which state variables change how often or require that the dependencies of
state variables are specified by the designer, which limits the autonomy of the agent.

While frequency-based heuristics could in principle identify skills before the emer-
gence of optimal value functions, they require typically repeated-sampling to obtain
accurate estimates of the statistics which makes them not very sample-efficient. Further-
more, frequency-based approaches are not easily adapted to continuous domains since
this would require that statistics are not computed for single states (there are infinitely
many) but for entire regions of the state space. It is unclear how these regions should be
defined.

The author considers graph-based approaches to be most promising for achieving
the stated goal for the following reasons: (a) Transition graphs are independent of task-
specific information like the reward function or goal states since they typically encode
solely the possible state transitions. This makes graph-based approaches applicable in
developmental settings and allows discovering skills which are reusable in different
tasks. (b) Graph-based approaches are typically more sample-efficient than other
approaches since generating transition graphs requires solely keeping track of possible
state transitions, which is typically easier than learning control policies or accumulate
sufficient state-specific statistics. (c) Even if only a small part of the domain has been
explored thoroughly, the structure of this part can be represented as a partial transition
graph, in which bottlenecks may be detectable long before goal states have been reached
or the optimal policy has been learned. (d) Graphs explicitly represent the domain’s
structure while other heuristics only implicitly capture this structure in policies or
state-specific statistics. As the central idea of this thesis is to identify and exploit
domain structure, an explicit representation is desirable for analyzing and visualizing
the progress of identifying structure.

The main disadvantages of many graph-based approaches are that (a) they can
impose computationally hard problems, which can be solved only approximately, (b)
they are often not incremental, i.e., generation of the transition graph and skill discovery
based on this graph can be performed only once at a specific point in time, and (c)
they do not scale well to large or continuous domains since they represent every state
explicitly as a graph node. Chapter 4 proposes the novel graph-based skill discovery
approach OGAHC, which is fully incremental and computational tractable. Chapter 5
presents FIGE, a novel approach for transition graph generation which allows extending
graph-based skill discovery to continuous domains. Chapter 6 combines OGAHC with
IFIGE, which is an incremental extension of FIGE. The resulting approach exhibits
property P1-P4 and—as the empirical experiments suggest—is also comparatively
sample-efficient.
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3.4 PERFORMANCE EVALUATION

While skill learning is a well defined task in the sense that the optimal πo is determined
entirely (though not necessarily uniquely) by the skill prototype Ψo = (Io,βo,Ro),
optimality in the context of skill discovery is much harder to define. This is because
skill discovery is not done for its own sake but rather to support learning solutions to
specific tasks later on. Thus, it can be considered as a kind of second-order learning.
Accordingly, theoretical results like asymptotic convergence to optimality are usually
not possible in the context of skill discovery. Instead of that, evaluation is typically
empirical; for instance, whether the discovered skills have certain desirable properties
or how an agent equipped with the discovered skill performs in external tasks. Thus,
empirical evaluation is particularly important in the context of skill discovery. Empirical
Evaluation of skill discovery methods requires defining reasonable performance metrics
and baselines. Different metrics and baselines are discussed in the following subsections.

3.4.1 Performance Metrics

The quality of the discovered skills can be evaluated on different levels, i.e., using
different performance metrics. Ultimately, acquired skills should help an agent to
perform well in an externally imposed task; thus, performance metrics can be defined
based on the reward obtained in this external task. The following three performance
metrics are based on the external reward:

• Repi(t) is the accumulated reward obtained by the agent in the t-th episode. Repi(t)
allows evaluating the performance of an agent at a specific point in time, irrespec-
tive of what happened before or afterwards. Note that Repi(t) is often “noisy”,
i.e., has high variance, since both the agent and the environment can be stochas-
tic. Thus, it is typically more appropriate to use an estimate of the expected
value E[Repi(t)] rather than Repi(t) directly. One way of estimating E[Repi(t)] is
to perform several independent runs and use the mean of the resulting values
for Repi(t) as estimate. An alternative is to use the moving window average

Rk
mwa(t) =

1
2k+1

k
∑

i=−k
Repi(t + i) with window length 2k + 1 as an estimate of

E[Repi(t)]. This quantity has less variance for large k. However, Rk
mwa(t) may

not always be a good estimate for E[Repi(t)] (it may be biased); in particular, if
the behavior of the agent changes strongly within the time window. Thus, in
general it is preferable to estimate E[Repi(t)] by averaging over a large number of
independent runs. However, if these runs are computationally expensive and only
a small number of runs can be conducted, this approach can be combined with
the moving window average approach for small k.

• R∞ = lim
t→∞

E[Repi(t)] is the expected accumulated reward per episode in the limit.
This metric is insensitive to the speed of learning and only captures the asymptotic
performance of a learning system. One typically approximates R∞ ≈ Repi(t∗) for
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some sufficiently large t∗ since the limit can not be derived from empirical results.
Normally, this metric favors methods which explore more strongly initially and
have policy representations with higher capacity (more free parameters).

• Rt
acc =

t
∑

i=1
Repi(i) is the reward accumulated by the agent during the first t episodes.

Related is the average return Rt
avg = Rt

acc/t, which makes it easier to relate the
accumulated reward to the outcome of a single episode. Typically (for not too large
t), these metrics favor methods which can balance exploration and exploitation
intelligently, i.e., explore enough to find high quality policies fast but also exploit
these policies such that sufficient reward is accumulated. Moreover, methods
which use policy representations with small capacity (less free parameters) that
can nevertheless represent close-to-optimal behavior perform typically good under
these metrics. In the context of multi-task and transfer learning, one is particularly
interested in learning speed since the main objective is to accelerate learning on
new tasks as a result of previous experience (Perkins and Precup, 1999). Learning
speed is captured well by these metrics for not too large t.

Note that these performance metrics based on the external reward are in no sense
specific to evaluating skill discovery methods; they can be used to assess the performance
of any RL method. Besides these generic performance metrics based on the task
performance, further metrics can be defined which are more specific for evaluating skill
discovery methods. For graph-based skill discovery, one can propose specific metrics
for assessing the quality of a state transition graph and the quality of a graph clustering.

For evaluating the quality of a learned transition graph, the graph likelihood metric
considers a transition graph as a generative model for transitions in the domain. For a
given graph G, the probability p(T |G) of a set of transitions T can be computed using
the graph as generative model. If the transitions are sampled from the domain, this
probability should be comparatively large since one can assume that T is comparatively
likely in the actual domain. One can consider the likelihood LT (G) = p(T |G) of graph G
for given transitions T as metric for the quality of G: the larger the likelihood of a graph,
the better explains this graph the observed transitions and thus the domain’s dynamics.
For details please refer to Section 4.2.1, where the graph likelihood for discrete MDPs
is defined, and to Section 5.3.1 for an extension to MDPs with continuous state spaces.

One way of assessing the quality of a partition P of a graph G is the normalized
cut NCut(P), where smaller NCut(P) corresponds to better partitions P (see Section
2.4.2). An alternative metric can be defined if a ground-truth partition PGT is available,1

which is (by construction or by domain knowledge) known to be optimal. For this,
the agreement of two partitions P1 and P2 of the graph nodes V is defined using the
accordance ratio

acc(P1,P2) =
1
|V |2 ∑

v,v̄∈V
δ (δ ([v]P1, [v̄]P1),δ ([v]P2 , [v̄]P2)), (3.1)

1Note that the ground-truth partition is not necessarily the one with the minimal NCut on G, i.e.,
PGT 6= argminP NCut(P), in particular if G does not reflect the domain’s dynamics well.
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i.e., the ratio of element-pairs on which P1 and P2 agree on assigning them to the same
or to different clusters (recall δ (x,y) = 1 if x = y else 0 and that [v]P = pi implies that
v ∈ pi and pi ∈ P, cf. Section 2.4.1). Using this, one can define the quality of a partition
P via its ground-truth accordance: accGT (P) = acc(P,PGT ). Comparing these two
metrics, NCut(P) evaluates the partition for a given graph in isolation, while accGT (P)
assesses both the quality of the graph partition and how well the graph captures the
actual domain. NCut(P) is thus an appropriate metric for comparing methods for graph
clustering while accGT can assess the whole skill discovery process including graph
construction and graph clustering.

3.4.2 Baselines

For defining useful baselines, one can create modifications and simplifications of the
devised learning architecture and evaluate the respective performance in externally
defined tasks. For instance, in the case of a 3-layer, hierarchical architecture, the
architecture consists of a high-level policy which can invoke skills that are discovered
and learned autonomously. The first baseline is obtained by removing the necessity
that skills are discovered autonomously: in the “predefined skills” baseline, the skill
prototypes Ψo are manually identified and available to the agent from the very beginning.
Thus, the agent only has to learn the skill policies for these predefined skills and the
high-level policy. This should simplify the learning problem and result in an upper
baseline on the performance of any skill discovery approach. Note that this baseline is
only applicable in domains where one can manually decide on useful skill prototypes.
A further simplification is obtained by the “prelearned skills” baseline: in this baseline,
the agent is provided not only with skill prototypes from the very beginning but also
with the corresponding optimal skill policies. Thus, the agent only has to learn the
high-level policy for given skills.

A further baseline is the performance of the “monolithic" approach that learns a flat,
non-hierarchical policy without skills but uses otherwise the same learning mechanisms.
This baseline allows studying in which scenarios skill discovery and hierarchical policies
pay off, i.e., perform better than a more simple, flat policy. Further baselines can be
devised for specific skill discovery approach, for instance, an incremental skill discovery
approach can be compared with its non-incremental counterpart (see, e.g., Figure 4.14)
or an approach which chooses the skill granularity automatically can be compared to an
approach with fixed granularity.

As pointed out by Hengst (2002), learning (skill) policies in a sample-efficient way
is largely orthogonal and complementary to decomposing a problem, i.e., skill discovery.
Thus, the empirical studies of this work use mainly simple one-step TD-based learning,
potentially combined with intra-option learning. Combining skill discovery with, e.g.,
model-based RL methods or eligibility traces, would increase sample efficiency (at the
cost of increased computational demands); however, all skill discovery methods would
typically benefit from this effect similarly and thus, the qualitative comparison of skill
discovery methods would remain unchanged. Thus, one can adhere to plain one-step
TD learning for reasons of simplicity.
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4
Incremental Graph-Based
Skill Discovery

“Progress, of the best kind, is comparatively slow. Great results cannot be
achieved at once; and we must be satisfied to advance in life as we walk, step by
step.”

Samuel Smiles

4.1 INTRODUCTION

THIS chapter presents the novel graph-based skill discovery approach OGAHC, which
is incremental, insensitive to the explorative behavior of the agent and to different

degrees of stochasticity of the environment, and can identify skills that are independent
of the current task. The aim of OGAHC is thus to achieve subgoal S1 stated in Section
1.2.

The general structure of a graph-based skill discovery approach is shown in Figure
4.1: first, a transition graph G is generated for a set of transitions T that have been
sampled by the agent in an environment (see Section 4.2.1). Thereupon, a partition P of
the graph is generated using graph clustering (see Section 4.2.3) based on an externally
defined linkage criterion l (see Section 4.2.2). Based on this partition, skill prototypes
Ψo are generated (see Section 4.2.4), which form the basis for skill learning and for
learning a hierarchical task policy using compositional learning. Note that incremental
skill discovery requires executing all of these components repeatedly. This requires
in turn that some components have an internal memory for storing, e.g., the current
transition graph and the corresponding partition.

The main contributions of this chapter are (a) a means for transition graph generation
and a linkage criterion, which are “off-policy” and robust against domain stochasticity,
and (b) an incremental graph clustering approach. This chapter is restricted to discrete
MDPs; an extension of the concepts to continuous domains is presented in Chapter 5
and 6.
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Figure 4.1 – Data flow diagram of graph-based skill discovery. The boxes in the lower row

(transition graph generation, graph clustering, and skill prototype generation) are essential

parts of graph-based skill discovery, while the boxes in the upper row (skill learning and

compositional learning) constitute the rest of a hierarchical RL architecture. Note that all

stages of the diagram are executed continuously and interwoven. Dashed boxes show in

which sections subparts of the overall system are evaluated separately.

4.2 METHODS

We adopt the concept of identifying bottlenecks of a domain as basis for skill discovery

and investigate approaches that identify such bottlenecks based on the sample transition

graph using agglomerative clustering. We base skill discovery solely on the MDP’s

state transition probabilities Pa
ss′ and do not take the expected rewards Ra

ss′ into account

since we consider Ra
ss′ to encode a task and aim at identifying task-independent skills

that can be discovered in developmental settings and can be reused in different tasks (cf.

Property P2 in Section 3.2.3).

4.2.1 Transition Graph Generation

We construct the sample transition graph G = (V,E,w), which is a directed, weighted

graph, that is used as proxy for the actual unknown transition graph G, as follows:

for a given set of n transitions T = {(si,ai,s′i)}n
i=1 sampled from an MDP, we set

V = {s | ∃(si,ai,s′i) ∈ T : si = s∨ s′i = s}, i.e., to the set of all states that have been

visited, and E = {(s,s) | ∃(si,ai,s′i) ∈ T : si = s∧ s′i = s′}, i.e., to the set of all one-

step transitions that have been observed. For each action a ∈ A, we add the edge

attribute na
vv′ = ∑n

i=1 δ ((v,a,v′),(si,ai,s′i)) to any edge (v,v′) ∈ E and the node attribute

na
v = ∑n

i=1 δ ((v,a),(si,ai)) to any node v ∈V where δ (x,y) = 1 if x = y else 0. In other

words, na
v counts how often action a has been invoked in state v and na

vv′ how often

action a has been invoked in state v and the successor state has been v′.
Different choices for the weights w(e) of edge e = (v,v′) have been proposed. While

Mannor et al. (2004) used essentially uniform edge weights wuni(e) = 1∀e ∈ E, Şimşek

et al. (2005) proposed the edge weights won((v,v′)) = ∑a na
vv′ , i.e., how often the

transition v → v′ has been observed in T . While wuni ignores both the stochasticity of



59 4.2 METHODS

the environment and the action preferences of the agent, won take both into account (i.e.,
it is “on-policy” with regard to the sampling policy). We argue that in order to identify
domain properties like bottlenecks, one should take the stochasticity into account but be
independent of the sampling policy, since stochasticity is a domain property while the
agent’s sampling policy is not. Thus, we would like to estimate “off-policy” weights
woff from T , i.e., weights which are independent of the policy that was used to sample
T .

For this, we consider a graph as a generative model for transitions and choose graph
weights w such that the likelihood LT (G) = p(T |G) of the resulting graph G for a set of
observed transitions T = {(si,ai,s′i)}n

i=1 becomes maximal. Since there is a one-to-one
correspondence between states si and graph nodes vi, one can also consider T as a set
of transitions on the graph, i.e., T = {(vi,ai,v′i)}n

i=1. We consider transitions to have
been sampled from the graph using the following generative process: (1) Sample a
graph node v ∈ V uniform randomly, i.e., p(v) = 1/|V |. (2) Sample an action a in
node v uniformly from the action space A, i.e., p(a|v) = p(a) = 1/|A|. (3) Sample the
“successor node” v′ according to the graph’s edge weights, i.e., p(v′|v,a) = wvv′ , where
we use the shorthand notation wvv′ =w((v,v′)). Note that this is based on the simplifying
assumption v′ ⊥ a | v, i.e., that the successor node v′ is independent of the chosen action
a given the current node v′. While this assumption is over-simplifying, it enforces that
edge weights cover the effects of all possible actions jointly. The likelihood is thus

LT (G) = p(T |G) =
n
∏
i=1

p((vi,ai,v′i)|G) =
n
∏
i=1

p(v′i|vi,ai)p(ai|vi)p(vi) =
1

|V |n|A|n
n
∏
i=1

wviv′i
.

If the number of graph nodes is fixed, the likelihood depends thus solely on the transition
graph’s weights and can be denoted by LT (w)

Appendix A.1 shows that the maximum likelihood estimate of the edge weights
for this generative model is woff((v,v′)) = 1

|A|∑a
na

vv′
na

v
when correcting for the bias of

the sampling policy via importance sampling. Since these weights take the policy’s
sampling bias into account, they can be considered to be “off-policy”. When ignoring
the sampling bias of π , one obtains weights proportional to the “on-policy” weights
won accordingly. Note that the derivation of woff((v,v′)) assumes that all actions a ∈ A
can be invoked in all states, i.e., p(a|v) = p(a) = 1/|A|. If only a subset Av ( A of the
actions can be executed in state v, the normalizing constant would become 1/|Av|. See
Section 4.3.4 and Section 4.3.5.2 for an empirical comparison of the different choices
for the edge weights.

Note that other choices for edge weights are possible; in particular, it can be desirable
to incorporate rewards into the edge weights in situations where Ra

ss′ contains structure
that shall be exploited for skill discovery. For instance, Şimşek and Barto (2009) used
the expected negative reward as edge weight and Bacon and Precup (2013) suggested
for future work to choose edge weights based on values of neighboring states, which
may allow grouping states of similar current valuation together. We do not discuss these
approaches in more detail since we consider Ra

ss′ to encode a task and aim at identifying
task-independent skills that can be discovered in developmental settings and can be
reused in different tasks (Property P2).
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4.2.2 Linkage Criteria and Bottlenecks

This section formalizes the notion of a domain bottleneck. For this, we first define the
boundary of two connected areas of the state space. Let G = (V,E,w) be a transition
graph, regardless of whether it is the domain’s true transition graphG or a learned sample
transition graph. The boundary of two disjoint node sets A,B⊂V is defined as the edges
which connect A and B in either direction: bE(A,B)=E∩(A×B∪B×A). The boundary
states are defined accordingly via bV (A,B) = {v∈V | ∃v′ ∈V : (v,v′)∈ bE(A,B)}. Note
that this definition is similar to the one given by Mathew et al. (2012).

We now introduce the concept of a linkage criterion1 l : 2V × 2V → R , where
2V denotes the power set of V . A linkage criterion gives a quantitative assessment if
the boundary of two connected, disjoint subgraphs A,B⊂V forms a bottleneck in G.
The larger the linkage l(A,B), the more evidence the criterion offers for a bottleneck
between A and B. By choosing a threshold ψ , one can create a binary criterion for
“bottleneckness” by identifying a bottleneck between A and B if l(A,B)> ψ . Thus, we
define the domain’s bottleneck edges as follows:

b∗ = {(v,v′) | ∃ A,B⊂V : A∩B = /0∧bE(A,B) 6= /0∧ (v,v′) ∈ bE(A,B)∧ l(A,B)> ψ}

Thus, b∗ are the edges connecting two disjoint subgraphs of G which have a linkage
larger than threshold ψ .

As base for linkages, we define the (directed) connectivity mass cm of subgraphs
A and B as cm(A,B) = ∑

e∈E∩(A×B)
w(e). The connectivity mass gets large for two large,

densely connected subgraphs with large edge weights. Mannor et al. (2004) proposed
a linkage criterion for bottleneck identification in transition graphs that is defined as
follows (using our notation and |A| being the number of vertices in subgraph A):

M(A,B) =
min(|A|, |B|) log(max(|A|, |B|))

cm(A,B)+ cm(B,A)
. (4.1)

This linkage is based on uniform edge weights such that the denominator is equal to
the number of edges between A and B in G. The linkage thus assigns large values to
subgraphs of similar sizes that are only weakly interconnected. The linkage M has no
intuitive interpretation; the authors have chosen it based on an empirical comparison of
several candidate linkages.

A better motivated criterion was given by Şimşek et al. (2005), who proposed the
normalized cut NCut (see Section 2.4.2) as basis for bottleneck identification. This
is intuitively reasonable as the NCut corresponds to the probability that a randomly
behaving agent transitions in one time step from a state in subgraph A to a state in
subgraph B or vice versa. If this probability is small, the connection of A and B can
be seen as a bottleneck. Şimşek et al. (2005) proposed the N̂cut criterion which is a

1Note that despite the term “linkage”, a large linkage generally corresponds to two very dissimilar,
distant, or separated clusters.
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symmetrized version of standard NCut and defined as follows (using our notation):

N̂cut(A,B) =
1
2

(
cm(A,B)+ cm(B,A)
cm(A,V )+ cm(B,A)

+
cm(B,A)+ cm(A,B)
cm(B,V )+ cm(A,B)

)
, (4.2)

where we added the factor 1
2 to ensure that N̂cut(A,B) corresponds to a proper probability.

The authors used a top-down spectral clustering algorithm to find graph cuts that
minimize N̂cut ; in order to use it as a linkage criterion where large values indicate a
bottleneck, we shall use l(A,B) = −N̂cut(A,B). The authors used the criterion with
on-policy edge weights won; we claim that it should rather be used with off-policy
weights woff (see Section 4.3.5).

While the N̂cut linkage is well grounded, the choice of the threshold ψ remains
open. However, this choice is inherent in all bottleneck-based skill discovery methods
since “bottleneckness” is not a binary property but rather a matter of degree. Since
skill discovery typically requires a binary decision on whether two state space areas are
separated by a bottleneck, the choice of a threshold is inevitable. For the N̂cut linkage,
the choice of the threshold ψ is simplified by the observation that −ψ has an intuitive
interpretation:1 it specifies that the connection of two subgraphs is a bottleneck if the
probability that the agent transitions in one time step from a state in subgraph A to
a state in subgraph B or vice versa is below −ψ ∈ [0,1]. This connection makes the
choice of ψ easier for NCut-based linkages than for, e.g., the M-linkage. Section 4.3.2
gives some empirical results on the influence of the parameter ψ onto the resulting
partition.

4.2.3 Incremental Graph Clustering

In order to identify all bottlenecks (defined via a linkage criterion l and a corresponding
threshold ψ) of a transition graph G, we determine a partition P∗ of minimal cardinality
of the graph nodes V into disjoint clusters pi such that neither of the subgraphs induced
by these clusters contains a bottleneck. Formally:

P∗ = argmin
P∈P(V )

|P| s.t. max
p∈P, q(p

l(p\q,q)≤ ψ, (4.3)

where P(V ) is the set of all partitions of V . The constraint max
p∈P, q⊂p

l(p \ q,q) ≤ ψ

guarantees that no cluster p ∈ P∗ can be split further into two parts q and p\q such that
the boundary be(p\q,q) forms a bottleneck (which would correspond to l(p\q,q)>ψ).
On the other hand, the minimal cardinality objective “argmin

P∈P(V )

|P|” ensures that the

boundary be(pi, p j) between two clusters pi, p j ∈ P is actually a bottleneck (otherwise
pi and p j would have been merged). Note that P∗ need not necessarily be uniquely
defined; in this case ties are broken randomly.

1This thesis considers the threshold −ψ since −N̂cut is used as a linkage.
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Alternatively to specifying ψ , one could also fix the number of clusters k and identify
a partition P∗ with |P∗|= k such that the maximal intra-cluster linkage l is minimized,
i.e., the k clusters are internally maximally strong connected:

P∗ = argmin
|P|=k

max
p∈P, q⊂p

l(p\q,q). (4.4)

This formulation generally requires specifying the number of clusters k in advance.
For many problems, this is non-trivial as knowing how many clusters (bottlenecks)
exist may be as hard as knowing the bottlenecks themselves. Thus, the formulation in
Equation 4.3 is more appealing since it only requires specifying an upper bound on the
linkage. In the case of the NCut linkage, this effectively means that one has to specify
how improbable a transition between two state sets must be under a random walk to
consider the connection of these two node sets as a bottleneck.

Since finding the optimal solutions P∗ for both problem formulations is NP-hard for
the most interesting linkage criteria such as the NCut (Wagner and Wagner, 1993), one
has to resort to an approximate graph clustering approach similar to the ones discussed
in Section 2.4.3. These are given for the problem formulation in Equation 4.4, i.e.,
for given number of clusters k. However, an extension to the problem formulation in
Equation 4.3 using ψ is straight-forward for agglomerative hierarchical clustering (see
Section 4.2.3.1).

All approaches presented in Section 2.4.3 are non-incremental, i.e., they can be
executed only once for a fixed transition graph. When the true transition graph G is not
known but learned from experience, this raises the question at what specific point in
time clustering should be performed. This presents a trade-off: on the one hand, one
would like to perform the clustering as early as possible in order to maximize the impact
of the discovered skills during learning; on the other hand, performing the clustering
too early may result in false positive bottlenecks that are due to considerable deviations
of the estimated transition graph from the true transition graph. For instance, Bacon
and Precup (2013) explored the environment for 100 episodes before constructing and
clustering the transition graph. Thus, no skills could be discovered during the first 100
episodes or afterwards.

To alleviate this problem, it would be highly desirable to use an incremental (“on-
line”) clustering algorithm instead, which can be invoked several times during learning
and can find more and more bottlenecks over time, i.e., exhibit property P1 from Section
3.2.3. This would remove the requirement to choose one specific point in time for skill
discovery. In order to make such an incremental clustering algorithm useful for skill
discovery, it has to fulfill the following properties: a) Subsequent executions of the
clustering should yield consistent partitions, i.e., bottlenecks identified in one invocation
of the clustering should persist in subsequent ones. Otherwise, skills corresponding to
these bottlenecks (see Section 4.2.4) would need to be deleted (causing an undesirable
loss of learned knowledge) or to be modified to a new target, which would require re-
learning and might have a detrimental effect onto higher-level policies which are based
on these skills. b) The algorithm should not identify bottlenecks in parts of the domain
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Algorithm 4.1 Constrained Agglomerative Clustering
1: Input: graph G, constraint set C, linkage criterion l, threshold ψ

2: P= {{v}|v ∈V} # Initial partition: one cluster per vertex
3: loop
4: # Merge-candidates that fulfill all constraints. Note that the symbol

∧
c∈C in line 5 denotes a logical

“and” over all constraints.
5: Mc = {(p1, p2) | (p1, p2) ∈ (P×P)∧

∧
c∈C

c(p1, p2)}

6: p∗1, p∗2 = argmin
(p1,p2)∈Mc

l(p1, p2) # Find merge-candidate with minimal linkage in G

7: if l(p∗1, p∗2)> ψ: return P # No more densely connected clusters→ return partition
8: P= (P\{p∗1, p∗2})∪{p∗1∪ p∗2} # Merge p∗1 and p∗2
9: end loop

which it has not explored sufficiently because apparent bottlenecks in its estimate of
the transition graph might be just artifacts of its exploration strategy rather than true
properties of the domain. Note that specifying the number of clusters k beforehand
instead of ψ is not practical in incremental clustering since it does not allow the implicit
increase of granularity of the partitions, i.e., the number of bottlenecks, over time.

We now extend agglomerative hierarchical clustering such that it can be used in
an incremental fashion. For this, we first add constraints to the algorithm (see Section
4.2.3.1) and present then OGAHC, which realizes a graph clustering method that possesses
the properties (a) and (b) stated above (see Section 4.2.3.2).

4.2.3.1 Constrained Agglomerative Clustering

This section extends the agglomerative hierarchical clustering presented in Algorithm
2.4 by allowing (optionally) specifying constraints about which clusters can be merged.
Moreover, the algorithm does not require specifying the resulting number of clusters k
but rather the desired “strength” ψ of a bottleneck. Constraints are defined as boolean
functions c : 2V × 2V → B, which map two (typically disjoint) sets of nodes onto a
boolean. The semantic of such a constraint is that two clusters p1, p2 ⊂V can only be
merged by the agglomerative clustering if c(p1, p2) is true for each constraint c. The
constraints should be symmetric, i.e., c(p1, p2) = c(p2, p1).

Pseudo-code is given in Algorithm 4.1: the algorithm starts by assigning each graph
node into a separate cluster (line 2). Afterwards it greedily identifies the pair of clusters
p∗1, p∗2 that has minimal linkage and fulfills all constraints c ∈C (line 5-6). If the linkage
of the pair p∗1 and p∗2 is above the threshold ψ , there is no further pair of clusters in
P that is not separated by a bottleneck; accordingly, P is returned as the best greedy
approximation of P∗ that can be obtained under the given constraints (line 7). If the
linkage is not greeter than ψ , p∗1 and p∗2 are merged (line 8) and the algorithm continues
in line 5.

Note that the pseudo-code given in Algorithm 4.1 should not be implemented one-
to-one; a more efficient implementation would maintain a priority-queue of merge
candidates Mc where the linkage acts as priority. Furthermore, we have skipped the
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Algorithm 4.2 On-line Graph-Based Agglomerative Hierarchical Clustering (OGAHC)
1: Input: linkage criterion l, parameters ρ , ψ , m
2: P0 = /0
3: G = /0 # Transition graph G = (V,E,w) is initially empty, constructed from experience later
4: t = 0 # Count how many iterations have been conducted
5: loop
6: T = {(si,ai,s′i)}m

i=1 = ACT(m) # Act for m steps and observe transitions T
7: G = UPDATE(G,T ) # Update transition graph with transitions T
8: G′ = SMOOTH(G,ρ) # Add virtual transitions for under-explored nodes
9: # Build constraint set C which ensures that partitions are consistent

10: # Note that “lambda” is used as a shorthand keyword for defining a function
11: C = {lambda pi, p j : (pi× p j)∩E 6= /0} # Merge only clusters pi, p j connected in G
12: for (pA, pB) ∈ Pt ×Pt with pA 6= pB do
13: # Must not merge two clusters with elements that had not been merged in last iteration
14: C =C∪{lambda pi, p j : ¬ [(pi∪ p j)∩ pA 6= /0∧ (pi∪ p j)∩ pB 6= /0]}
15: # Partition G′ using constrained agglomerative clustering (CAC, Algorithm 4.1)
16: Pt+1 = CAC(G′,C, l,ψ) # Note: Pt+1 ≤ Pt
17: # Use Pt+1, e.g., for defining skill prototypes...
18: t = t +1
19: end loop

optional construction of an explicit dendrogram given in Algorithm 2.4. Adding this to
Algorithm 4.1 would be straight-forward.

4.2.3.2 On-line Graph-Based Agglomerative Hierarchical Clustering

We propose now the method On-line Graph-Based Agglomerative Hierarchical Clus-
tering (OGAHC, see Algorithm 4.2). OGAHC addresses the two main challenges for an
incremental graph clustering approach identified above: the first challenge is that sub-
sequent partitions obtained by graph clustering must be consistent, i.e., bottlenecks
identified in one invocation of the clustering should persist in subsequent ones. We call
a sequence of partitions P0, . . . ,Pt consistent if Pt ≤ Pt−1 ≤ ·· · ≤ P0 (see Section 2.4.1
or Jonsson and Barto (2006) for a definition of this partial ordering of partitions). In
other words: two nodes that have been assigned to different clusters in partition Pt1 must
not be assigned to the same cluster in any subsequent partition Pt2 with t2 > t1. Thus, a
consistent sequence of partitions ensures that bottlenecks identified in one invocation of
the clustering persist in subsequent ones.

OGAHC ensures that the sequence of generated partitions is consistent by maintaining
an increasing set of constraints, which must be obeyed by the clustering. For each pair
of clusters pA, pB ∈ Pt with pA 6= pB, one constraint for the computation of Pt+1 is
created. This constraint ensures that no two cluster pi and p j are merged during the
creation of Pt+1, whose union has a non-empty intersection with both pA and pB (see
line 14).

The second challenge for an incremental graph clustering is that bottlenecks must
not be identified prematurely. This problem arises since graph clustering typically
acts on the sample transition graph G and not on the “true” transition graph G. When
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Algorithm 4.3 Graph Smoothing (SMOOTH)
1: Input: Graph G = (V,E,w), parameter ρ

2: G′ = COPY(G) # Modify only copy of graph
3: k = max(5,ρ) # Number of nearest neighbors considered. At least 5.
4: for v,a ∈V ×A with na

v < ρ do # For any under-explored pair of node v and action a
5: # Determine k nearest neighbors of v in V (according to, e.g., geodesic distance)
6: V ′ = NNk

V (v)
7: # Add virtual transitions between v and its nearest neighbors.
8: for v′ ∈V ′ do
9: na

vv′ += (ρ−na
v)/k

10: na
v = ρ

11: return G′

using the off-policy weights and employing an appropriate exploration strategy, G
converges to G in the limit of an infinite number of sample transitions (see Section
4.3.4). However, for finite number of transitions, there are typically differences between
G and G. Thus, it may happen for two clusters pi, p j ∈ V that lG(pi, p j) > ψ even
though lG(pi, p j) ≤ ψ (a “false positive” bottleneck detection).1 On the other hand,
it may also happen that lG(pi, p j)≤ ψ even though lG(pi, p j)> ψ (a “false negative”
bottleneck detection). For an incremental graph clustering approach, a false positive is
more critical since the consistency constraints enforce that this false positive is retained
in all subsequent iterations. In contrast, a false negative can be corrected in a later
invocation of the algorithm. Since there is a trade-off between both types of errors,
i.e., one type of error can be reduced at the cost of increasing the other type of error,
it is desirable that an incremental graph clustering algorithm is conservative initially.
Being conservative means in this context that a bottleneck is detected only when there
is considerable evidence in favor of it. By this, the number of false positives is reduced
and the number of false negatives is increased.

This initial conservativeness is realized in OGAHC by means of a heuristic that may
be termed as “assume dense local connectivity in the face of uncertainty”. Technically,
instead of working on the maximum likelihood estimate G of the transition graph, the
clustering is performed on a “smoothed” transition graph G′ = SMOOTH(G,ρ). In G′,
for each node v∈V and action a with na

v < ρ , i.e., state-action pairs which have not been
explored sufficiently, virtual transitions to nearby states are “imagined”. Technically,
na

vv′ is incremented by (ρ − na
v)/k for any v′ that is among the k = max(5,ρ) nearest

neighbors2 (see Algorithm 4.3). The free parameter ρ of the algorithm determines
how conservative the algorithm is with larger values of ρ corresponding to increased
conservativeness. The nearest neighbors can be computed based on any measure of
state similarity; if no such measure exists, one could alternatively use the k graph nodes
with minimal geodesic distance dG to v in G.

1We denote the linkage on the true transition G by lG and the linkage on the sample transition graph
by lG.

2We consider at least 5 nearest neighbors to avoid that virtual transitions are too local.
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Working on the smoothed transition graph reduces the risk of false positive bottle-
neck detections since the linkage value of under-explored regions of the state space is
typically decreased by adding virtual transitions. Thus, fewer clusters are formed in
early invocations of the algorithm. Over time, na

v increases, fewer virtual transitions are
added, the connectivity decreases, the typical linkage of subgraphs increases, and thus,
more clusters are formed. An empirical evaluation of graph smoothing showing this
effect is given in Section 4.3.3.

The main loop of OGAHC in Algorithm 4.2 can be summarized as follows: the agent
acts for m steps in the environment and records the resulting state transitions (line
6). These transitions are added to the transition graph using the methods discussed
in Section 4.2.1 (line 7). Thereupon, virtual-transitions are added to under-explored
parts of the sample transition graph according to the graph-smoothing heuristic (line 8).
Constraints are created that ensure that only clusters whose corresponding subgraphs
are connected in G can be merged (line 11) and that subsequent partitions are consistent
(line 12-14). Finally, constrained agglomerative clustering (CAC) is used to create a
partition of the smoothed transition graph (line 16). This partition can be used, e.g., to
update the set of skill prototypes. Thereupon, the agent acts for the next m steps and
the procedure is repeated. Note that sparsity properties of G—which correspond to a
reduced runtime of the constrained agglomerative clustering algorithm because of less
merge candidates—are maintained in the smoothed graph G′.

4.2.3.3 Illustration

We give a brief illustration of incremental bottleneck identification using OGAHC in
the “Towers of Hanoi” domain (see Section 3.1.1). Figure 4.2 shows the constructed
transition graphs and the resulting partitions after different number of steps in an
example run. The parameters of OGAHC have been set to ψ =−0.003 and ρ = 3, and
the clustering was performed every m = 2500 steps. Target nodes of virtual transitions
have been sampled according to the graph structure, i.e., virtual transition are more
likely between nodes with small geodesic distance dG in the graph than between more
distant nodes. One can see that the algorithm is conservative in bottleneck identification:
after 5000 steps, no bottleneck is detected even though the transition graph provides
some evidence in favor of one (indicated by an annotation in the figure). However, since
some parts of the neighborhood of this bottleneck have not been explored sufficiently,
graph smoothing generates virtual transitions that bypass this bottleneck. Thus, the
corresponding bottleneck is not detected at this point in time. After 7500 steps however,
when more exploration was conducted, OGAHC adds fewer virtual transitions, the linkage
becomes larger than ψ , and the partition is split accordingly. Similarly, after 12500
steps two further bottlenecks are identified. One of these bottlenecks (between the “red”
and the “blue” cluster) is suboptimal since three nodes are labeled “blue” even though
they would fit better into the “red” cluster. This is an example where agglomerative
hierarchical clustering does not find the optimal partition due to its greedy nature.

Figure 4.3 shows the partitions generated by OGAHC after 15000 steps for different
values of ρ (ψ =−0.003 and m = 2500). For ρ = 0 (no virtual transitions), there are
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Figure 4.2 – Illustration of OGAHC in “Towers of Hanoi” for a randomly exploring policy.
Red lines correspond to virtual edges added during graph smoothing according to the
“assume dense local connectivity in the face of uncertainty” heuristic. OGAHC is invoked
every 2500 steps and identifies bottlenecks after 7500 and 12500 steps. Note that the
bottleneck identified between the “red” and the “blue” cluster is suboptimal.

many false positives which have been identified mostly already after 2500 or 5000
steps and cannot be corrected later on because of the consistency constraints. For
ρ = 3, OGAHC is more conservative in identifying bottlenecks early on and does not
identify bottlenecks before sufficient evidence is present. Thus, the resulting partition
is close-to-optimal. For ρ = 6, the algorithm is overly conservative and adds many
virtual transitions such that even after 15000 steps, the algorithm has not decided on
any bottleneck position. Thus, the choice of ρ is important for the performance OGAHC
and a good trade-off between too liberal and too conservative is required.

4.2.4 Skill Prototype Generation

Given a partition P obtained using OGAHC or any other graph clustering approach,
one skill prototype is generated for reaching each identified bottleneck area. We set
the bottleneck area of two clusters A and B to the boundary bv of the corresponding
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Figure 4.3 – Illustration of graph smoothing in “Towers of Hanoi”. Shown are results
after 15000 steps of random exploration. Red lines correspond to virtual edges added
during graph smoothing according to the “assume dense local connectivity in the face of
uncertainty” heuristic. Without any graph smoothing (ρ = 0), many spurious bottlenecks
are identified. With strong graph smoothing (ρ = 6), no bottlenecks are identified at all.
Medium graph smoothing (ρ = 3) results in a close-to-optimal clustering of the graph.

subgraphs of G. The skill prototype ΨAB = (IAB,βAB,RAB) that is generated for the
bottleneck between A and B is then defined as follows:

IAB = (A∗∪B∗)\bV (A,B)
βAB(s) = 0 if s ∈ IAB else 1

RAB((s,a,r,s′)) =−1 if s′ ∈ (A∗∪B∗) else rp−1,

where A∗ = {v ∈V | ∃v′ ∈ A : (v,v′) ∈ E} is the set of all nodes connected to a node in
A. In other words: the skill prototype’s initiation set IAB, where the skill can be invoked,
consists of all states s ∈ S which are connected via an edge to a node v ∈ A∪B and
are not bottleneck states bV (A,B) between A and B. The skill prototype terminates if it
leaves its initiation set, and obtains a reward of −1 per time step. If the skill reaches a
state which is not connected to any node v ∈ A∪B, the additional “penalty” rp� 0 is
given for failing to fulfill a skill’s objective. Thus, the optimal policy corresponds to
reaching the bottleneck area as fast as possible while avoiding to leave the clusters A
and B. Figure 4.4 illustrates a skill prototype derived from a partition of the transition
graph of the “Towers of Hanoi” game.

Further skill prototypes ΨAst are generated for reaching identified terminal states st
from the adjacent clusters A:

IAst = A∗ \{st}
βAst (s) = 0 if s ∈ IAst else 1

RAst ((s,a,r,s
′)) =−1 if s′ ∈ A∗ else rp−1,

Note that the skill prototypes may change over time when A or B change because of
re-clustering; however, a skill and its corresponding bottleneck area can never disappear
in OGAHC because of the constraints that prevent merging clusters with nodes that have
been in different clusters in previous partitions.
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Figure 4.4 – Illustration of a skill prototype for a given partition of the transition graph
in “Towers of Hanoi”. The left graph shows a partition of the transition graph into three
clusters, the middle plot the initiation set and termination condition of the resulting skill
prototype ΨAB (with green nodes being the nodes in which the skill can be invoked and
does not terminate and red nodes vice versa), and the right plot the corresponding pseudo
reward function. Please note that the optimal policy for this skill would thus correspond to
reaching the two bottleneck nodes between A and B as fast as possible.

4.3 RESULTS

In this section, we present an empirical evaluation of the proposed skill discovery archi-
tecture presented in Figure 4.1. First, we evaluate subcomponents of the architecture
separately: in Section 4.3.1, we compare the quality of three different (off-line) graph
clustering methods for given graphs with respect to their ability to identify bottlenecks.
In Section 4.3.2, we investigate how critical the choice of the bottleneck parameter ψ is.
Section 4.3.3 considers the effect of graph smoothing onto the quality of the resulting
partition. Thereupon, in Section 4.3.4, we investigate the convergence properties of
the on-policy and off-policy edge weights. In Section 4.3.5, we evaluate transition
graph generation and graph clustering jointly with regard to the quality of the obtained
partitions for different exploration strategies of the agent and different domain stochas-
ticity. Finally, in Section 4.3.6, we evaluate the architecture as a whole in a multi-task
RL problem and compare incremental and non-incremental graph clustering for skill
discovery.

4.3.1 Graph Clustering

In this section, we compare three different graph clustering algorithms empirically
with respect to their ability to identify bottlenecks of randomly generated graphs. We
compare normalized spectral clustering (Shi and Malik, 2000), PCCA+ (Deuflhard
and Weber, 2005), and agglomerative hierarchical clustering. See Section 2.4 for a
discussion of these algorithms.

The evaluation is based on randomly generated euclidean graphs where all graph
nodes are embedded in [0,1]2. The random euclidean graphs have been created as
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follows: (1) nnode graph nodes are sampled uniform randomly from [0,1]2, (2) all pairs
of nodes are sorted according to their euclidean distance, and (3) the nnode ·ndegree pairs
with minimal distance are connected via an edge, such that the average degree of a node
becomes ndegree. If the resulting graph consists of more than one connected component,
the process is repeated until a connected graph is obtained. Figure 4.5 shows an example
of a graph generated via this procedure for nnode = 200 and ndegree = 4.

The objective for graph clustering is to identify a partition of the graph into ncluster
clusters such that the NCut of the partition becomes minimal, i.e., the clusters are sepa-
rated by bottlenecks of maximal strength. For a given partition P, we define the mean
pairwise normalized cut of all clusters as NCut = |CC{P}|−1

∑
pi,p j∈CC{P}

NCut(pi, p j),

where CC{P} denotes the set of all connected pairs of clusters in P. The three graph
clustering algorithms have been applied to the random graphs and NCut has been com-
puted for the resulting partitions. Note that PCCA+ required sometimes additional
post-processing of the partitions since some of the partitions contained clusters which
consisted of more than one connected component. In this case, all but the largest
connected component of a cluster have been reassigned to one of the other clusters,
namely to the cluster which was connected with the maximal number of edges to the
component.

Figure 4.6 shows the median NCut and the runtime1 of the clustering algorithms
for different values of ncluster, nnode, and ndegree. Varying the number of clusters ncluster
shows that agglomerative clustering results in the best partitions for small ncluster,
while agglomerative and spectral clustering are on a par for larger ncluster. PCCA+ is
slightly worse for all values of ncluster. The runtime of PCCA+ and spectral clustering
increases with ncluster while it decreases for agglomerative clustering. This is because
for larger ncluster, the dendrogram (see Section 2.4.3.3) need not be fully constructed
since the process can be stopped once a forest of ncluster trees was constructed. Thus,
the dendrogram nodes close to the root, which are computationally expensive, can be
skipped.

Varying the number of graph nodes nnode shows a similar pattern: PCCA+ tends to
result in the worst partitions and agglomerative clustering in the best ones, in particular
for large nnode. Furthermore, agglomerative clustering also scales better to large graphs
in terms of runtime. Thus, the better asymptotic complexity of O(n2 logn) compared to
O(n3)for the eigendecomposition-based approaches is already relevant for moderately
large graphs (cf. upper bounds on computational complexity in Section 2.4.3). Com-
bining the results for varying ncluster and nnode suggests that agglomerative clustering
performs the better the larger the size of the average cluster nnode/ncluster is.

When varying the average node degree ndegree, agglomerative clustering performs
worse for large ndegree both in terms of NCut and runtime. The latter can be explained

1Note that the absolute runtime is not directly comparable since spectral clustering and PCCA+

are based on highly optimized code for eigenvalue decomposition in LAPACK (Anderson et al., 1999),
while agglomerative hierarchical clustering is implemented using pure Python code. Thus, the runtime
of agglomerative hierarchical clustering could probably be reduced by about an order of magnitude.
Nevertheless, the trends of the runtime are instructive.
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Figure 4.5 – Example of a randomly generated euclidean graph. The randomly generated
graph consists of nnode = 200 nodes and has degree ndegree = 4, resulting in 800 edges. The
node coloring corresponds to a close-to-optimal partition of the graph nodes into ncluster = 5
clusters.

by the fact that increased connectivity of the graph increases the number of merge
candidates, which directly influences the runtime of the algorithm.

In summary, agglomerative hierarchical clustering appears to achieve the best results
for sparse graphs (graphs with low connectivity) and large clusters. For situations where
the graph is densely connected, agglomerative clustering is less recommendable since
its runtime increases considerably and the quality of the partition is also slightly worse
than for the other clustering algorithms. Nevertheless, since sparsely connected graphs
are typical for MDPs, agglomerative clustering should be well suited in general for
identifying bottlenecks in MDPs.

4.3.2 Bottleneck Criterion

In this section, we investigate how critical the choice of the bottleneck parameter ψ is,
i.e., how it affects the number of clusters of the partition. For this, a graph consisting
of 36 = 729 nodes has been generated (see left diagram of Figure 4.7). This graph
consists of 3×3 subgraphs that all have cardinality 34 = 81. Each of these subgraphs
is connected via one edge to its 4 neighbor subgraphs. Moreover, each subgraph is
internally structured according to the same principle, i.e., consisting of 3×3 subgraphs
which are mutually connected using the 4-neighborhood. Because of the hierarchical
structure of the graph, partitions consisting of 3k clusters with k ∈ [0,2,4,6] should be
preferred.

The right diagram in Figure 4.7 shows a plot of ψ versus the number of clusters
obtained via non-incremental agglomerative clustering. The minimal value ψ = −1
corresponds to a situation where every node forms a separate cluster since a bottleneck
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Figure 4.6 – Comparison of graph clustering algorithms. The graphs show results on
random euclidean graphs with respect to the mean normalized cut of the obtained partitions
and the runtime. Default values are ncluster = 6, nnode = 400, and ndegree = 4. Smaller NCut
corresponds to better partitions. Shown are median and standard error for 20 repetitions.

is detected for any pair of subgraphs since the linkage is lower bounded by −1. On
the other hand, values of ψ close to 0 result in a partition consisting of one cluster that
contains all graph nodes. This is because there exists no pair of subgraphs such that
the probability of transitioning from one subgraph to the other becomes so small that
it would actually be considered as a bottleneck for values of ψ very close to 0. For
intermediate values of ψ , partitions with a cardinality of approximately 32 or 34 are
chosen typically. This shows that the specific choice of ψ is not very critical since the
resulting partitions remain very similar for a large range of values for ψ . Note that the
differences between the individual runs are due to different random permutations of
graph node indices (the clustering breaks ties between merge candidates with the same
linkage based on node indices).

4.3.3 Graph Smoothing

This section presents an evaluation of the effect of graph smoothing onto the number
of false positives (FPs) and false negatives (FNs) in bottleneck detection using non-
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Figure 4.7 – Analysis of granularity of partitions. The graph depicts the effect of ψ onto the
granularity of the partition: for a graph with a simple hierarchical structure (left diagram),
the right diagram shows how the partition’s granularity, i.e., the number of clusters of
the partition, changes with ψ . The partitions have been generated using agglomerative
hierarchical clustering (see Algorithm 2.4). Shown are results for 5 random permutations
of graph node indices.

Figure 4.8 – Effect of graph smoothing onto bottleneck detection quality. The graph depicts
the false positives and false negatives in bottleneck detection (compared to ground-truth)
for non-incremental graph clustering for different values of ρ and different number of
transitions used for generating the transition graph. Shown is mean over 25 repetitions.

incremental agglomerative clustering. The evaluation was performed on a 9×9 = 81
nodes subgraph of the graph used in Section 4.3.2. However, in contrast to Section
4.3.2, the true graph G is not known to the agent but the agent can only approximate it
in the form of a sample transition graph G by performing a random walk on the graph
and using the methods from Section 4.2.1. Because of the differences between G and
G, smoothing the sample transition graph becomes important since it allows handling
the trade-off between FPs and FNs in bottleneck detection.
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Figure 4.9 – Empirical comparison of on- and off-policy edge weights. The graphs show
the root mean squared error (RMSE) of the estimated edge weights after different number
of sampling steps on a random graph under different sampling policies. Shown are mean
and standard error of the mean for 10 independent runs.

Figure 4.8 shows the number of FPs and FNs in detection of bottlenecks b∗, com-
pared to the bottleneck edges detected when clustering G. Different values for the
degree of smoothing ρ ∈ {0,5,25,100} and different number of transitions m used
for constructing the sample transition graph are shown. Smoothing was based on the
geodesic distance of graph nodes. In this setup, there is a total of 12 bottlenecks for
ψ =−0.25. For m = 104, the clustering identified these (and only these) bottlenecks
nearly perfectly: FPs and FNs are very close to 0 on average. If clustering is performed
earlier, e.g., after m ≤ 103 steps, some actual bottlenecks are missed (FN � 0) and
some parts are wrongly classified as bottlenecks (FP� 0). Being more conservative
(larger ρ) reduces the FPs while surprisingly, it does have only a small negative effect on
the FNs. Thus, in this domain, graph smoothing with ρ ≥ 25 is strongly recommended.
Note that for incremental clustering approaches, FPs are far more critical than FNs since
FNs can be compensated in subsequent clusterings while FPs remain because of the
consistency constraints.

4.3.4 Edge Weights

This section compares empirically the on-policy edge weights won((v,v′)) = 1
nv

∑a na
vv′

to the off-policy edge weights wo f f ((v,v′)) = 1/|A|∑a(na
vv′/na

v), cf. Section 4.2.1. For
this comparison, we have created a stochastic MDP with 10 states and 2 actions with
Pa

ss′ chosen randomly and densely, i.e., Pa
ss′ > 0 ∀s,s′,a. Figure 4.9 shows the root

mean squared error (RMSE) of the estimated edge weights under different sampling
policies, which is computed as RMSE(w) =

√
1/|V |2 ∑v,v′(wvv′−Pvv′)2, where we use

the shorthand notation Pvv′ = 1/|A|∑a Pa
vv′ .

The figure shows that for uniform sampling policies with π(s,a1) = π(s,a2) = 0.5,
both won and wo f f perform identical and converge to zero RMSE. However, for non-
uniform sampling policies, only wo f f converges to zero RMSE while won converges
to other weights, namely to won((v,v′)) = ∑a π(v,a)Pa

vv′ . Thus, the on-policy weights
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depend actually on the sampling policy π . Note that RL agents using, e.g., ε-greedy
exploration behave typically like the non-uniform sampling policies. Thus, using the
off-policy edge weights is crucial.

4.3.5 Cluster Accordance Analysis

This section presents an empirical evaluation of the quality of the partitions generated
by different clustering approaches and linkage criteria in randomly generated MDPs.
We investigate the effect of domain stochasticity and different exploration behavior of
the agent onto the resulting partitions. In contrast to the experiment presented in Section
4.3.3, we consider in this section also the incremental graph clustering method OGAHC.

4.3.5.1 Experimental Setup

We have created 50 random MDPs as follows: the state space of all MDPs has been
set to a two dimensional grid of 400 states (S = {0,1, . . . ,19}2) and the action space
to contain four discrete actions (A = {(−1,0),(1,0),(0,−1),(0,1)}). For any state
transition, a reward of −1 is given, and an episode starts always in s0 = (0,0) and
terminates in st = (19,19).

The MDP’s state transition probability Pa
ss′ depends on an implicit connectivity

graph Gc (see Figure 4.10 for three random examples). This graph is created based on a
partitioning (the later ground-truth partition) of the states that is generated by drawing 7
states (the “centers”) uniform randomly from S and assigning each state to the cluster
of its closest center (breaking ties randomly). A graph edge is added between any
pair of states that are neighbors in the 4-neighborhood and in the same cluster. One
additional edge per cluster-pair (pi, p j) is added between a randomly drawn pair of
neighbors where one is in cluster pi and the other in p j. For any state-action pair s,a,
let the deterministic successor state be d(s,a) = s+a if (s,s+a) is an edge in Gc and
else d(s,a) = s. We set Pa

ss′ = 1− (8/9)χ for s′ = d(s,a) and Pa
ss′ = (1/9)χ for any

other state s′ from the 9-neighborhood of s. The parameter χ determines the MDP’s
stochasticity. Note that for χ = 0, the connectivity of Gc controls the connectivity of
the sample transition graph, while for χ > 0, it influences only its edge weights.

For each MDP, an optimal policy has been computed off-line and a trajectory
consisting of n transitions has been sampled by following the optimal policy ε-greedily.
We have set ε initially to 1 and then decayed it after each step by the factor 1− εdecay.
Based on the sampled transitions, a partition of the states is determined and compared to
the ground truth partition using the accordance ratio accGT (see Section 3.4.1). Statistical
hypothesis testing has been conducted using Student’s independent two-samples t-test.

4.3.5.2 Linkage Criteria

In a first experiment, we compare different linkage criteria in a non-incremental clus-
tering setting for χ = 0. To analyze the effect of non-uniform exploration of the agent,
we have varied εdecay. Large values of εdecay correspond to an agent which starts to
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Figure 4.10 – Examples of random graphs governing the MDP’s state connectivity. Shown
are three of the fifty connectivity graphs Gc of the randomly generated MDPs.

(a) Different degrees of exploration (b) Different degrees of domain stochasticity

Figure 4.11 – Effect of domain stochasticity and exploration on graph clustering. The
graph depicts a comparison of different linkage criteria for different degrees of exploration
and different stochasticity of the environment. Shown are mean and standard error of the
mean of the accordance ratio accGT over the 50 random MDPs.

exploit more early and as a consequence, obtains a more biased estimate of the transition
graph. Figure 4.11a shows a comparison of the partitions obtained after n = 25000
transitions for the M-linkage (see Section 4.2.2) and for the N̂cut-linkage with both
on-policy and off-policy edge weights as discussed in Section 4.2.1. The main result
shown in the figure is that the N̂cut linkage with on-policy weights obtains significantly
worse partitions than the other two linkages for intermediate values of εdecay (p < 0.008
for εdecay ∈ {10−5,10−4,10−3}). This can be attributed to the fact that the on-policy
N̂cut linkage bases its partitions not solely on the environment’s transition probabilities
but also on the agent’s action selection which is undesirable if the agent selects actions
non-uniformly.

In a second experiment (n = 25000, εdecay = 0), we have varied the stochasticity
χ of the environment. Figure 4.11b shows that the M-linkage obtains significantly
worse results than the off-policy N̂cut linkage if the environment gets slightly non-
deterministic (p < 0.0001 for 0.05 ≤ χ ≤ 0.8). This is due to the use of uniform
edge weights in the M-linkage; these weights do not allow differentiating between
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(a) Accordance ratio accGT (b) Resulting number of clusters ncluster

Figure 4.12 – Comparison of graph clustering methods. Shown is a comparison of the
incremental graph clustering method OGAHC (for different values of ρ) with off-line, non-
incremental clustering. The plots visualize (a) the mean of the accordance ratio accGT and
(b) the mean of ncluster over the 50 random MDPs.

probable and less probable transitions, which is apparently important for skill discovery
in non-deterministic environments. In summary, the results show that the off-policy
N̂cut-linkage is the most robust linkage criterion; the following experiments have been
conducted with this linkage accordingly.

4.3.5.3 Incremental Graph-Clustering

In this subsection, we compare the incremental graph clustering method OGAHC with its
off-line counterpart (essentially the approach proposed by Mannor et al. (2004), see
Section 3.3.4). We have used the same 50 random MDPs as before and set n = 30000,
εdecay = 0, χ = 0, and ψ =−0.0375. For OGAHC, the clustering has been updated every
500 steps and different choices of ρ have been evaluated. The off-line clustering has
been performed after m ∈ {500,1000, . . . ,30000} transitions, taking all m transitions
that have been acquired so far into account at once.

Figure 4.12a shows how the accordance ratio of the partitions identified by incre-
mental graph clustering changes over time. It can be seen that smaller values of ρ

achieve higher accordance ratios in the early phase since they tend to identify clusters
more early (see Figure 4.12b). However, these clusters are potentially suboptimal
since small ρ has the risk of detecting several false positive bottlenecks (see Section
4.3.3). Accordingly, for ρ = 0 the accordance ratio plateaus on a lower level than for
larger values of ρ since these false positives cannot be corrected later on because of the
consistency constraints. This can be seen also in Figure 4.12b: for ρ = 0, the number of
clusters is on average 10 in the long run while there are actually only 7 clusters. Thus,
there are 3 false positives on average. Larger values of ρ perform worse initially since
they are conservative and thus miss many potential bottlenecks (many false negatives).
In the long run (m = 30000), however, the quality of the partition becomes better than
for ρ = 0 since there are less false positives.
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Figure 4.13 – Average accordance of Incremental and Non-Incremental Clustering. Shown
are the accordances during the 30000 exploration steps of Figure 4.12a. OGAHC is denoted
by “online”. Note that the relative scale of the two horizontal axes is arbitrary.

Comparing OGAHC and off-line, non-incremental clustering, one can see that for
any number of transitions, OGAHC tends to be slightly worse than the off-line clustering
obtained at that point in time. This is due to the enforced consistency with prior
clusterings and to the influence of ρ . However, the clusterings of OGAHC can be refined
over time while the clusterings of the off-line approach are fixed. Thus, the performance
of the two method should not only be compared at the specific point in time where the
off-line clustering is performed. Figure 4.13 shows the accordance ratio averaged over
the 30000 steps1 for different values of ρ and m. For both small and large values of
m, the average accordance of the off-line clustering is low. For small m, the average
accordance is low because the clustering is based on only few transitions and cannot be
improved later on; for large values of m, the average accordance is low because there is
no clustering at all for a long initial period. Intermediate values (m≈ 4500) obtain a
higher average accordance of approximately 0.81. In contrast, the on-line clustering
with OGAHC depends less on the specific choice of ρ . The optimal value for ρ is 1,
which results in an average accordance of approximately 0.91; however, for any value
0≤ ρ ≤ 6, OGAHC achieves a significantly higher average accordance than the off-line
clustering for m = 4500 (p < 0.019). Thus, even without fine-tuning ρ , the on-line
clustering can outperform the off-line clustering with optimally chosen m with regard
to the average quality of the clustering.

4.3.6 Multi-task Learning

In this section, we evaluate the utility of OGAHC within a Hierarchical RL agent employ-
ing the full architecture of Figure 4.1 in a multi-task learning scenario. The scenario is a
23×23 maze world consisting of four rooms with four “special” states (see Figure 4.14).
In each time step, the agent obtains a reward of −1. The agent has to learn to solve

1The average accordance is computed as accgt = 60−1
∑

60
i=1 accgt{P500i}, where P j denotes the

partition obtained after j steps. Note that this formula exploits that graph clustering is performed every
500 steps. For off-line graph clustering and j < m, graph clustering has not been performed yet and the
partition is set to a single cluster containing all nodes.
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Figure 4.14 – OGAHC in the Multi-Task Maze. Left: Structure, ground-truth partitioning,
and bottlenecks of the multi-task maze world. Right: Reward per episode averaged over
the first 1000 episodes (R1000

avg ) for different skill discovery strategies. The parameters ρ

and to are varied over the same value range (bottom x-axis). Note that the relative scale
of the horizontal axes is arbitrary. Shown are mean and standard error of the mean for 15
repetitions. See Figure 4.15 for detailed learning curves.

12 different tasks in this environment; each task is defined by a pair (s0,st) of special
states where s0 is the start state and st is the goal state of the task. In each episode, a
task is chosen at random and the specific task is communicated to the agent as a state
space dimension.1 This dimension is used by the agent for policy learning but is not
taken into account during skill discovery and skill learning. The acquired skills can thus
be transferred between tasks and may give a useful exploration bias for the agent. We
have chosen this domain for our evaluation since one can define a ground-truth partition
easily in this domain by identifying the doorways as bottlenecks and the domain allows
studying the potential of the discovered skills for transferring procedural knowledge
between different tasks.

The agent uses a 3-layer hierarchy (see Section 2.3.4): the lowest layer consists
of the primitive actions, the middle layer of the acquired skills and a special option
discussed below. On the upper layer, the agent may choose among these skills but not
choose a primitive action directly, i.e., the action space is abstracted not augmented
(see Section 2.3.4). 1-step intra-option Q-Learning (cf. Section 2.3.4.3) is used for
skill learning; no experience replay is conducted to avoid intermixing the contributions
of skill discovery and experience replay (see Jong et al. (2008) for a discussion). A
special low-level option prototype is provided to the agent: this option can be invoked
in any state, terminates in any state with probability β = 0.01, and uses the external
reward signal. This option allows the agent thus to learn a monolithic global policy.
The reasons for this option are twofold: on the one hand, it guarantees that the agent
can learn a global optimal policy eventually despite the abstraction of the action space.
Moreover, it makes the agent less susceptible to the broken exploration symmetry that is
caused by temporal abstraction than pure augmentation of the action space (cf. Section
3.2.1 and Figure 3.3).

1Note that we thus inform the agent explicitly about the current task, which makes recognizing the
same task later on trivial. Perkins and Precup (1999) presented a Bayesian framework in which the agent
need not be informed about the current task but can identify it on its own.
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Figure 4.15 – Plot 1 shows learning curves during the first 1000 episodes for the different
methods with optimal values for ρ , to and “steps without novelty”. Plot 2 shows the same
comparison zoomed-in to the first 100 episodes. Plot 3, 4, and 5 show the learning curves
of OGAHC, LGP, and Offline Clustering for different values of ρ , to and “steps without
novelty”, respectively. Shown is the mean of R5

mwa(t) over 15 repetitions.
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We compare OGAHC to the Off-line Clustering approach proposed by Mannor et al.
(2004) and the Local Graph Partitioning (LGP) approach by Şimşek et al. (2005). As
baseline, we evaluate the agent using no skill discovery (corresponding to monolithic in
Section 3.4.2 and denoted by “no skills”), and the baseline predefined skills where the
agent is provided with the ground-truth partition (see Figure 4.14) from the beginning.
|ψ| has been set to 0.0375 for all approaches. For LGP, the required hit-ratio has been
set to tp = 0.2, the option lag to lo = 20, the window length to h = 1000, and the
update frequency to 250. These parameters have been chosen based on preliminary
experiments. The discount factor of the agent has been set to γ = 0.99, the learning
rate to α = 1.0, the value functions have been initialized optimistically to 0.0, and the
penalty for failing to fulfill a skill’s objective has been set to rp = −100. For OGAHC,
the parameter ρ has been varied between 0 and 30, for LGP the minimum number of
state observations to has been varied between 1 and 30, and the Off-line Clustering has
been conducted after m steps in which no novel state has been encountered (where m
has been varied between 5000 and 50000). Each setting has been evaluated 15 times
for 1000 episodes. As performance metric, we use the average return per episode Rt

avg
(see Section 3.4.1) since this metric allows investigating the effect of multi-task transfer
onto learning speed.

The results of the empirical evaluation are depicted in Figure 4.14. The agent
provided with the predefined skill prototypes obtains an average reward per episode
of R1000

avg = −296.3±1.6 and the agent using no skills of R1000
avg = −395.5±0.9. The

maximal gain of average reward per episode that can be achieved by biasing exploration
using skills is thus approximately +100. Using LGP for skill discovery does not achieve
an average reward of more than R1000

avg =−350 for any choice of to. Closer inspection
showed that for small values of to, the resulting partitioning was far from being optimal
while for larger values of to, the skills have been introduced too late to provide a
useful exploration bias. Using the Off-line Clustering approach, the optimal time for
performing the clustering is after m∗ = 30000 steps without observing any novel state
which results in R1000

avg = −306.8± 2.6. Thus, performing Off-line Clustering at the
right time does already realize 90% of the possible reward gain. However, for the same
reasons as in Subsection 4.3.5 the choice of m is crucial: performing clustering too
early (m� m∗) results in suboptimal partitions while performing it too late (m� m∗)
limits the benefits of the acquired skills for learning.

OGAHC achieves R1000
avg >−305 for any choice of ρ ≤ 15 and R1000

avg =−294.5±2.1
for ρ = 10. The approach allows thus acquiring more than 90% of the possible reward
gain (and thus more than obtained by Off-line Clustering for any choice of m) for
a broad range of values for ρ , making the specific choice of ρ less important. For
the optimal choice ρ∗ = 10, OGAHC achieves an average reward that is on a par with
what can be obtained with the predefined skill prototypes. This can be explained by
the observation that for this choice of ρ , OGAHC discovers skills that are close to the
optimal ones very early during learning (typically during the first 3 episodes). Since
skill learning takes several episodes, the predefined skill prototypes offer the agent an
efficient exploration bias starting after approximately 5 episodes; thus, OGAHC can be
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on a par with the predefined skill prototypes. In summary, the results show that using
OGAHC for skill discovery allows identifying reusable skills at an early stage of learning
without requiring to fine-tune the parameter ρ .

4.4 DISCUSSION

This chapter has proposed the novel skill discovery approach OGAHC. OGAHC generates a
transition graph, which captures the dynamics of a discrete domain, based on experience
and discovers reusable and versatile skills by identifying bottlenecks of this graph using
agglomerative hierarchical clustering. OGAHC is fully incremental and allows identifying
bottlenecks of a domain robustly. The four main features of OGAHC that set it apart from
related approaches are the following:

1. Use maximum likelihood estimates for the sample transition graph’s weights and
correct for the bias of the sampling policy by means of importance sampling (see
Section 4.2.1). These “off-policy” weights are robust with regard to stochastic
domains and the agent’s exploration behavior.

2. Use the N̂cut linkage for defining bottlenecks since it has a straightforward connec-
tion to random walks on a graph and it’s parameter ψ has a simple probabilistic
interpretation (see Section 4.2.2).

3. Use agglomerative hierarchical clustering with consistency constraints for incre-
mental, graph-based skill discovery. Consistency constraints allow performing
graph clustering several times without obtaining inconsistent skill prototypes (see
Section 4.2.3.1).

4. Perform graph smoothing prior to graph clustering in order to reduce the number
of false positives in bottleneck detection (see Section 4.2.3.2).

Note that OGAHC is modular, i.e., every of these 4 components could be replaced by
alternatives while leaving the rest unchanged. Section 4.3 has presented an empirical
evaluation where each component was compared with reasonable alternatives. The
following list summarizes the main empirical findings that support the choice of the
specific structure of OGAHC:

• The N̂cut linkage in combination with the off-policy weights is more robust with
respect to both domain stochasticity and exploration behavior of the agent than
alternatives proposed by other authors (see Section 4.3.5.2).

• The specific choice of the value of parameter ψ for the N̂cut linkage is not very
critical for the resulting partitions (see Section 4.3.2).

• Agglomerative hierarchical clustering obtains empirically good approximations
of the optimal partition with a comparatively small amount of computation (see
Section 4.3.1).

• Graph smoothing is crucial for reducing false positives in bottleneck detection
when the agent uses a sample transition graph rather than the true transition graph
(see Section 4.3.3)
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• In contrast to the on-policy edge weights, the off-policy edge weights converge to
the true state transition probability under biased sampling policies (see Section
4.3.4).

• Incremental graph clustering approaches like OGAHC with consistency constraints
and graph smoothing can handle the trade-off between false positives and false
negatives better than non-incremental “off-line” clustering approaches. Further-
more, the choice of OGAHC’s parameter ρ is less critical than the choice of the
single point in time for performing the off-line clustering (see Section 4.3.5.3).

• Hierarchical RL agents using OGAHC can considerably outperform other skill
discovery approaches in terms of sample-efficiency in a multi-task problem.
Moreover, an OGAHC-based agent with appropriate ρ performs nearly as good as
an agent that is provided with the domain bottlenecks from the very beginning
(see Section 4.3.6).

Thus, there is considerable empirical evidence supporting OGAHC. OGAHC exhibits
4 of the 5 desirable properties for skill discovery identified in Section 3.2.3: it is
incremental (P1), identifies task-independent skills (P2), decides automatically how
many skills are created (P3), and—as the empirical results show—is very sample-
efficient (P5). In summary, OGAHC is a contribution that achieves the first subgoal stated
in Section 1.2:

SUBGOAL S1 Develop an incremental, graph-based skill discovery approach that can
identify skills at any time and allows an agent to acquire a collection of
skills which increases in both size and sophistication over time.

The author would also like to note that some situations have been identified where
OGAHC is not expected to work well: for instance, hierarchical agglomerative clustering
is not well suited for domains with a dense transition graph since it becomes com-
putationally expensive and yields worse partitions than other clustering approaches.
Furthermore, the generation of the transition graph is based on the assumption that
the dynamics Pa

ss′ of the domain do not change over time. While this is the standard
“time invariance” assumption of MDPs, it is not realistic for actual, real-world scenarios,
where Pa

ss′ would typically be non-stationary (cf. Section 3.2.1). One possible way to
take this non-stationarity into account during transition graph generation would be to
discount na

vv′ over time. For instance, after each transition, one could set na
vv′ ← κna

vv′ ,
where κ ∈ [0,1] is an appropriate discounting term and na

v needs to be renormalized
accordingly. For κ < 1, the influence of old transitions, which may no longer be possible
under the changing dynamics, diminishes over time and G may track the actual domain’s
dynamics. Using a hierarchical policy based on skills acquired based on OGAHC, on
the other hand, may allow adapting more easily to (small) changes in the environment
as discussed in Section 3.2.1. Please refer to Digney (1998) and Stolle and Precup
(2002), where this has been shown empirically for similar approaches. Corresponding
experiments for OGAHC remain to future work.

Moreover, the author acknowledges that the empirical evaluation in this chapter
was performed in small, discrete “toy” problems. Nevertheless, the obtained results
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are instructive and—as will be seen in the next chapters—generalize to more complex
domains. By extending OGAHC to domains with continuous state spaces and action
spaces in Chapter 6, a skill discovery approach that also exhibits property P4 will be
obtained.



5
Learning Graph-Based
Representations

“I am not discouraged, because every wrong attempt discarded is another step
forward.”

Thomas A. Edison

5.1 INTRODUCTION

IN Chapter 4, we have proposed the incremental graph-based skill discovery approach
OGAHC. We have evaluated OGAHC empirically in small and discrete domains. Since

our motivation stems mainly from robotic applications, which are typically continuous,
one natural question is: How can OGAHC (or any other graph-based skill discovery
approach) be extended to continuous domains? We address this question in this chapter.
Note that in this chapter we focus on non-incremental clustering; we combine the
proposed methods with OGAHC in Chapter 6.

The main challenge when applying graph-based methods in continuous domains is
how to create the sample transition graph. In small and discrete domains, constructing
the sample transition graphs from experience for unknown MDPs is straightforward
(cf. Section 4.2.1): one graph node is created for each observed domain state and
an edge is created for any pair of states between which a direct transition has been
observed. For domains with continuous state spaces, employing graph-based approaches
is considered to be much more difficult (Konidaris and Barto, 2009). The reason for this
is that graphs are inherently discrete structures and thus, there cannot be a one-to-one
correspondence between states and graph nodes since there exists an infinite number of
states in continuous domains. Thus, several states need to be aggregated into one node,
i.e., V ( S. Accordingly, one has to choose how many nodes there should be and how
states should be assigned to graph nodes.

Prior work on graph-based approaches in continuous domains (see Section 5.2.1
for a more detailed discussion) has typically considered continuous domains where the
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state space is a real-valued vector space, i.e., S⊆ Rns . In this situation, states can be
assigned to graph nodes based on the euclidean distance, i.e., by assigning each state
to the nearest graph node. Furthermore, the number of graph nodes vnum is typically
specified externally. The main challenge is thus to decide where the graph nodes should
be placed in the euclidean space. Prior work has either discretized the domain, i.e.,
placed graph nodes at a regular grid over the state space (Mannor et al., 2004), or placed
graph nodes at a subset of the observed states (Mahadevan and Maggioni, 2007). While
the former suffers from the “curse of dimensionality” (see Section 2.2.4), the later
allows exploiting situations where the effective dimensionality of the state space is
smaller.

However, both approaches focus purely on covering the state space as uniformly as
possible and neglect the dynamics of the environment. We argue that the construction
of the sample transition graph should take the dynamics into account since a transition
graph can be seen as a model of the environment. That is, typical transitions encountered
in the domain should be representable by the graph. The hypothesis evaluated in this
chapter is that a graph, which models the dynamics of its (continuous) environment
well, will yield superior results with regard to bottleneck identification. We propose
a new heuristic called FIGE, which allows learning transition graphs that have high
likelihood under a given set of state transitions.

The outline of this chapter is as follows: In Section 5.2, we discuss how graph-based
skill discovery approaches can be extended to domains with continuous state space and
review related works. In Section 5.3, we define the likelihood of a graph for a given set
of transitions sampled according to the domain’s dynamics. Thereupon, we propose
the FIGE heuristic for learning transition graphs of continuous environments, which is
derived from the maximum graph likelihood formulation under simplifying assumptions
(see Appendix A.2). In Section 5.4, we compare FIGE with other graph learning
heuristics empirically with regard to the likelihood and the learning performance of
the resulting skill discovery method. Section 5.5 presents an excursus which shows
that FIGE is not only useful for skill discovery but also for representation learning. We
summarize and discuss the results of this chapter in Section 5.6.

5.2 GRAPH-BASED SKILL DISCOVERY IN CONTINUOUS

DOMAINS

When applying graph-based methods to MDPs with continuous state space, the typical
approach is to generate a (discrete) graph that captures the properties of the domain
well, analyze the graph, and generalize the identified properties from the graph to
the continuous domain. This is shown in Figure 5.1 for graph-based skill discovery
(see Section 5.5 for a further example): transitions T from the continuous domain are
sampled and a sample transition graph G is generated. This transition graph generation
entails an implicit discretization. Thereupon, graph clustering as discussed in Section
4.2.3 is performed to obtain a graph partition P. This partition is used to generate skill
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Figure 5.1 – Data flow diagram of graph-based skill discovery for continuous domains (cf.

Figure 4.1). The diagram shows the transition between parts of the data flow that deal with

the continuous domain (dyed in red) and a discretized version of it (dyed in green).

prototypes Ψo. However, in contrast to Section 4.2.4 these skill prototypes must not

be discrete since skill learning and compositional learning take place in the original,

continuous domain. Thus, skill prototype generation is the part where generalization of

graph properties to the continuous domain takes place.

The main challenges are thus to generate the transition graph and to define the skill

prototypes. We review prior works for transition graph generation in Section 5.2.1 and

propose a new method for this in Section 5.3.2. Skill prototype generation is discussed

in Section 5.3.3. Note that in this chapter, we only consider non-incremental approaches

for transition graph generation and graph clustering. For an extension to incremental

approaches, we refer to Chapter 6.

5.2.1 Prior Work

In this subsection, we review heuristics for generating sample transition graphs in

unknown continuous MDPs, where the agent has to generate the graph based on expe-

rience it has collected during exploring its environment. In domains with continuous

state spaces S ⊂ Rns , there cannot be a one-to-one correspondence between states and

graph nodes since there exists an infinite number of states. Thus, several states need

to be aggregated into one node, i.e., V � S. Accordingly, one has to choose how many

nodes there should be and where in the state space these nodes should be placed. Prior

work on choosing the positions of the graph nodes has mainly focused on covering

the state space uniformly with nodes and neglected the domain’s dynamics Pa
ss′ . We

summarize three heuristics that have been proposed for choosing graph nodes based on

a set of transitions sampled from the domain. These heuristics are all parametrized by

the parameter vnum, which determines the number of nodes of the generated graph.

One straightforward choice for the graph node position is to use a uniform grid
over the state space. This approach has been used in the context of graph-based skill

discovery, e.g., by Mannor et al. (2004). For an ns-dimensional state space where the

range of possible values in each dimension has been scaled to [0,1], the resolution in

each dimension is set to r = � ns
√

vnum� and V = {(i+0.5)/r | 0 ≤ i < r}ns . An evident



5. LEARNING GRAPH-BASED REPRESENTATIONS 88

disadvantage is that the approach will not scale to domains with many dimensions since
the resolution in each dimension declines exponentially with ns.

A second heuristic is the on-policy sampling heuristic (also denoted as “random
subsampling” by Mahadevan and Maggioni (2007)), which samples the graph node
positions uniform randomly from the set of states S′ encountered during exploration.
In contrast to the grid-based heuristic, this heuristic depends not directly on the state
space’s dimensionality ns, but rather on the “effective” dimensionality of the manifold of
feasible states. If there is redundancy in the dimensions of the state space, this effective
dimensionality might be considerably lower than ns. The heuristic is on-policy, i.e.,
regions of the state space that are often visited by the sampling policy are represented
by more graph nodes.

The ε-net heuristic, also denoted as “trajectory-based subsampling” (Mahadevan
and Maggioni, 2007), aims at covering the set of states encountered during exploration
as uniformly as possible. It follows a greedy strategy: the first graph node v0 is picked
at random from S′. By induction, for k ≥ 1 suppose the graph nodes v0, . . . ,vk−1 have
already been selected and their pairwise euclidean distance is at least ε . Search for s∈ S′

whose distance to each of the v0, . . . ,vk−1 is at least ε : if there are such states, pick one
at random and add it to the set of graph nodes. If there is no such candidate, return
the current set of graph nodes. This set corresponds to a locally maximal set of graph
nodes with pairwise distance at least ε . The advantage of this approach compared to the
on-policy sampling method is that the effective state space is covered more uniformly.
For parameterizing the heuristic by vnum instead of ε , we perform binary search for a
value of ε that yields a set of vnum graph nodes. As discussed in Section 3.3.4, Bacon
and Precup (2013) have proposed to use the ε-net heuristic for skill discovery.

Once a finite set of graph nodes has been chosen with any of the discussed heuristics,
the states of the original MDP can be associated with their closest graph nodes. By this,
one can use the approach discussed in Section 4.2.1 to create graph edges and their
weights by replacing an observed transition between two states by a transition between
the two respective closest graph nodes. More sophisticated strategies for mapping state
transitions onto node transitions would be possible: for instance, one could associate
each state transition with a weighted sum of node transitions such that the weights sum
to one and the weighted sum of node transitions is maximally close to the original state
transition. This would, however, reduce the sparsity of the graph’s connectivity and by
this increase the runtime of agglomerative graph clustering approaches as discussed
in Section 2.4.3.3. Note that by constructing a state transition graph, one effectively
creates a discrete version of the MDP that is embedded into the continuous state space.
See Section 5.3.2.1 for an illustration of the three discussed heuristics.

5.3 METHODS

While the heuristics discussed in Section 5.2.1 focus on covering the state space uni-
formly, they do not take the domain’s dynamics into account. Thus, for many valid state
transitions s→ s′ of the domain, there may not be any pair of graph nodes v1,v2 ∈V
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such that v1→ v2 is a good representation of s→ s′. Accordingly, the graph may not
be able to capture the domain’s dynamics Pa

ss′ accurately. In this section, we propose
a generative model which defines how probably a set of observed transition has been
generated from a transition graph. We then propose the heuristic FIGE which is derived
from this generative model as maximum likelihood solution under simplifying assump-
tions. Thereupon, we illustrate different approaches for transition graph generation
and discuss how skill prototypes can be generated for a given transition graph in a
continuous domain.

5.3.1 Likelihood of Transition Graph

As in Section 4.2.1, we propose to consider a transition graph as a generative model for
transitions and to choose the graph such that its likelihood LT (G) = p(T |G) becomes
maximal for a set of observed transitions T = {(si,ai,s′i)}n

i=1. In contrast to Section
4.2.1, however, the likelihood LT (G) in a domain with continuous state space depends
not solely on the graph’s weights but also on the graph node positions V . We consider
transitions to have been sampled from the graph using the following generative model:

1. Sample a graph node v ∈V uniform randomly, i.e., p(v) = 1/|V |.
2. Sample a state s for a given node v according to p(s|v) = Nb exp(− 1

b2‖s− v‖2
2)

where b controls how closely centered p(s|v) is on v and Nb is a normalization
constant, which only depends on b.

3. Sample an action a uniformly from the action space A, i.e., p(a|s) = p(a) = 1/|A|.
4. Sample the “successor node” v′ according to the graph’s edge weights, i.e.,

p(v′|v,a) = wvv′ .
5. Finally, sample the successor state s′ with the same b and Nb as before according to

the distribution p(s′|v′,v,s) = Nb exp(− 1
b2‖s′−(s+(v′−v))‖2

2). This distribution
encourages that the state transition s→ s′ is close to parallel to the given node
transition v→ v′.

Note that step (1), (3), and (4) correspond to the generative model proposed in Section
4.2.1. This 5-step generative model can be derived as follows:

p(T |G) =
n

∏
i=1

p((si,ai,s′i)|G) =
n

∏
i=1

p(si)p(ai|si)p(s′i|si,ai)

Under the independence assumptions I = {v⊥ a|s;v′ ⊥ s|v,a;s′ ⊥ a|v′,v′,s}, we have

p(s′|s,a) = ∑
v

p(v,s′|s,a) = ∑
v

p(v|s,a)p(s′|v,s,a)

= ∑
v

p(v|s,a)∑
v′

p(v′,s′|v,s,a)

= ∑
v

p(v|s,a)∑
v′

p(v′|v,s,a)p(s′|v′,v,s,a)

I
= ∑

v
p(v|s)∑

v′
p(v′|v,a)p(s′|v′,v,s)
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Inserting this in p(T |G) and using Bayes rule p(v|s) = p(s|v)p(v)/p(s) yields

p(T |G) =
n

∏
i=1

p(si)p(ai|si)

[
∑
v∈V

p(si|v)p(v)
p(si)

∑
v′∈V

p(v′|v,a)p(s′i|v′,v,si)

]

=
n

∏
i=1

p(ai|si)
(3)

[
∑
v∈V

p(v)
(1)

p(si|v)
(2)

∑
v′∈V

p(v′|v,a)
(4)

p(s′i|v′,v,si)
(5)

]
.

This formula corresponds to the 5-step generative model given above.

5.3.2 FIGE: Force-Based Iterative Graph Estimation

Given this generative model, the maximum likelihood estimate of the transition graph
for a given set of transitions T would be G∗ = argmaxG LT (G). Unfortunately, solving
this problem directly is hard; we propose the FIGE heuristic, which aims at finding
close-to-optimal transition graphs iteratively and is computationally tractable. FIGE is
an iterative algorithm whose update equations are derived from the maximum likelihood
objective using two simplifying assumptions (see Appendix A.2): (A1) For each tran-
sition (s,a,s′) ∈ T , assume p(v′|v,a) = 1 if v = NNV (s)∧ v′ = NNV (s′) else 0, where
NNV (s) = argminv∈V ||s− v||2. This assumption implies that whenever action a is
executed in any state of the Voronoi cell Vo(v) = {s ∈ S|NNV (s) = v} the successor
state will be with probability 1 in Vo(v′). (A2) Assume p(T |V ) = ∏

v∈V
p(T |v). This

assumption implies that the choice of the positions of the graph nodes v ∈ V can be
made independently. Both assumptions are typically oversimplifying; A1 is more
oversimplifying for domains whose dynamics are less locally smooth. The Assumption
A2 on the other hand is more simplifying in strongly connected domains where many
transitions from the Voronoi cell of one node to the Voronoi cell of another node occur.
To account for some of the errors made because of the oversimplifications of A1 and
A2, FIGE iteratively refines the graph node positions by applying the derived update
equations several times. Note that FIGE is a heuristic and no guarantee for converging
to G∗ is given.

FIGE is summarized in Algorithm 5.1: The set of graph nodes V is initialized such
that it covers the set of states contained in T uniformly by, e.g., maximizing the distance
of the closest pair of graph nodes (line 3). Afterwards, for K iterations, the graph nodes
are moved according to two kind of “forces” that act on them (see Figure 5.2): The
“sample representation” force FS (line 6-7) pulls each graph node v to the mean of all
states Sv for which it is responsible, i.e., the states s for which it is the nearest neighbor
NNV (s) in V . Thus, this force encourages node positions that capture the on-policy
state distribution well and corresponds to an intrinsic k-means clustering. The “graph
consistency” force FG (line 8-10) pulls each graph node v to a position where for all
(s,a,s′) ∈ T with NNV (s) = v there is a vertex v′ such that v′−v is similar to s′− s, i.e.,
both vectors are close to parallel. Thus, this force encourages node positions which
can represent the domain’s dynamics well. The nodes are then moved according to the
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Algorithm 5.1 Force-Based Iterative Graph Estimation (FIGE)
1: Input: Transitions T = {(si,ai,s′i)}n

i=1, parameters vnum, K
2: # Choose initial node positions V from states in T s.t. the distance of closest pair is maximized
3: V = INITIALIZE(T,vnum) # |V |= vnum
4: for i = 0 to K−1 do
5: for all v ∈V do
6: SV [v] = {s | ∃(s,a,s′) ∈ T : NNV (s) = v} # Observed states in Voronoi cell Vo(v)
7: FS[v] = MEAN(SV [v])− v # Sample representation force
8: T→(v) = {NNV (s′)− s′+ s | ∃(s,a,s′) ∈ T : NNV (s) = v} # Transitions starting in Vo(v)
9: T←(v) = {NNV (s)− s+ s′ | ∃(s,a,s′) ∈ T : NNV (s′) = v} # Transitions ending in Vo(v)

10: FG[v] = 0.5 · [MEAN(T→(v))+MEAN(T←(v))]− v # Graph consistency force
11: V =V +αi ·0.5(FS[V ]+FG[V ]) # Update node positions (vector notation)
12: # Count transitions from Voronoi cell Vo(v) to Voronoi cell Vo(v′) under action a
13: na

vv′ = |{(s,s
′) | ∃ (s,a,s′) ∈ T : NNV (s) = v∧NNV (s′) = v′}|

14: E =
{
(v,v′) | v,v′ ∈V ∃a ∈ A : na

vv′ > 0
}

# Edge between v and v′

15: wvv′ =
1
|A| ∑a∈A

na
vv′

∑ṽ na
vṽ

# Off-policy edge weights from Section 4.2.1
16: return (V,E,w)

two forces (line 11), where the parameter αi ∈ (0,1] controls how greedily the node
is moved to the position where the forces would become minimal. In order to ensure
convergence of the graph nodes, αi should go to 0 for i approaching K. If not explicitly
stated, we use αi = di/5e−1 and K = 15. An edge is added between two nodes v and
v′ if there exists at least one transition (s,a,s′) ∈ T with s being in the Voronoi cell
of Vo(v) and s in Vo(v′) (line 14). Moreover, the off-policy edge weights derived in
Section 4.2.1 are used (line 15).

The derivation of FIGE from the maximum likelihood objective is given in Appendix
A.2. FIGE’s property of first choosing the graph node positions V and afterwards
choosing E and w is a direct consequence of Assumption A1. Similarly, Assumption
A2 allows that FIGE can ignore node interactions within an iteration and chooses each
graph node’s position greedily.

FIGE’s time complexity is dominated by the nearest neighbor queries: in every of
the K iterations and for any s and s′ occurring in T , the nearest neighbor in V need to be
determined. Using |T |= n and assuming that “naive”, linear nearest-neighbor search is
used, this requires O(nvnumns), where ns is the dimensionality of the state space. Thus,
the time complexity of FIGE is in O(Knvnumns).

Note that FIGE uses the assumption of a discrete action space solely in lines 13-15
for the importance sampling required for computing the off-policy edge weights. FIGE
could be extended to continuous action spaces by using the on-policy edge weights
won = nvv′/nv with nvv′ = |{(s,s′) | ∃ (s,a,s′) ∈ T : NNV (s) = v∧NNV (s′) = v′}| and
nv = ∑v′ nvv′ . Alternatively, other means for estimating the sampling policy could be
employed which extend to policies over continuous action spaces.



5. LEARNING GRAPH-BASED REPRESENTATIONS 92

Figure 5.2 – Illustration of the forces in . Shown are the forces that act on graph

nodes (depicted as stars) in . The left diagram depicts the sample representation force

FS acting on node v. This force is exerted by the set of states SV (red dots) for which

v is the closest graph node and pulls v to the mean of SV . The left diagram shows the

graph consistency force FG exerted by the transition from state s to s′ onto the graph nodes

v = NNV (s) and v′ = NNV (s′). The force FG pulls node v to position v′ − (s′ − s) and node

v′ to position v+(s′ − s).

Figure 5.3 – Illustration of the mountain car domain. The car is denoted by a black dot; its

movement is restricted to a one-dimensional surface. The objective of the car is to reach

the top of the right hill. Since the car is underpowered, it cannot reach the goal directly but

must first build sufficient energy by oscillating back and forth between the two hills. We

refer to Sutton and Barto (1998, Chapter 8.4) for more details.

5.3.2.1 Illustration

We illustrate the different heuristics for transition graph generation in the mountain
car domain (see Figure 5.3). In mountain car, the agent controls a car that is placed

in a one-dimensional valley and must reach the top of the right hill. Since the car is

underpowered, it cannot reach the goal directly but must first build sufficient energy by

oscillating back and forth between the two hills. The agent observes two continuous

state variables, its position x and velocity vx, and can choose among the three discrete
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Figure 5.4 – Illustration of the transition graphs during FIGE’s iterations. Every point in
the upper left plot corresponds to one state and the streamlines show the dynamics of the
domain when no force is applied to the car. Background colors show the density of the
on-policy state distribution for a policy that selects actions uniform randomly and the gray
area corresponds to the terminal region of the state space. The other plots visualize the
graphs generated by FIGE after 0, 5, and 25 iterations for vnum = 250.

actions left, none, and right, which add −0.001, 0, and 0.001 to vx, respectively. At
each time step, x is incremented by vx and due to gravity −0.0025cos(3x) is added to
vx. The velocity vx is constrained to a maximal absolute value of 0.07 and set to 0 if the
top of the left hill is reached. The mountain car domain is well suited for illustration
because of its two-dimensional state space.

The domain’s dynamics for the none action are visualized in the upper left plot
of Figure 5.4. The other plots show the graphs generated by FIGE after 0, 5, and 25
iterations for vnum = 250 and |T |= 40000. Because of its initialization of graph node
positions, FIGE covers the state space of the mountain car domain already quite well
before the first iteration of the force-based updates. Unfortunately, the dynamics of the
domain can hardly be represented by edges of the graph for this choices of graph node
positions. However, because of the graph consistency forces that act on the graph node
positions, the representability of the domain’s dynamics increases considerably with the
number of iterations. At the same time, the sample representation forces ensure that all
relevant parts of the state space remain covered by graph nodes. After 25 iterations, the
graph structure reflects nicely the domain’s dynamics.

Figure 5.5 illustrates the graphs generated by FIGE after 25 iterations and by the
three other heuristics discussed in Section 5.2.1. While the transition graphs generated
by the grid and the ε-net heuristics cover the state space close to uniformly, the domain’s
dynamics are hardly recognizable. Even worse, the on-policy heuristic generates graphs
that do not cover the state space well because independent sampling does not take



5. LEARNING GRAPH-BASED REPRESENTATIONS 94

Figure 5.5 – Illustration of four different heuristics for transition graph generation. Shown
are the generated transition graphs in the mountain car domain (cf. Figure 5.4).

into account the euclidean nature of the state space. In contrast, the transition graph
generated by FIGE nicely reflects the domain’s dynamics.

5.3.3 Skill Prototype Generation

Plugging FIGE in the graph-based skill discovery approach shown in Figure 5.1 allows
generating a transition graph G= (V,E,w) and by means of graph clustering its partition
PG. For learning an option o based on a newly identified bottleneck, we need to choose
an appropriate skill prototype Ψo = (Io,βo,Ro) based on the identified partition PG. For
this, the partition PG = {p1, . . . , pn} of the transition graph is generalized to a partition
PS = {ΠS(p1), . . . ,ΠS(pn)} of the entire state space S by a nearest-neighbor based
generalization ΠS: for this, we set ΠS(pi) = {s ∈ S | NNV (s) ∈ pi}, i.e., we assign
each state s to the cluster of its closest vertex NNV (s).

Similar to Section 4.2.4, we can now create skill prototypes for each pair of con-
nected clusters A,B ∈ PG: For each cluster A, one skill is generated for each adjacent1

cluster B. The corresponding skill prototype ΨA→B = (IA→B,βA→B,RA→B) is defined
as:

IA→B = ΠS(A) βA→B(s) = 0 if s ∈ IA→B else 1
RA→B((s,a,r,s′)) =−1 if s′ ∈ΠS(A∪B) else rp−1.

The prototype ΨA→B corresponds to a skill that can be invoked anywhere in cluster A,
terminates successfully everywhere in cluster B, and terminates unsuccessfully in all
other clusters. The parameter rp� 0 of the algorithm determines the penalty for such

1Two clusters A and B are adjacent in G = (V,E) if there exists va ∈ A,vb ∈ B such that (va,vb) ∈ E.
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an unsuccessful termination. Otherwise a reward of −1 is given. Thus, the optimal
policy corresponds to traversing the bottleneck area between A and B as fast as possible
while not leaving the clusters A and B.

Additionally, for each cluster that contains nodes in which an episode has terminated,
a special skill ΨAst is created that can be invoked in any state of the cluster, terminates
successfully when the episode terminates, and terminates unsuccessfully (i.e., obtains
the penalty rp) if the clusters is left (cf. Section 4.2.4). Note that in contrast to Mannor
et al. (2004), the generalization of the graph partition to the entire state space allows
performing the learning of skills and higher-level policies in the original MDP and not
in a discretized version of it.

5.4 RESULTS

In this section, we present an empirical evaluation of the transition graphs generated by
FIGE (see Section 5.4.1) and of a hierarchical RL architecture which uses skill discovery
based on FIGE internally. Skill discovery based on FIGE is evaluated with regard to
the quality of the obtained partitions in Section 5.4.2.2 and with regard to the learning
performance of the whole hierarchical RL architecture in Section 5.4.2.3. We refer to
Figure 4.1 for information on which parts of the overall architecture correspond to these
evaluations.

5.4.1 Graph Likelihood

We empirically compare different heuristics for transition graph generation (see Section
5.2.1) with regard to the obtained likelihood LT (G) of the generated graphs G (cf.
Section 5.3.1). We perform this analysis in the mountain car domain (see Section
5.3.2.1).

In the left graph of Figure 5.6, the likelihood LT (G) with b = 0.02 is shown for
different heuristics and different number of graph nodes vnum. Since the likelihood
depends on vnum, we plot the ratio of the method’s likelihood relative to the likelihood
obtained by the data-independent grid heuristic. Furthermore, we use a logarithmic scale
for plotting this ratio. Note that the likelihood has been evaluated on test transitions
Ttest which were different from the training transitions Ttrain that have been used for the
optimization of graph node positions (|Ttrain|= 5000, and |Ttest |= 105).

Regardless of vnum, the largest likelihood LT (G) is achieved by FIGE and the smallest
by the grid heuristic (for vnum > 75). The on-policy sampling heuristic performs slightly
better than ε-net for vnum < 150 while both perform similarly for larger vnum. A possible
explanation for the stronger deterioration of ε-net is that for small vnum, the minimal
node distance ε gets larger than the typical distance of states and their successors
and thus, Pa

ss′ cannot be represented in any part of the state space. In contrast, on-
policy sampling allocates more graph nodes in densely sampled parts of the state space
and thus allows modeling at least these parts of the state space. FIGE can achieve a
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Figure 5.6 – Log-likelihood of transition graphs. Left graph: Graph Log Likelihood-Ratio
relative to grid heuristic in deterministic mountain car for different values for the number
of graph nodes. Right graph: Graph Log Likelihood-Ratio relative to grid heuristic in the
stochastic mountain car domain for varying stochasticity χ and vnum = 200. Shown are
mean and standard error of the mean over 20 repetitions.

considerably larger likelihood LT (G) than both by taking the domain’s dynamics into
account explicitly.

In a second experiment, we evaluate how robust the different heuristics are with
regard to increasing stochasticity χ in the domain’s state transition probability Pa

ss′ . For
this, we modify any transition from state s to s′ governed by the domain’s deterministic
dynamics such that the i-the dimension of the actual successor state is changed to
s′i← s′i+χi(s′i−si) with χi sampled uniformly from [−χ,χ]. Note that this is not purely
observation noise since the actual state of the environment is altered. The quantity χ

controls how “strong” the stochasticity of the domain is, with χ = 0 corresponding
to the deterministic domain. The same amount of transition noise was also used for
generating the test transitions Ttest . The results are shown in the right graph in Figure
5.6. As expected, the grid-based heuristic deteriorates less with increasing stochasticity
as it does not take the observed transitions into account. Nevertheless, the other data-
dependent heuristics achieve better likelihood LT (G) for χ < 0.8 with FIGE remaining
the best heuristic for the whole investigated range of χ ∈ [0,1]. This shows that FIGE is
also suited for stochastic domains.

5.4.2 Skill Discovery

In this section, we present an empirical evaluation of the proposed skill discovery
approach in the 2D Multi-Valley domain (see Section 5.4.2.1). We consider the quality
of the obtained partitions in Section 5.4.2.2 and the learning performance in Section
5.4.2.3.

5.4.2.1 2D Multi-Valley Domain

The 2D Multi-Valley environment (see Figure 5.7) is an extension of the basic mountain
car domain. The car the agent controls is not constrained to a one-dimensional surface
but to a two-dimensional one. This two-dimensional surface consists of 2×2= 4 valleys,
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whose borders are at (π/6±π/3,π/6±π/3). The agent observes ns = 4 continuous
state variables: the positions in the two dimensions (x and y) and the two corresponding
velocities (vx and vy). The agent can choose among the four discrete actions northwest,
northeast, southwest, southeast which add (±0.001,±0.001) to (vx,vy). In each
time step, due to gravity 0.004cos(3x) is added to vx and 0.004cos(3y) to vy. The
maximal absolute velocity in each dimension is constrained to 0.07. The agent is faced
with a multi-task scenario: in each episode, the agent has to solve one out of twelve
tasks. Each task is associated with a combination of two distinct valleys; e.g., in task
(0,1) the agent starts in the floor1 of valley 0 and has to navigate to the floor of valley
1 and reduce its velocity such that

∣∣∣∣(vx,vy)
∣∣∣∣

2 ≤ 0.03. In each time step, the agent
receives a reward of r =−1. Once a task is solved, the next episode starts with the car
remaining at its current position and one of the tasks that starts in this valley is drawn
at random. The current task is communicated as an additional state space dimension
to the agent; the agent uses it for compositional learning but ignores it during graph
generation, graph clustering, and skill learning such that skills are reusable in different
tasks.

We have chosen this domain for the empirical evaluation in this section for two
reasons: (1) there exists a ground-truth partition of the domain into 4 clusters, which
correspond to the domain’s valleys. This has the advantage that we can compare both
the performance of the learning system as a whole and the quality of the obtained
partitions themselves with regard to the ground-truth partition. (2) The domain consists
of multiple tasks and is thus a good choice for analyzing if the discovered skills allow
transferring procedural knowledge across tasks and in which situations this transfer
becomes important. This was stated in Section 3.2.1 as one of the potential benefits of
skill discovery.

5.4.2.2 Cluster Accordance Analysis

In this section, we present an empirical evaluation of the quality of the partitions gener-
ated by non-incremental clustering of graphs that have been generated with different
heuristics for transition graph generation. The quality of a partition P is measured
using the accordance ratio accGT (P), cf. Section 3.4.1. The corresponding ground
truth partition PGT consists of 4 clusters corresponding to the 4 valleys (see Figure
5.7), i.e., the boundaries of the clusters are at x = π/6 and y = π/6. The accor-
dance ratio accGT is defined only for discrete domains since it involves averaging
over all pairs of states; we extend it to the continuous domains by approximating
accGT (P)≈ 1

N ∑
N−1
i=0 δ (δ ([si]P, [s̄i]P),δ ([si]PGT , [s̄i]PGT )), where si and s̄i are sampled

uniform randomly from the state space.
Figure 5.8 shows the accordance ratio with the ground truth accGT for partitions

resulting from different heuristics for transition graph generation and varying number of
graph nodes (for n = 30000 transitions and ψ =−0.015). Independent of the number
graph nodes vnum, FIGE is the most robust heuristic and obtains an accordance of

1The floor of valley 0 (see Figure 5.7) corresponds to the region ((−1/6±2/15)π,(−1/6±2/15)π).
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Figure 5.7 – Illustration of the 2D Multi-Valley domain. Gray-scale contours depict the
height of the two-dimensional surface. The black boxes denote the target regions of the
different tasks and the white lines the boundaries of the ground truth partitions of the state
space. Shown is one example trajectory with color-coded actions.
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Figure 5.8 – Accordance ratio of graph partitions. The diagram depicts the accordance
ratio accGT of graph partitions with ground-truth for varying number of graph nodes and
different heuristics for transition graph generation. Graphs have been estimated based on
n = 30000 transitions. Shown are mean and standard error of the mean over 20 repetitions.

accGT ≥ 0.8 for any vnum ≥ 100 and accGT ≥ 0.89 for any vnum ≥ 200. For sufficiently
many graph nodes, the ε-net heuristic achieves comparable results. However, for
vnum ≤ 200, the ε-net performs significantly worse (p < 0.05). This indicates that
taking the domain’s dynamics into account is particularly important when a small
number of graph nodes is desired. The on-policy sampling heuristic performs typically
worse than the ε-net heuristic, with statistically significant differences for vnum ≥ 200.
This shows that it is important to cover the effective state space uniformly with graph
nodes to obtain a good partition of the state space. The grid heuristic shows the most
complex pattern: while it can achieve high accordance for small graphs (accGT ≥ 0.85
for 200≤ vnum ≤ 300), it performs considerably worse for smaller and larger vnum, with,
e.g., an accordance of accGT ≈ 0.66 for vnum = 600. Apparently, there is a complex,
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non-monotonic relationship between the grid resolution and the quality of the partition
which is probably governed by how well the grid nodes align to the valley borders. This
reduces the usability of the grid-based heuristic since the choice of an appropriate grid
resolution becomes difficult.

5.4.2.3 Learning Performance

This section presents an empirical comparison of the learning performance of the entire
hierarchical RL architecture shown in Figure 5.1. Skill discovery has been performed
after n = 105 state transitions have been observed in the environment and graphs
with vnum ∈ {50,100,200, . . . ,500} nodes have been generated. These graphs have
been clustered with non-incremental agglomerative clustering (cf. Section 2.4.3.3) for
ψ =−0.015. Each option’s value function has been represented by a CMAC function
approximator (see Section 2.3.2) consisting of 10 independent tilings with 72 ·52 tiles,
where the higher resolutions have been used for the x and y dimensions. The penalty
of an unsuccessful option has been set to rp = −1000 and the value functions have
been initialized to −100. For learning the compositional option π , a lower resolution of
52 ·32 tiles has been used and the value functions have been initialized to −1000. The
discounting factor has been set to γ = 1 and all policies were ε-greedy with ε = 0.01.
The value functions were learned using Q-Learning and updated only for currently
active options with a learning rate of 1. Episodes have been interrupted after 104 steps
without solving the task and a new task was chosen at random. All parameters have
been chosen based on preliminary investigations.

Two baselines from Section 3.4.2 have been evaluated in the same setting: (i) a
monolithic approach which learns a flat policy for every task without using skills, and (ii)
the same hierarchical RL framework with predefined skill prototypes Ψo = (Io,βo,Ro).
These prototypes have been generated in the same way as those discovered using graph
clustering but are based on the ground-truth partition PG of the domain (see Figure
5.7). Thus, baseline (ii) presents an upper boundary for the performance that any
bottleneck-based skill discovery method can achieve within the given hierarchical RL
architecture.

Figure 5.9 shows the accumulated reward Rt
acc (see Section 3.4.1) obtained during

the first 2400 learning episodes (the phase of learning during which the explorative bias
provided by skills has the strongest impact) for different transition graph generation
heuristics and different number of graph nodes vnum. For too small vnum, e.g., vnum = 50,
no heuristic for transition graph generation was able to obtain good results. Moreover,
one can see that the grid-based heuristic obtains poor results for any choice of vnum.
When using many graph nodes (vnum = 500), no considerable differences between the
other heuristics exist. However, for intermediate values of vnum, e.g., vnum ∈ {100,150},
FIGE obtains significantly better results than the ε-net and the on-policy sampling
heuristic (p < 0.001, Mann-Whitney U-test). In contrast to the other heuristics, the
accumulated reward obtained by the FIGE heuristic does not deteriorate considerably for
vnum ∈ {100,150} compared to vnum = 500. In summary, FIGE allows creating skills
that can provide a useful explorative bias during learning based on smaller graphs than
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Figure 5.9 – Evaluation of FIGE-based skill discovery in the 2D multi-valley. The diagram
depicts the accumulated reward Rt

acc in the 12-task 2D Multi-Valley domain during 2400
episodes of learning for different graph generation heuristics and graph sizes. Shown are
mean and standard error of the mean over 10 repetitions.

other heuristics which allows reducing computation time during graph clustering and
learning.

Comparing FIGE to the baselines, the accumulated reward obtained by FIGE for
vnum≥ 150 is slightly larger than when learning a flat policy with the monolithic baseline.
For vnum = 500, this difference becomes considerable. Thus, the proposed approach can
effectively transfer knowledge between tasks and outperform the monolithic approach.
Furthermore, the performance of FIGE (vnum = 500) is only slightly worse than the
performance of the predefined skills baseline. This “lost” reward compared to the
predefined skills occurs entirely in the first 500 episodes and can thus be attributed to
the overhead of graph generation and skill discovery. In later episodes, both curves
are nearly parallel, i.e., a similar amount of reward is accumulated. Thus, the skills
identified and the learned hierarchical policy are equally good for both FIGE and the
predefined, ground-truth skills.

In order to investigate the trade-off between the overhead of learning a hierarchical
policy and skill discovery and the performance gain that can be obtained by reusing
skills, we have performed a second experiment. In this experiment, the number of tasks
the agent has been faced with was varied. For this, in each run a subset of the total of
12 tasks of the domain has been subsampled at random. The results of the evaluation
are shown in Figure 5.10. Shown is the accumulated reward in the first 200 learning
episodes of each task averaged over the tasks for vnum = 500.

The performance of the monolithic approach stays approximately constant since
it must learn a separate policy for each task from scratch because it cannot transfer
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Figure 5.10 – Skill discovery in the 2D Multi-Valley domain for different number of tasks.
Shown is the average accumulated reward R200

acc of 200 learning episodes per task in the
2D Multi-Valley domain. The diagram depicts a comparison of a monolithic approach, a
hierarchical approach provided with the ground-truth partition of the domain (predefined),
and a hierarchical approach that learns this partition concurrently to learning a policy based
on a transition graph generated with FIGE.

procedural knowledge in the form of skills between tasks.1 If only one task exists,
the hierarchical approaches perform worse than the monolithic one (p < 0.025, t-test
for related samples). This is due to the overhead of learning a hierarchical policy
which does not pay off in a single-task problem. However, when the number of tasks
increases, the hierarchical approaches perform significantly better than the monolithic
one (p < 0.004 for 3 or more tasks for predefined skill prototypes and 8 or more tasks
for skill discovery based on FIGE). This is because the hierarchical approaches can
reuse options across tasks and thus transfer learned knowledge. This supports the
hypothesis from Section 3.2.1 that one of the major advantages of hierarchical RL
approaches (also for continuous domains) is that they can efficiently transfer knowledge
between different but related tasks. Furthermore, one can also see that the difference
between the hierarchical approach using predefined skill prototypes and the one where
skill discovery is based on FIGE becomes smaller for more tasks. This indicates that
the overhead of skill discovery, i.e., transition graph generation and graph clustering,
becomes less relevant the more different tasks the agent has to solve.

5.5 EXCURSUS: REPRESENTATION LEARNING

Besides graph-based skill discovery, representing domain models in the form of a
transition graph is also used in other subfields of RL, most notably in representation
learning (Mahadevan and Maggioni, 2007). In the context of RL, representation learning
refers to a situation where the agent learns an appropriate representation for policies
and value functions autonomously. This contrasts with the standard approach to RL in
which a function approximator with fixed parametrization is given and the goal of RL
is “solely” to learn the optimal parameters for this representation. In this section, we

1Recall that the task is a discrete state space dimension over which the agent does not generalize.



5. LEARNING GRAPH-BASED REPRESENTATIONS 102

Algorithm 5.2 Representation Policy Iteration (RPI)
1: Input: Transitions T = {(si,ai,ri,s′i)}n

i=1, parameters vnum, pnum (number of proto-value functions)
2: # Create transition graph with one of the heuristics discussed in Section 5.2.1
3: # Note: Euclidean connectivity is used for choosing graph edges and their weights
4: G = TRANSITIONGRAPHGENERATION(T,vnum)
5: # Compute diffusion operator on graph (normalized or combinatorial Laplacian)
6: O= LAPLACIAN(G)
7: # Use pnum smoothest eigenvectors of O as basis functions; Φ : vnum× pnum matrix
8: Φ = EIGENDECOMPOSITION(O, pnum)
9: # Perform Nyström extension to generalize Φ to proto-value functions Φ̂

10: Φ̂ = NYSTRÖMINTERPOLATION(G,Φ)
11: # Determine policy using least-squares policy iteration
12: return π = LSPI(T,Φ̂,γ,ε)

extend one method for representation learning in RL by incorporating FIGE and show
that FIGE can also improve performance of this method considerably. This section can
be seen as an excursus and may be skipped by the reader.

5.5.1 Method

Representation Policy Iteration (RPI) is an approach proposed by Mahadevan and
Maggioni (2007) that aims at solving MDPs by jointly learning representations and
optimal policies. In contrast to most other RL algorithms, RPI does not require an
a-priori specification of basis functions. The main idea for learning basis functions is
to first learn a transition graph of the domain and to construct a symmetric diffusion
operator on this graph. The unnormalized combinatorial graph Laplacian L= D−W
and the symmetrized graph Laplacian matrix Lsym = D−

1
2 (D−W )D−

1
2 are examples

for such diffusion operators—with W being the graph’s symmetrized weight matrix and
D being a diagonal matrix whose entries are the row sums of W (see Section 2.4.3.1).
The smoothest eigenvectors (those with the smallest associated eigenvalues) of these
operators, the so-called proto-value functions (PVFs), are used as basis functions Φ for
representing value functions. Least-squares policy iteration (LSPI, cf. Section 2.3.1)
is used for learning the parameters wπ of the action value function Qπ = wπΦ of an
ε-optimal policy π within the linear span of the basis functions Φ.

RPI can also be used in MDPs with continuous state space. In such continuous
domains, one challenge is to choose the node position of the transition graph (“to
subsample a set of states” in the terminology of Mahadevan and Maggioni). The authors
discuss the usage of the on-policy sampling and the ε-net heuristics (cf. Section 5.2.1).
However we will show that considerable better results can be achieved by using FIGE.
In RPI, each graph node is connected to its k nearest neighbor nodes in the euclidean

space and the edge weight between nodes vi and v j is w((vi,v j)) = τ(i)exp(− ||vi−v j||22
κ

)
where τ(i) and κ are parameters to be specified. Note that this way of connecting graph
nodes has the potential disadvantage that proximity of nodes in the euclidean space
does not necessarily imply that a transition between these nodes is possible, e.g., if an
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obstacle lies between those states. Choosing graph edges based on observed transitions

between states (see Section 5.2.1) lessens this issue and seems thus preferable. However,

for consistency with the original approach of Mahadevan and Maggioni (2007), we

adhere in this section the “euclidean” connectivity.

Once a transition graph for the continuous domain has been generated, the eigende-

composition of its Laplacian can be used for computing PVFs. However, since these

eigenvectors only define the value of the PVFs at the positions of the graph nodes, a

means for generalizing these values over the entire state space is required. As suggested

by Mahadevan and Maggioni (2007) we use the Nyström interpolation method for this.

The resulting PVFs can now be used in LSPI for computing a policy. Pseudo-code

for RPI is given in Algorithm 5.2 and a corresponding data-flow diagram is shown in

Figure 5.11. For details we refer to Mahadevan and Maggioni (2007).

5.5.2 Illustration

We illustrate the combination of with RPI in the mountain car domain (cf. Section

5.3.2.1). For this, a transition graph has been generated using for |T | = 40000

and vnum = 250. The eigen-decomposition of the graph’s Laplacian yields 250 PVFs.

Figure 5.12 shows three exemplary PVFs with high smoothness, i.e., small eigenvalues.

The first PVF φ1 exhibits large positive activation for nodes v which correspond to a car

moving away from the goal (φ1((x,vx))� 0 for vx � 0) and large negative activation for

nodes v which correspond to a car moving towards the goal (φ1((x,vx))� 0 for vx � 0).

The second PVF φ2 exhibits large positive activation for nodes v which correspond to

the car being close to the goal (φ1((x,vx))� 0 for x > 0) and large negative activation

for nodes v which correspond to the car being far away from the goal (φ1((x,vx))� 0

for x <−0.5). The fourth PVF φ4 exhibits large positive activation for nodes v which

correspond to a car in a low energy state, i.e., with velocity close to 0 and position

close to the bottom of the valley. Correspondingly, φ4 exhibits large negative activation

for a car in a high energy state. Thus, these three PVFs encode most of the relevant

information: how close the car is to the goal (φ2), in which direction it is moving (φ1),

and whether it has gathered sufficient energy to reach the goal on the top of the hill

(φ4). In particular, φ4 encodes a non-trivial concept for this domain: the current energy

Figure 5.11 – Data flow diagram of Representation Policy Iteration for continuous domains
(cf. pseudo-code in Algorithm 5.2). The diagram shows the transition between parts of the

data flow that deal with the continuous domain (dyed in red) and a discretized version of it

(dyed in green).
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Figure 5.12 – Illustration of Representation Policy Iteration in mountain car. Shown are
three proto-value functions determined on a transition graph generated using FIGE (cf.
Figure 5.4). Colors encode the proto-value functions activation with red corresponding to
strong positive activation and blue corresponding to strong negative activation. Note that
the Nyström interpolation is not shown in this diagram.

state of the car. Learning a policy based on these PVFs is thus considerably simplified
compared to learning with standard function approximators like CMACs.

5.5.3 Evaluation

We evaluate RPI in combination with FIGE in three RL benchmark problems with
continuous state spaces: mountain car, inverted pendulum, and the octopus arm. In
the original paper (Mahadevan and Maggioni, 2007), at the end of each episode an
additional set of samples is collected either on- or off-policy. We skip this additional
sampling and use the samples collected during control learning also for representation
learning to show that some heuristics for transition graph generation can deal with this
better than others. In order to initialize representation and control learning, the agent
explored the environment uniform randomly during the first 10 episodes. Thereupon,
RPI was performed at the end of each episode and the policy obtained was followed
ε-greedily.

5.5.3.1 Mountain Car

In a first experiment, we evaluate the performance of RPI for different transition graph
generation heuristics and different degrees of transition noise χ in mountain car (see
Section 5.3.2.1) for vnum = 50. For all heuristics, we obtained the best results when
setting the number of proto-value functions equal to the number of graph nodes, i.e.,
pnum = vnum. Moreover, in accordance with Mahadevan and Maggioni (2007) we
set the discount factor γ to 0.99 and the exploration rate to ε = 0.01. We used the
symmetrized graph Laplacian Lsym as graph operator. The results are shown in Figure
5.13. The left plot shows learning curves of RPI in the deterministic mountain car
domain: RPI performs best when combined with FIGE and worst when combined with
the grid heuristic while on-policy sampling and ε-net achieve approximately the same
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Figure 5.13 – Evaluation of Representation Policy Iteration in mountain car. The diagrams
depict the accumulated reward Racc obtained by RPI for different heuristics for transition
graph generation. Left plot: learning curves of Rt

acc versus number of episodes t in the
deterministic domain. Right plot: accumulated reward R100

acc after 100 episodes for differ-
ent degrees of transition noise χ . Shown are mean and standard error of mean over 10
repetitions.

results (no significant differences). This can be attributed to the fact that due to the
randomly chosen start states of episodes, the on-policy state distribution (over several
episodes) does not vary too strongly over the effective state space. Thus, sampling from
the on-policy distribution yields in this domain graph nodes that cover the effective
state space close to uniform. The worse results of the grid heuristic show that even for
low-dimensional domains, a uniform discretization can be detrimental.

The right plot shows how the reward accumulated after 100 episodes changes for
different degrees of stochasticity of the domain, where the same stochasticity model as
in Section 5.4.1 has been used. In general, increasing transition noise seems to make
the task easier as the performance increases for all heuristics; probably because the
value function becomes smoother and thus better representable. However, the relative
order of different methods remains the same. This reinforces that FIGE can be used in
stochastic domains as well.

5.5.3.2 Inverted Pendulum

In the inverted pendulum problem, an agent has to learn to balance a pendulum that is
attached via an unactuated joint to a cart by applying a force to this cart. The vertical
angle θ of the pendulum and its angular velocity θ̇ make up the two-dimensional state
space of the system. According to Lagoudakis and Parr (2003), the nonlinear dynamics
of the system are given by

θ̈ = (gsin(θ)−αmlθ̇ 2 sin(2θ)/2−α cos(θ)u)/(4l/3−αml cos(θ)),

where u ∈ {−50N,0N,50N} denotes the force applied by the agent to the cart, the
gravity is g = 9.81m/s2, m = 2.0kg is the mass of the pendulum, M = 8.0kg is the
mass of the cart, l = 0.5m is the length of the pendulum, and α = (m+M)−1. Each
episode starts with θ = .1 and θ̇ = 0. The agent obtains a reward of +1 for every time
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Figure 5.14 – Evaluation of Representation Policy Iteration in inverted pendulum. The
diagram depicts the accumulated reward Rt

acc obtained by RPI for different transition graph
generation heuristics and vnum = 25. Shown are mean and standard error of the mean over
30 repetitions.

step it manages to keep θ in a range of [−π/2,π/2] around the vertical orientation
θ = 0. The episode ends once the agent fails to balance the pendulum or after 3000
steps when it is assumed that the agent could balance the pendulum indefinitely. The
discount factor was set to γ = .95 and the exploration ratio to ε = 0.025. Based on prior
investigations, the number of graph nodes vnum and proto-value functions pnum were set
to 25. We used the symmetrized graph Laplacian Lsym as graph operator.

Figure 5.14 visualizes the accumulated reward obtained during learning for differ-
ent transition graph generation heuristics. Similar to the results in the mountain car
domain, the worst results are obtained by the grid heuristic and the best results by the
FIGE heuristic.1 In contrast to the results in mountain car, the ε-net heuristic achieves
considerably more accumulated reward than the on-policy sampling heuristics. This is
probably due to the fact that successful balancing typically corresponds to staying in
the same part of the state space for approximately 3000 steps. The on-policy sampling
heuristic samples uniformly among the visited states and will thus typically choose too
many graph nodes in this part of the state space and too few in other parts after the
first episode of successful balancing. Both ε-net and FIGE avoid this by having the
objective to cover the effective state space uniformly and not the on-policy distribution.
The small but significant advantage of FIGE compared to ε-net emphasizes that taking
the domain’s dynamics into account is also useful in the inverted pendulum domain
even though the effect is not as strong as in other domains.

5.5.3.3 Octopus Arm

In a third experiment, we investigate the performance of RPI using FIGE for transition
graph generation in the octopus arm domain2 (Yekutieli et al., 2005). The dynamics
of this domain are based on a two-dimensional biomechanical model of the octopus
arm, in which the arm is modeled as a multi-segment structure. Each segment of this

1All pairwise comparisons yield significant differences with p < 0.001 for a Mann-Whitney U-test.
2Source code available via http://cs.mcgill.ca/~dprecup/workshops/ICML06/octopus.

html.

http://cs.mcgill.ca/~dprecup/workshops/ICML06/octopus.html
http://cs.mcgill.ca/~dprecup/workshops/ICML06/octopus.html
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Figure 5.15 – Evaluation of Representation Policy Iteration in octopus arm. Left plot:

Visualization of the octopus arm task. Right plot: Accumulated reward Rt
acc obtained by

LSPI and RPI using for transition generation in the octopus arm domain. Shown are

mean and standard error of mean over 20 repetitions.

structure contains longitudinal and transverse muscles and must maintain a constant

volume, which is a prominent feature of muscular hydrostats (Kier and Smith, 1985).

The input to the model is the degree of activation of each of its muscles. Furthermore,

the model takes external forces such as gravity, buoyancy and water drag forces as

well as internal forces by the arm muscles and the forces responsible for maintaining a

constant volume of the arm into account.

The specific task is depicted in the left plot of Figure 5.15: the agent has to control

the octopus arm such that it moves two food items (small yellow circles) into its mouth

(large red circle). The base of the arm is restricted and cannot be actuated directly. The

agent may control the arm in the following way: elongating or contracting the entire

arm, bending the first half of the arm in either of the two directions, and bending the

second half of the arm in either of the two directions. In each time step, the agent

can control the elongation, the first half, and the second half of the arm independently,

resulting in 8 discrete actions. The agent observes the positions xi, yi and velocities ẋi,

ẏi of the food items and of 24 selected parts of its arm (denoted by small black dots in

Figure 5.15) and the angle and angular velocity of the arm’s base. Thus, the state space

is continuous and consists of 106 dimensions. Each dimension is normalized such that

its values fall into [0,1]. The agent obtains a reward of −0.01 per time step, a reward

of 5 for moving the left food item into its mouth, and a reward of 7 for the right food

item. The episode ends after 100 time steps or once both food items have been eaten.

Because of the high-dimensional state space and the complex dynamics of the domain,

the octopus arm problem is a challenging benchmark task for RL.

We compare RPI combined with for vnum = 75 and pnum = 5 to LSPI using 75

radial basis functions (RBFs) as features (γ = 0.99, ε = 0.01). In the first 10 episodes,

pure exploration without learning was conducted. The RBF centers ci have been set

to observed states such that the pairwise distance of the centers becomes maximal;

the feature activation of center ci for state s is computed as φi(s) = exp(10||ci − s||22).
The right plot of Figure 5.15 summarizes the results: using -based proto-value

functions performs considerably better than standard RBF features; in particular, the
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agent learns in each run to move at least one food item into its mouth, which is not the
case for LSPI. The main difference between the two approaches is that RBFs are local
while proto-value functions can also capture more global properties. We suppose that
since FIGE allows capturing the dynamics of a domain well, it allows learning non-local
proto-value functions that provide a useful bias to LSPI. In summary, the results suggest
that FIGE can also support learning in high-dimensional problems.

5.6 DISCUSSION

This chapter has presented a new view on graph-based RL in domains with continuous
state spaces. Based on interpreting transition graphs as generative models of the
domain’s dynamics, a novel formulation for the likelihood of a graph for a given set of
transitions was proposed (see Section 5.3.1). Based on this, the new heuristic FIGE has
been derived from the maximum likelihood objective under simplifying assumptions
(see Section 5.3.2 and Appendix A.2). FIGE allows generating transition graphs that
capture the domain’s dynamics better than other heuristics. This is also reflected in
the performance of skill discovery and representation learning methods that are built
upon transition graphs: in both kind of methods and across different domains, FIGE
has achieved superior and more robust results than prior heuristics for transition graph
generation:

• FIGE generates transition graphs which explain observed transitions better, i.e.,
which have a higher likelihood (see Section 5.4.1).

• Graph clustering based on transition graphs generated with FIGE allows identi-
fying bottlenecks of a domain more reliably and with smaller graphs than with
other heuristics (see Section 5.4.2.2).

• Skills identified based on transition graphs generated with FIGE increase the
accumulated reward obtained by a hierarchical RL agent compared to other
heuristics (see Section 5.4.2.3).

• A hierarchical RL agent which uses autonomous, graph-based skill discovery
based on FIGE can outperform a monolithic learner in a multi-task problem.
While monolithic learning is superior in single task problems because of the
overhead of skill discovery and hierarchical learning, hierarchical approaches
become the better, the more related tasks need to be solved (see Section 5.4.2.3).

• The overhead of graph-based skill discovery compared to optimal, predefined
skills is constant and becomes less significant in multi-task problems (see Section
5.4.2.3).

• Representation learning based on FIGE allows accruing more reward than with
other heuristics (see Section 5.5.3.1 and Section 5.5.3.2) or with standard function
approximators like RBFs (see Section 5.5.3.3).

• FIGE can cope with domain stochasticity (see Section 5.4.1 and Section 5.5.3.1).
In general, the empirical results show that it makes a considerable difference how

transition graphs are generated; for instance, using a grid-based discretization often had
a catastrophic effect on the performance, even for low-dimensional domains.
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Non-incremental graph-based skill discovery based on FIGE as outlined in Section
5.2 exhibits 4 of the 5 desirable properties for skill discovery identified in Section
3.2.3: it identifies task-independent skills (P2), decides automatically how many skills
are created (P3), is suited for domains with continuous state and action1 spaces (P4),
and—as the empirical results show—is sample-efficient (P5). In summary, FIGE is a
contribution that achieves subgoal S2 stated in Section 1.2, namely “to extend graph-
based approaches for skill discovery to continuous domains”.

FIGE is a non-incremental, batch algorithm that requires considerable amounts of
computation. This is less critical when it is combined with other off-line approaches
like RPI, LSPI, and non-incremental skill discovery based on graph-clustering, which
are even more expensive in terms of computation. However, for making use of transition
graphs in incremental methods like, e.g., OGAHC for skill discovery, it is required to
develop an incremental method for graph generation that aims at similar objectives as
FIGE. This issue will be addressed in Chapter 6. By this, a skill discovery approach
will be obtained that exhibits all 5 desirable properties identified in Section 3.2.3.

The author would also like to note that the generative a model and the maximum
likelihood formulation G∗ = argmaxG LT (G) stated in this chapter could give rise to
other methods for transition graph generation in the future: for instance a gradient
descent-based or expectation maximization-based approach could yield viable alterna-
tives to FIGE. However, this remains to future work and is not further examined in this
thesis.

1Section 6.4.2 will show an experiment where FIGE is applied in a domain with continuous action
space.
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6
Lifelong Learning and
Intrinsic Motivation

“Instead of trying to produce a programme to simulate the adult mind, why not
rather try to produce one which simulates the child’s? If this were then subjected
to an appropriate course of education, one would obtain the adult brain. [...] Our
hope is that there is so little mechanism in the child brain that something like it
can be easily programmed. The amount of work in the education we can assume,
as a first approximation, to be much the same as for the human child.”

Alan Turing, Computing Machinery and Intelligence, 1950, pp.456

6.1 INTRODUCTION

WE have stated in Chapter 1 the goal to develop an incremental, self-motivated
approach for skill acquisition which is based on identifying and exploiting the

structure of a problem and which can be used in developmental and lifelong learning
settings in continuous and stochastic domains. In Chapter 4, we have proposed the
incremental skill discovery approach OGAHC, which allows discovering new skills at
any time during learning (subgoal S1 of Chapter 1.2). In Chapter 5, we have proposed
FIGE which allows identifying and exploiting the structure of continuous domains for
skill discovery (subgoal S2). However, OGAHC is not suited for continuous domains and
FIGE is not incremental. In this chapter, we combine the two approaches into a novel
skill discovery approach which achieves both subgoals at the same time, i.e., which is
incremental and suited for continuous domains.

Furthermore, we address subgoal S3, which aims at being able to perform skill
acquisition in developmental or lifelong learning settings. As discussed in Chapter 1,
developmental settings correspond to situations where an artificial agent—before it is
confronted with tasks that are imposed on him externally—is granted a developmental
period in which it can act freely without external tasks and rewards. On the one hand,
such a developmental setting is well suited for skill acquisition since the agent can focus
entirely on skill discovery and skill learning without having to solve external tasks.
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On the other hand, there is also no external reward signal which guides the agent’s
behavior. Because of this, the agent needs to have an internal mechanism which governs
its behavior. Such a mechanism is called an intrinsic motivation system. According
to Barto et al. (2004), such an intrinsic motivation system should be a sophisticated
system that need not be redesigned for different problems anew. In this way, an intrinsic
motivation system can facilitate the acquisition of skills that can form reusable building
blocks for behavioral hierarchies (Singh et al., 2010).

In this chapter, we propose computational approaches to intrinsic motivation which
govern the agent’s priorities in skill acquisition. This means that at any point in time
the intrinsic motivation system decides if the agent focuses on skill learning, more
specifically which skill out of a set of skills is learned, or on discovering novel skills
which requires further exploration of the domain. In the two proposed methods, we
consider intrinsic motivation to reward the agent for (a) exploring novel parts of the
environment and for (b) engaging in learning skills whose predictive model exhibits
large error. We define novelty with regard to a set of observed states and predict
skill effects based on a learned skill model which allows predicting state transitions
conditioned on the specific skill.

We present an empirical analysis of the proposed approach in two domains with
continuous and high-dimensional state space and complex dynamics. We evaluate
empirically to which extent the agent can benefit from reusing skills, which influence
the specific skill discovery approach and the definition of intrinsic motivation have onto
the agent’s performance, and how the length of the agent’s developmental period affects
the task performance. Moreover, we present evidence that the intrinsic motivation
mechanisms can identify how much time should be spent on learning specific skills.

The chapter is structured as follows: Section 6.2 provides the necessary background
on lifelong learning and intrinsic motivation. Section 6.3 gives details of the main
methodological contributions of this chapter. In Section 6.4, we present and discuss the
results obtained in the empirical analysis. In Section 6.5, we draw a conclusion and
provide an outlook.

6.2 LIFELONG LEARNING AND INTRINSIC MOTIVATION

In this section, we give a summary of lifelong learning, shaping, and intrinsic motivation
and present some related work on computational intrinsic motivation systems.

6.2.1 Lifelong Learning and Shaping

Thrun (1996) suggested the notion of lifelong learning in the context of supervised
learning for object recognition. In lifelong learning, a learner experiences a sequence of
different but related tasks. Due to this relatedness, learned knowledge can be transferred
across multiple learning tasks, which can allow generalizing more accurately from less
training data. The concept of lifelong learning was extended to RL by, e.g., Sutton et al.
(2007) and by Ring (1997) under the term “continual learning”.
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In RL, lifelong learning is often combined with shaping (Randløv and Alstrøm,
1998), which denotes a process where a trainer rewards an agent for a behavior that
progresses towards a desired target behavior which solves a complex task. Thus, shaping
can be seen as a training procedure for guiding the agent’s learning process. Shaping
was originally proposed in psychology as an experimental procedure for training animals
(Skinner, 1938) and has been adopted for training of artificial systems later on (Randløv
and Alstrøm, 1998). Shaping takes often the form of progressive tasks, where the trainer
first states relatively simple tasks to the agent. Once these simple tasks can be solved
by the agent, more complex tasks are presented by the trainer. The central idea here is
that learning to solve complex tasks should become easier if related but simpler tasks
have already been learned. This process is inspired by learning in biological systems:
for instance, a human baby typically learns first how to roll, then how to crawl, then
how to walk. One early success of applying shaping in the form of progressive tasks
to robot learning was given by Asada et al. (1996): in this work, a goal shooting task
was learned by means of Q-learning in progressively more complex tasks and “learning
from easy missions”.

One disadvantage of shaping via progressive tasks is that an external teacher is
required which selects tasks of a specific complexity carefully by taking the current
developmental state of the agent into account. This reduces the agent’s autonomy.

6.2.2 Intrinsic Motivation

A different approach to lifelong learning, in which no external teacher is required, is
to provide the agent with a means for intrinsic motivation. The term “intrinsically
motivated” stems from biology and one of its first appearances was in a paper by Harlow
(1950) on the manipulation behavior of rhesus monkeys. According to Baldassarre
(2011) “extrinsic motivations guide learning of behaviors that directly increase [evolu-
tionary] fitness” while “intrinsic motivations drive the acquisition of knowledge and
skills that contribute to produce behaviors that increase fitness only in a later stage.”
Thus, similar to shaping, intrinsic motivations contribute to learning not as a learning
mechanism per se, but rather as a guiding mechanism which guides learning mecha-
nisms to acquire behaviors that increase fitness. According to Baldassarre “[intrinsic
motivations] drive organisms to continue to engage in a certain activity if their com-
petence in achieving some interesting outcomes is improving, or if their capacity to
predict, abstract, or recognize percepts is not yet good or is improving...”. Accordingly,
learning signals produced by intrinsic motivations tend to decrease or disappear once
the corresponding skill is acquired.

Computational approaches to intrinsic motivation (see Oudeyer and Kaplan (2007)
for a typology) have become popular in hierarchical RL in the last decade resulting
in the area of Intrinsically Motivated Reinforcement Learning (IMRL) (Barto et al.,
2004). Work on intrinsic motivation in RL, however, dates back to the early 1990s
(Schmidhuber, 1991). IMRL often employs a developmental setting (see, e.g., Stout and
Barto (2010) and Schembri et al. (2007)), which differs from the usual RL setting where
the objective is to maximize the accumulated external reward. In the developmental



6. LIFELONG LEARNING AND INTRINSIC MOTIVATION 114

setting, the agent is given a developmental period, which can be considered as its
“childhood”, in which no external reward is given to the agent. This allows the agent
to explore its environment freely without having to maximize the accumulated reward,
i.e., without exploitation. On the other hand, the agent is not guided by external reward
but needs to have a means for intrinsic motivation. The objective in the developmental
setting is to learn skills which allow learning high-quality policies quickly in tasks
that are later on imposed onto the agent. Thus, the objective can be seen as a kind of
optimal exploration for skill learning (Şimşek and Barto, 2006), in contrast to finding
the optimal balance between exploration and exploitation typical for non-developmental
RL.

6.2.3 Related Work

Different mechanisms for intrinsic motivation have been proposed. A complete review
is beyond the scope of this chapter, we discuss a selected subset of methods and refer to
Oudeyer et al. (2007) for a review.

Barto et al. (2004) and Singh et al. (2004) investigate how a hierarchically organized
collection of reusable skills can be acquired based on intrinsic reward. Their notion of
intrinsic reward is based on the novelty response of dopamine neurons. More precisely,
the intrinsic reward for a salient event is proportional to the error of predicting this salient
event based on a learned skill model for this event. This skill model is not only a passive
model of the environment but it is also dependent on the agent’s action preferences. As
a result of the intrinsic reward, once the agent encounters an unpredicted salient event,
it is driven to attempt to achieve this event until it has learned to predict it satisfactorily.
Note that the assumption that the agent has a hardwired notion of interesting or salient
events limits the autonomy of the agent since it effectively circumvents the necessity of
skill discovery. The approach is evaluated empirically in the discrete playroom domain.
The results show that an agent employed with skills learned using intrinsic motivation
can learn a multitude of externally defined tasks more easily than an agent learning task
solutions from scratch.

An extension of this work to a robotic scenario is given by Soni and Singh (2006):
the authors present a study of novelty-based intrinsic motivation on the Sony AIBO
robot. A set of salient events is predefined and one option is created for achieving each
of the salient events. For each of these options, a model of state transition probabilities
is learned and unexpected state transitions are rewarded since they are considerer to be
novel.

Şimşek and Barto (2006) consider the optimal exploration problem, i.e., how an
agent can learn efficiently how to accumulate high reward in the future without having
to collect high reward during the learning process. The authors propose a method which
is based on learning a policy for a derived MDP. In this derived MDP, the agent has to
maximize an intrinsic reward instead of an external one; however, the intrinsic reward
is based on the external reward. The authors propose that this optimal exploration
perspective could be adopted for skill acquisition: once a new skill is discovered, the
agent may focus on learning a satisfactory skill policy and may be indifferent to external
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reward during this “developmental” phase. The authors present empirical results which
suggest that the proposed approach can acquire skills which improve performance in
the target task compared to using only primitive actions. This advantage is the larger,
the longer the developmental phase lasts.

Singh et al. (2010) investigate the interplay of learning and evolution. Their
hypothesis is that in nature, intrinsic reward mechanisms are selected by evolution based
on their utility for speeding up learning in a magnitude of environments. The authors
conduct a computational experiment in which they adopt an evolutionary perspective.
In this perspective, reward functions are evaluated according to the expected fitness
of learning agents using them in a range of environments given some explicit fitness
function. By searching over a large set of reward functions, they find reward functions
that allow agents to acquire a considerably larger evolutionary fitness than when using
reward mechanisms that are directly coupled to evolutionary success. This is possible
because these reward functions allow guiding exploration in a way that is reasonable
for a large range of environments; the selected reward functions must thus capture
regularities across environments. According to Singh et al., a major function of intrinsic
rewards is thus to compensate for agent limitations, such as short agent lifetimes or
non-Markovian nature of environments, by allowing a transfer of an explorative bias by
means of the reward function.

Oudeyer et al. (2007) propose an intrinsic motivation system that encourages a
robot to explore situations in which its current learning progress is maximized. More
specifically, the robot obtains a positive intrinsic reward for situations in which the error
rate of internal predictive models decreases and a negative one for situations in which it
increases. By this, the robot focuses on exploring situations whose complexity matches
its current stage of development, i.e., situations which are neither too complex (too
unpredictable) nor too simple (too predictable).

Hester and Stone (2012) propose a model-based approach for a developing, curious
agent called TEXPLORE-VANIR. This approach uses two kinds of intrinsic reward
that are derived from the learned model. The first one rewards the agent for exploring
parts of the environment for which the variance in the model’s prediction is large while
the second one rewards the agent for exploring parts of the environment that are novel
to the agent. The authors show empirically that these intrinsic rewards are helpful for
an agent in a developmental setting. Furthermore, the intrinsic rewards also improve
the performance of an agent faced with an external task from the very beginning by
providing a reasonable explorative bias.

Stout and Barto (2010) propose “competence progress motivation”, which generates
intrinsic rewards based on the skill competence progress, i.e., how strongly the agent’s
competence to achieve self-determined goals progresses. The authors show on a simple
problem that the approach is able to focus learning efforts onto skills that are neither
too simple not too difficult at the moment. While the authors predefine the set of skills
that shall be learned, they note that “identifying what skills should be learned is a very
important problem and one that a complete motivational system would address”. This
problem is addressed in this chapter.
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Note that intrinsic motivations need not be the only source of motivation in a
biologically-inspired robotic control architecture such as the one shown in Figure 1.1;
rather, homeostatic need regulation and prediction of fitness-enhancing visceral-body
changes, which are considered to be internal but extrinsic motivations (Baldassarre,
2011), should be taken into account as well. However, since we focus on the “decision”
layer of the architecture, we do not consider these kinds of motivations in detail here.

6.3 METHODS

In Section 6.1, we have motivated the need for lifelong learning agents that can be used
in developmental settings. In this section, we present an agent architecture for an IMRL
agent that can be used in such developmental settings and is based on skill discovery
and intrinsic motivation. Thereupon, we propose a new method for incremental skill
discovery based on FIGE and OGAHC that is suited for developmental settings and con-
tinuous state and action spaces. Moreover, we define two different intrinsic motivation
mechanisms.

6.3.1 Agent Architecture

We consider an agent situated in an environment with state space S and action space
A. We are particularly interested in problems where the state and/or the action space
are continuous, more specifically where S⊆ Rns and/or A⊆ Rna . We assume that the
state transitions (the effects of executing an action in a state) have the Markov property.
During its lifetime, the agent may be faced with different tasks in this environment;
we assume that each task T j is specified by a reward function (Ra

ss′) j = R j and the
agent needs to maximize a long-term notion of this reward. Note that each task thus
corresponds to an MDP1 M j = (S,A,Pa

ss′,R j), where all tasks share S, A, and Pa
ss′ .

We adopt the developmental setting of IMRL (see Section 6.2), i.e., we assume
that the agent is granted a developmental period before it is faced with an external task.
The agent-environment interaction during the developmental period can be modeled
as an MDP without reward M\R = (S,A,Pa

ss′). Thus, we implicitly assume that the
developmental period takes place in the same environment where the agent has to solve
tasks later on, i.e., we assume S, A, and Pa

ss′ to be identical. While no external objective
is imposed on the agent, the agent should use the developmental period nevertheless for
learning a repertoire of skills O that can later on help in solving tasks T j. Furthermore,
we do not provide the agent with a set of subgoals or salient events but require the agent
to identify these on its own.

For this, two questions need to be addressed: (a) how are useful and task-independent
skills identified autonomously? and (b) how does the agent handle the implicit trade-off
of skill acquisition between skill discovery and skill learning when no external reward
is available? We address these questions in Section 6.3.2 and Section 6.3.3 respectively.

1Note that we skip S0 and ST here in the definition of the MDP for notational brevity, see Section
2.2.2.
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(a) Agent architecture employed during the developmental period. No external reward is provided

but the motivational system IM creates an intrinsic reward ri. In parallel, new skill prototypes Ψo
are identified using the skill discovery module SD and added to the skill pool O. Compositional

learning is used to learn a hierarchical policy πi which select skills such that the intrinsic reward is

maximized. Both πi and the policy πo of the active skill o are learned concurrently.

(b) Agent architecture for learning to solve external tasks T j. A hierarchical policy πe is learned

based on the fixed set of skills O, which have been discovered during the developmental period, such

that the external reward re is maximized. The policy πo of the active skill is improved concurrently

based on Ro but not re.

Figure 6.1 – Agent architectures for developmental period and for task learning.

For now, we assume that two modules for intrinsic motivation (IM) and skill discovery

(SD) exist where IM generates an intrinsic reward signal ri which the agent uses in place

of external reward and SD identifies new skill prototypes Ψo = (Io,βo,Ro) which are

added to the skill repertoire O and whose policies πo are learned later on by the agent

using option learning such that Ro is maximized. It is important to note that the pseudo

reward function Ro is different from the intrinsic reward ri: ri governs the high-level

behavior of the agent, which is encoded in πi, during the developmental period while

Ro encodes the objective of a single skill (typically reaching a bottleneck) and should
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thus be independent of both the intrinsic and the external reward. The agent’s internal
architecture during its developmental period is depicted in Figure 6.1a.

Once an external task T j is imposed onto the agent, the intrinsic reward and the
skill discovery modules are disabled, and the agent learns a hierarchical policy πe over
the set of discovered skills O that maximizes the external reward re (see Figure 6.1b).
Note that the agent continues to learn option policies πo based on experience collected;
however, the external reward re is not taken into account in skill learning such that
options remain task-independent and focus on maximizing the pseudo reward Ro.

6.3.2 Incremental Graph-Based Skill Discovery

A skill discovery method which can be used in the outlined architecture needs to exhibit
the properties P1-P4 identified in Section 3.2.3: it needs to be incremental (P1), it needs
to be applicable in developmental settings, i.e., it must not require that an external
reward signal or task exists (P2), it should decide automatically how many skills are
identified (P3), and it needs to be suited for continuous domains (P4).

In this section, we propose IFIGE, an incremental extension of FIGE (cf. Section
5.3.2), which is combined with an extension of OGAHC (cf. Section 4.2.3.2) to continuous
domains. This combination exhibits all of the properties given above. The key idea
of the approach is that a transition graph, which captures the domain’s dynamics, is
learned incrementally from experience using IFIGE and that the generated graphs are
clustered into densely connected subgraphs using OGAHC. These clusters correspond to
subareas of the domain’s state space and the connections between these subparts form
bottlenecks of the domain.

6.3.2.1 Incremental Transition Graph Estimation in Continuous Domains

The main drawbacks of FIGE (see Section 5.3.2) are that vnum, the number of nodes
of the transition graph, needs to be pre-specified and that FIGE is a batch algorithm
and thus not suited for incremental skill discovery. We present now Incremental FIGE
(IFIGE) which is an extension of FIGE that does not suffer from these drawbacks. IFIGE
updates the graph’s node positions after every experienced transition. Moreover, IFIGE
stores for every graph node v a set of exemplar states S[v] = {si | i = 1, . . . ,nv} and
exemplar transitions T [v] = {(si,ai,s′i) | i = 1, . . . ,nv}, with all si being “similar” to v
and nv being set typically to 25. Note that nv can be seen as a memory capacity; larger
values improve performance but lead to increased memory consumption and runtime of
the algorithm.

IFIGE (see Algorithm 6.1) starts with a single graph node V = {s0} (line 2) and
S[s0] = T [s0] = /0 (line 3), where s0 is the start state. For any encountered transition
(s,a,s′), the most similar graph node v = NNV (s), i.e., the nearest neighbor of s in
V , is determined (line 6), s is added to the set of state exemplars S[v], and (s,a,s′)
to T [v]. If the size of S[v] or T [v] exceeds nv, old exemplars are deleted (line 7 and
8). Afterwards, the position of vertex v is updated according to the standard FIGE
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Algorithm 6.1 Incremental Force-Based Iterative Graph Estimation (IFIGE)
1: Input: start state s, maximal node diameter ζ , maximal number of exemplars nv
2: V = {s} # Start with single graph node at start state
3: S[s] = T [s] = /0 # No exemplars initially
4: loop# Let the agent act indefinitely
5: (s,a,s′) = ACT(s) # Choose action from π(s,a) and successor state according to Pa

ss′
6: v = NNV (s) # Determine graph node responsible for state s
7: S[v] = ADDSTATE(S[v],s) # Add state s to S[v], remove old exemplar if |S[v]|> nv
8: T [v] = ADDTRANS(T [v],(s,a,s′)) # Add transition, remove old exemplar if |T [v]|> nv
9: FS = MEAN(S[v])− v # Sample representation force on node v

10: FG = {NNV (s′)− s′+ s | ∃(s,a,s′) ∈ T [v]} # Forward graph consistency force on node v
11: v = v+α ·0.5(FS +FG) # Update position of node v
12: REASSIGN(S[v],T [v],V ) # Check exemplars in S[v], T [v] for a better representative in V
13: if DIAMETER(S[v])> ζ then # If node v covers too larger area of state space
14: v1,v2 = kMEANS(S[v],2) # Choose two new representatives for state set S[v]
15: V = [V ∪{v1,v2}]\{v} # Remove old node v, add new nodes v1 and v2
16: REASSIGN(S[v],T [v],{v1,v2}) # Assign exemplars in S[v] and T [v] to v1 and v2
17: end if
18: s′ = s # Continue in next state
19: end loop# Note: graph edges and weights are created on demand

forces1 for T = T [v] and SV [v] = S[v] (line 9-11). This changes the position of v; thus,
IFIGE checks afterwards for all state exemplars in S[v] and transition exemplars in T [v]
whether any other node in V would be a better representative and moves the exemplars
if required (line 12). Afterwards, IFIGE checks whether v is responsible for a too large
area of the state space by computing the distance of the farthest pair in S[v]. If this
distance is above a threshold ζ (line 13), v is removed from V and two new nodes v1
and v2 are added to V (line 15). The nodes v1 and v2 are chosen as the cluster centers of
a k-means clustering of S[v] for k = 2 (line 14). The sets S[v] and T [v] are split into two
subsets accordingly (line 16). Splitting nodes ensures that the number of graph nodes
grows with the size of the state space explored by the agent.

The computational complexity of a single iteration of IFIGE (line 5-16) is the
following: line 6 requires O(|V |ns), line 7 and 8 require O(nv), line 9 requires O(nvns),
line 10 and 12 require O(nv|V |ns), line 11 requires O(ns), line 13 requires O(n2

vns),
line 14 and 16 require O(nvns), and line 15 requires O(1). In summary and assuming
nv < |V |, IFIGE requires in the worst case O(nv|V |ns).

For generating the graph based on the determined node positions V , IFIGE adds
for all graph nodes v and any transition (s,a,s′) ∈ T [v] an edge between v and the node
v′ = NNV\{v}(s′) for action a. Since this requires at least Ω(|V |2) computations, the
graph edges are not updated after every step but only when the graph is actually required
externally (for instance for graph-based skill discovery). In domains with discrete action

1Note that only the forward part T→(v) of the graph consistency force for v is considered here since
the backward part T←(v) could depend on all exemplars of all other nodes. This is prohibitive since
the worst-case complexity of a single update would be O(|V |2nvns) since the nearest graph node for all
O(|V |nv) exemplars would have to be computed. We have not observed any considerable effects of this
simplification onto the resulting graph.
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spaces, the off-policy edge weights as in Algorithm 5.1 are used while in domains with
continuous action spaces the on-policy edge weights are preferable since they do not
require that the sampling policy is estimated, which would be difficult in continuous
action spaces.

6.3.2.2 Extension of OGAHC to Continuous Domains

Based on the transition graph constructed incrementally with IFIGE, we can identify
task-independent and thus reusable skills using OGAHC (see Section 4.2.3.2). In this
section, we discuss how OGAHC can be extended to domains with continuous state and
action spaces.

The main hindrance for applying OGAHC in domains with continuous state space is
the constraint “two nodes that have been assigned to different clusters in partition Pt1 at
time t1 must not be assigned to the same cluster in a subsequent partition Pt2 for any
time t2 > t1”, cf. Section 4.2.3.2. This assumes that graph nodes do not change over
time, which is not the case when OGAHC is applied on top of IFIGE where graph nodes
might change their position or might even be split into two new nodes. This property of
IFIGE needs to be taken into account when defining the constraints.

For this, the current partition is adapted to changes in the graph prior to the invocation
of OGAHC as follows: let P∗(V ) be the partition of the graph nodes V of the last invocation
of OGAHC and V ′ be the current node positions. We extend P∗(V ) to a (pre-)partition
Ppre of V ′ by assigning nodes v′a,v

′
b ∈V ′ to the same cluster if the nearest neighbors1

NNV (v′a) and NNV (v′b) are in the same cluster in P∗(V ). Now, OGAHC can be invoked
with the usual constraints that nodes which are in different clusters in Ppre(V ′) must be
in different clusters in P∗(V ′).

Some of the nodes v′ ∈ V ′ may be in areas of the state space that have not been
explored before and were thus not covered by V . Accordingly, constraints based on
P∗(V ) should not be extended to these nodes. For this, we identify all nodes v′ ∈ V ′,
whose nearest neighbor NNV (v′) is further away than 2dnn, where dnn is the average
distance of two connected nodes in V . For these nodes, the constraint is relaxed such
that they can be assigned to any cluster in P∗(V ′). This corresponds to a situation where
the agent has visited a particular area of the state space for the first time and has thus no
prior knowledge from previous invocations of OGAHC about the bottlenecks in this novel
area.

Since graph clustering and linkage criteria are defined solely on the graph’s edge
weights, no adaptations of these parts are required in domains with continuous action
spaces. Graph smoothing as defined in Section 4.2.3.2, however, requires that statistics
of node-action pairs like na

v are determined. This becomes impractical for continuous
action spaces because of the infinite number of actions. Different ways of solving this
problem are conceivable, for instance histograms could be used instead of na

v and graph
smoothing be performed based on the number of samples per action bin. We leave

1Note that the robustness of this approach could be increased by taking not only the nearest neighbor
but the k nearest neighbors into account.
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this to future work, however, and do not perform graph smoothing in domains with
continuous action spaces in this work.

Based on the partitions obtained by applying OGAHC to the transition graphs esti-
mated with IFIGE, bottlenecks of the graph and thus also of the domain can be identified.
Based on the identified bottlenecks, skill prototypes Ψo can be defined as discussed in
Section 5.3.3.

6.3.2.3 Illustration

We present an illustration of the proposed skill discovery approach in Figure 6.2. For
this, we use the 1D Multi-Valley domain. As the 2D Multi-Valley domain (see Section
5.4.2.1), this domain is an extension of the mountain car domain, which consists of two
valleys. State and action space and dynamics are essentially the same as in mountain
car with the one exception that there are two valleys instead of one. The hill which
separates the two valleys is a typical bottleneck of the domain as the agent would cross
this hill very unlikely under a random policy. This can also be seen in the plot of the
domain’s dynamics in Figure 6.2. Because of this and the domain’s two-dimensional
state space, the domain is well suited for illustration of bottleneck-based skill discovery
in continuous domains.

The figure shows the generated transition graphs and their clustering after 5000,
10000, 25000, and 50000 steps. After 5000 steps, the agent has visited both valleys but
only in “high-energy” states, i.e., states with either high velocity or positions close to
the top of the hills. Because of this, the separating hill has not yet been identified as a
bottleneck as it can be traversed easily in these high-energy states. After 10000 steps,
the agent has continued exploring the western valley and the graph generated by IFIGE

has “grown” into these novel area. However, because of the many virtual transitions
which are added by OGAHC, no bottleneck is identified at this point in time. After 25000
steps, the agent has explored most areas of the state space and the transition graph is
grown into areas corresponding to low-energy states. Accordingly, OGAHC identifies a
domain decomposition which captures the bottleneck on the top of the hill correctly.
After 50000 steps, the generated graph covers most of the domain and encodes its
dynamics well; however, no qualitative changes in the domain’s decomposition occur
as there is only one bottleneck in this domain which had already been identified.

6.3.3 Intrinsic Motivation

In the context of this chapter, intrinsic motivation refers to the process of mapping a
transition from state s under option o to successor state s′ onto an intrinsic reward ri.
We investigate two different intrinsic motivation mechanisms, one based on the novelty
of a state under a skill and one based on the prediction error of a learned skill model.
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Figure 6.2 – Illustration of the proposed skill discovery approach in the 1D Multi-Valley.
The x-axis shows the car’s position and the y-axis its velocity. The upper left plot shows
the two valleys of the domain and the lower left plot the dynamics Pa

ss′ of the domain for
a =None. The four other plots show the transition graphs generated by IFIGE after 5000,
10000, 25000, and 50000 steps under a random policy. The node colors correspond to the
cluster labels of the node partition determined by OGAHC and the red edges correspond to
virtual edges added by graph-smoothing in OGAHC.

For the novelty-based motivation criterion, the agent stores for each option o the
states it has encountered under this option so far in the set So.1 When transitioning to
state s′ under option o, the intrinsic reward is computed via

ri =− ∑
j∈NN10

So(s
′)

exp
(
−
||s′− s j||22

b2

)
, (6.1)

where NN10
So
(s′) denotes the indices of the 10-nearest neighbors of s′ in So and b is a

domain-dependent scale parameter. Thus, the intrinsic reward is upper-bounded by
0 with values close to 0 if the 10 nearest neighbor are very different (large euclidean
distance) from s′ and very small values when s′ is similar to several states in So. Thus,
the novelty criterion discourages to execute options in regions of the state space where

1In order to keep the size of So limited, we remove states from So once |So|> 2500. The heuristic
for selecting the state that is removed is to remove one of the states of the (approximate) closest state pair
in So. This results in covering the effective state space of the problem approximately uniform.
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this option has been executed already several times. This mechanism is similar to the
mechanism proposed by Hester and Stone (2012); however, in contrast to their work, it
is also suited for domains with continuous state spaces.

For the prediction-error motivation criterion, the agent learns for each option a
model P̂o that predicts the successor state of states s when following option o. The
intrinsic reward is determined based on the error of the model’s prediction via

ri =−1+ tanh(σ ||s′− P̂o(s)||22), (6.2)

where σ is a domain-dependent scale parameter. The intrinsic reward ri is large (close
to 0) when the difference of predicted successor P̂o(s) and actual successor s′ is large.
The intrinsic reward becomes small (close to −1) when the model correctly predicts the
effect of executing option o in state s. Thus, the prediction error criterion encourages
to execute options whose effects are unknown or unpredictable in the current area of
the state space. Note that in contrast to the novelty criterion, for the prediction error
criterion the intrinsic reward in a state depends on the option’s policy.

The option model P̂o stores internally a set To = {(s j,s′j)} of transitions encountered
under option o. The model’s prediction is based on 10-nearest neighbors regression:

Po(s) = s+
1

10 ∑
j∈NN10

To(s)

(s′j− s j), (6.3)

where NN10
To
(s) denotes the indices of the 10-nearest neighbors of s in the start states in

To. If the size of To exceeds a threshold (in the experiments 2500) and a transition from s
to s′ is added, the oldest transition among NN10

To
(s) is removed. This is required to keep

the memory consumption limited and, more importantly, to track the non-stationarity
in the target function that is induced by learning the option o concurrently and thus
changing o’s policy.

6.4 RESULTS

In this section, we present an empirical evaluation of the proposed methods in two
continuous and challenging RL domains. We evaluate both the behavior of the agent
during the developmental period and its performance in external tasks.

6.4.1 2D Multi-Valley

For similar reasons as in the previous chapter, we use the 2D Multi-Valley environment
(see Section 5.4.2.1) as first RL benchmark domain: the domain consists of multiple
tasks and is thus a good choice for analyzing if the skills discovered during the devel-
opmental period allow transferring procedural knowledge across tasks and in which
situations this transfer becomes important.
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Figure 6.3 – Visualization of generated transition graphs in 2D Multi-Valley. Shown is a
two-dimensional embedding (determined using Isomap) of the learned transition graphs.
The densely connected subgraphs correspond to the four valleys.

6.4.1.1 Developmental Period

During its developmental period, the agent can explore the domain freely while engag-
ing in skill discovery and following its intrinsic motivations. Initially, the agent has
only a single option oe in its skill pool O, which can be invoked in any state of the
environment, i.e., Ioe = S, and terminates with probability βoe(s) = 0.05. This option
can be considered to be the agent’s exploration option, which can always be invoked
if the agent prefers to explore the environment over learning a specific skill. We set
the greediness of IFIGE to αi = 0.25 and the maximal node diameter to ζ = 0.3. For
OGAHC, we set the maximal linkage to ψ = −0.0375 and performed skill discovery
every 5000 steps.

Each option’s value function has been represented by a CMAC function approxima-
tor consisting of 10 independent tilings with 72 ·52 tiles, where the higher resolutions
have been used for the x and y dimensions. The penalty rp of the options’ pseudo-reward
functions Ro has been set to rp = −1000. An agent obtains this penalty if an option
terminates unsuccessfully, i.e., leaves its initiation set Io without reaching its goal cluster
(see Section 5.3.3). Value functions have been initialized to −100. For learning the
higher-level policy πi, a lower resolution of 52 · 32 tiles has been used and the value
functions have been initialized to 0. The discounting factor has been set to γ = 0.99
and all policies were ε-greedy with ε = 0.01. The value functions were learned using
Q-Learning and updated only for currently active options with a learning rate of 1.
The scale-parameters of the intrinsic motivation mechanisms have been set to b = 0.1
(novelty) and σ = 104 (prediction error). All parameters have been chosen based on
preliminary investigations.

Figure 6.3 shows the transition graphs generated by IFIGE after 20000, 30000,
and 50000 developmental steps. The two-dimensional embeddings of the graphs have
been determined using Isomap (Tenenbaum et al., 2000). The four valleys of the
domain clearly correspond to four densely connected subgraphs of the transition graph.
The figure also shows that it would be difficult to determine a single point in time at
which skill discovery should be performed: for instance, are the valleys (0,1) and (1,0)
explored sufficiently after 30000 steps to perform graph clustering? Since skill discovery
with OGAHC is incremental, i.e., can be performed several times during learning, this
choice need not be made.
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Figure 6.4 – Success ratio of learned skills during developmental period. Shown are mean
and standard error of the mean averaged over 10 independent runs.

Figure 6.4 shows the success ratio, i.e., how often a skill reaches its goal cluster, of
the skills discovered during the developmental period. Initially, skills are unlikely to
reach their goal area, with success ratios of approximately 0.25. Under both intrinsic
motivation systems, the agent invests time in learning skill policies and the success
ratio increases to 0.7 for the prediction error and 0.8 for the novelty criterion after
approximately 105 steps of development. Note that success ratios of 1.0 are not possible
since for some states in s ∈ Io, there is no way of reaching the option’s goal area
without leaving the initiation set, e.g., when the agent is moving with high velocity in
the direction of the wrong neighbor valley. A possible explanation for the different
performance under the two motivational systems is given below.

Figure 6.5 shows the ratio of selecting the option oe (“Exploration”) or any of
the other, discovered options in O (“Skill Learning”) under the policy πi for different
intrinsic motivations. Initially, no skills have been discovered and the agent thus has
to explore. Once the first skills have been discovered, the agent focuses onto learning
these skills. Over time, as the skill policies converge, a better predictive model for these
skills can be learned. Similarly, the more time is spend on learning a skill, the less
novel states are encountered under this skill. Accordingly, both intrinsic motivation
mechanisms reduce the ratio of skill learning and focus on exploration again in order
to discover new skills. Note that at this point in time, there are no further skills to be
discovered in this domain but this is unknown to the agent.

In general, the prediction error-based motivation chooses the exploration option
more often and reduces skill learning more abruptly than the novelty criterion. This can
be explained by the fact that the exploration policy changes more strongly over time
and it is thus harder to learn a model of this option. Once the policies of the other skills
have settled, they are chosen only rarely. However, the results in Figure 6.4 suggest
that this happens too early as the final “fine-tuning” of the skill policies is not finished
and the success ratio is smaller than for the novelty criterion. Thus, the results indicate
that using the prediction error for intrinsic motivation can be detrimental in situations
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Figure 6.5 – Ratio of skill learning and exploration during developmental period. A ratio
of 0.8 for skill learning means that an agent performs skill learning 80% of the time and
only in 20% of the cases it explores. Shown is the mean over 10 independent runs.

where different option policies explore to different degrees since the prediction error
criterion will favor the options with stronger exploration. Thus, it is recommended to
base motivation on criteria like novelty or on the change of prediction error rather than
on the error itself.

6.4.1.2 Task Performance

In its “adulthood”, the agent is faced with the multi-task scenario discussed in Section
5.4.2.1: in each episode, the agent has to solve one out of twelve tasks. Each task
is associated with a combination of two distinct valleys; e.g., in task (0,1) the agent
starts in the floor of valley 0 and has to navigate to the floor of valley 1 and reduce
its velocity such that

∣∣∣∣(vx,vy)
∣∣∣∣

2 ≤ 0.03. In each time step, the agent receives an
external reward of re = −1. Once a task is solved, the next episode starts with the
car remaining at its current position and one of the tasks that starts in this valley is
drawn at random. Episodes are interrupted after 104 steps without solving the task and
a new task is chosen at random. The current task is communicated as an additional state
space dimension to the agent. The agent uses this task information and the reward re
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Figure 6.6 – Performance of IMRL agent in 2D Multi-Valley. Shown is cost (negative
return R25

mwa(t)) of the agent in the 12 tasks 2D Multi-Valley domain for different intrinsic
motivation systems and different lengths of the developmental period. “No Skills” shows
the performance of a monolithic agent that does not learn skills and has no developmental
period. The horizontal black line shows the average cost of the policy learned by the
monolithic agent after 5000 episodes. Shown is the mean over 10 independent runs that
have been smoothened by a moving window average with window size 51.

for learning the task policy πe but ignores these information when improving πo such
that skills remain reusable in different tasks. The exploration option oe used in the
developmental period was removed from the skill set O such that the agent can only
choose among self-discovered skills.

Figure 6.6 shows the results for different intrinsic motivation mechanisms and
different lengths of the developmental period. As baseline, “No Skills” shows the
performance of an agent that learns a monolithic policy for each task separately (cf.
Section 3.4.2). For a very short developmental period of 10000 steps, the hierarchical
agent, which uses skills learned in the developmental period, learns initially faster than
the monolithic agent. However, it converges to considerably worse policies. This is
probably due to the fact that not all relevant skills have been discovered in the short
developmental period. This is an example of the effect discussed by Jong et al. (2008)
that an incomplete set of skills might have a detrimental effect on an agent’s performance
because their implicit explorative bias breaks the symmetry of random exploration (see
Section 3.2.1).

For 30000 developmental steps, the skills acquired under the novelty motivation al-
low achieving close-to-optimal performance already while the ones from the prediction-
error motivation do not. This corresponds to the different qualities of the learned skills
under the two motivation systems (see Figure 6.4). For 50000 or more developmental
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Figure 6.7 – Visualization of the Octopus arm task. The circles represent target objects
used in different tasks which yield an external reward when touched.

steps, the performance of the hierarchical agent approaches the optimal performance
considerably faster than the monolithic agent, irrespective of the intrinsic motivation
system used. This is interesting since after 50000 steps, the learned skills are far from
optimal (see Figure 6.4). Apparently, also skills with sub-optimal policies can help the
agent considerably. This reinforces results obtained by Kirchner (1999), who showed
that higher-level behavior can benefit from suboptimal lower-level skills in a fixed
behavioral hierarchy. It should also be noted that even though a close-to-optimal perfor-
mance is reached relatively fast, the performance remains slightly below the optimum
which is reached by the monolithic agent after 5000 episodes. This is probably due to
the (temporal) abstraction introduced by the skills which, on the one hand, helps the
agent in learning faster but, on the other hand, also reduces the class of representable
policies.

6.4.2 Octopus Arm

The second domain is a modified version of the Octopus arm domain which was
introduced in Section 5.5.3.3. The base of the arm is restricted and cannot be actuated
directly. The agent may control the arm in the following way: elongating or contracting
the entire arm, bending the first half of the arm in either of the two directions, and
bending the second half of the arm in either of the two directions. In each time step,
the agent can set the elongation and the bending of the first and second half of the
arm to an arbitrary value in [−1,1], resulting in 3 continuous action dimensions. The
agent observes the positions xi, yi and velocities ẋi, ẏi of 24 selected parts of its arm
(denoted by small black dots in Figure 6.7) and the angle and angular velocity of the
arm’s base. Thus, the state space is continuous and consists of 98 dimensions. Because
of the high-dimensional state space and the complex biomechanically realistic dynamics
of the domain, the octopus arm problem is a challenging benchmark task for RL.

6.4.2.1 Developmental Period

Similar to the developmental period in the 2D multi-valley domain, the agent can
explore the domain freely while engaging in skill discovery and following its intrinsic
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Figure 6.8 – Example trajectory of the Octopus arm controlled by the IMRL agent. The
trajectory corresponds to a sequence of three skills. Yellowly colored arms correspond to
states at the beginning of skill execution while redly colored arms correspond to states at
the end of skill execution.

motivations. However, the basis for skill discovery is not to identify bottlenecks (there
are no bottlenecks in this domain) but to cluster the transition graph into regions which
correspond to similar qualitative states. Thus, a different linkage criterion lG has
been used: for two subgraphs A and B of the transition graph G, the linkage is set to
lG(A,B) = 1/|A∪B|2 ∑v,v′∈A∪B dG(v,v′), i.e., the average geodesic distance dG between
two nodes in A∪B. This linkage results in clusters with similar states in the sense that
the agent can traverse from one state of the cluster to the other with a small number
of steps. The maximum linkage ψ of a cluster in OGAHC has been set to 3.0 and skill
discovery with OGAHC was performed every 10000 steps. The greediness of IFIGE has
been set to αi = 0.25, the maximal node diameter to ζ = 7.5, and the on-policy edge
weights have been used because of the domain’s continuous action space. Intrinsic
motivation was based on the novelty mechanism with b = 1 and the length of the
developmental period was set to 50000 steps.

Because of the continuous action space, we have used direct policy search based
on evolutionary computation for learning option policies πo, see Section 2.3.3. The
value for j-the action dimension is determined via a j = tanh(∑98

k=0 θ jksk), where sk is
the value of the k-th state dimension and s98 = 1 is a bias. The policy’s weights θ jk have
been optimized using a 16+40 evolution strategy (Beyer and Schwefel, 2002) and each
weight vector has been evaluated 10 times. The penalty rp of the options’ pseudo-reward
functions Ro, which an agent obtains if an option terminates unsuccessfully (see Section
5.3.3), has been set to rp =−100. The evolution strategies’ objective is to maximize
the pseudo-reward accumulated in 10 steps, after which the option is interrupted.

As in the multi-valley domain, the agent has initially only a single option oe in
its skill pool O, which can be invoked in any state of the environment, i.e., Ioe = S,
and terminates with probability βoe(s) = 0.1. The policy πoe selects actions uniform
randomly from the action space. The higher-level policy πi, which determines the option
that is executed, has been learned using Q-Learning with discounting factor γ = 0.99
and exploration rate ε = 0.01. Because of the high dimensionality of the state space,
the value function was not represented using a CMAC function approximator but using
a linear combination of state values, i.e., Q(s,o) = ∑

98
k=0 θoksk. The learning rate has

been set to 0.1.
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Figure 6.9 – Performance of IMRL agent in the octopus arm domain. Shown is return
R12

mwa(t) of the agent under the “novelty” motivation after 50000 developmental steps. The
circle patches indicate the respective targets used in the runs (see Figure 6.7). “No Skills”
shows the performance of an agent that does not learn skills and has no developmental period.
The horizontal black line shows the average cost of the policy learned by the monolithic
agent after 2500 episodes. All curves show median performance over 5 independent runs
and have been smoothened by a moving window average with window length 25.

6.4.2.2 Task Performance

Different tasks can be imposed onto the agent; in this chapter, we require that the agent
learns to reach for certain objects that are located at different positions (see Figure 6.7).
The agent obtains an external reward of −0.01 per time step and a reward of 100 for
reaching the target object. The episode ends after 1000 time steps or once the target
object is reached.

Figure 6.8 depicts an example trajectory of the octopus arm learned by the IMRL
agent for reaching a target located at position C: the goal is reached after 22 steps and
the agent invokes three different skills during this trajectory. The skill executed in the
first 11 steps contracts the arm and brings it into an ∩-shape. The skill chosen for
the next 6 steps unrolls the first part of the arm until an S-shape is reached. The skill
executed in the last 5 steps unrolls the second half of the arm such that the target object
is reached by an ∪-shape. Note that bending the arm directly into an ∪-shape would not
be successful but result in a state like the one depicted in Figure 6.7.

Figure 6.9 shows the learning curves of the IMRL agent and a monolithic agent,
which learns a flat global policy with the same parametrization as the skill policies, for
different target positions in the Octopus domain. Given sufficient time, the monolithic
agent can learn policies of similar quality as the IMRL agent. Thus, close-to-optimal
behavior can be represented by a flat global policy. However, in general, the IMRL
agent learns close-to-optimal policies faster and the learning curves exhibit less variance
across all tasks. Thus, the temporal abstraction of the skills that were learned in
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the developmental period seem to make learning close-to-optimal behavior easier by
providing a useful explorative bias. On the other hand, as in the multi-valley domain
these abstractions may impair performance slightly in the long run.

6.5 DISCUSSION

This chapter has presented a novel approach for skill acquisition in continuous domains
that can be used by an IMRL agent in its developmental period. This skill acquisition
approach is based on incremental, graph-based skill discovery and intrinsic motivation.
The four main contributions of the proposed approach can be summarized as follows:

1. The agent uses an IMRL architecture that allows applying hierarchical RL in
developmental settings based on intrinsic motivation (see Section 6.3.1).

2. A transition graph of the domain is generated incrementally using IFIGE (see
Section 6.3.2.1). IFIGE is an extension of the method FIGE proposed in Chapter
5 which allows “growing” a transition graph over time as the agent explores
the environment consecutively. Thus, in contrast to FIGE, IFIGE does neither
require specifying a single point in time where the transition graph is generated
nor specifying the number of graph nodes.

3. Skills are discovered based on the generated transition graph using an extension
of the method OGAHC, which was proposed in Chapter 4, to continuous domains.
The extension proposed in Section 6.3.2.2 allows handling situations where the
underlying transition graph changes over time, which is the case for instance
when using IFIGE for generating the graph.

4. Two intrinsic motivation mechanisms have been proposed which are based on
novelty and the prediction-error of an option model (see Section 6.3.3).

The empirical results for the proposed IMRL approach in two continuous RL do-
mains support the following findings:

• The proposed IMRL approach based on incremental skill discovery and intrinsic
motivation allows acquiring skills in a developmental period that can improve
performance in external tasks considerably compared to a monolithic learning
approach (see Section 6.4.1.2 and Section 6.4.2.2). This means, close-to-optimal
behaviors can be learned in less trials because of the explorative bias provided by
the temporal abstractions of the skill hierarchy.

• The long-term performance of the IMRL agent remains slightly below those which
can be reached by a monolithic agent ultimately (see Section 6.4.1.2 and Section
6.4.2.2). This is to be expected for hierarchical approaches: on the one hand, the
(temporal) abstraction introduced by the skills helps the agent in learning faster.
On the other hand, however, the abstractions on lower layers also reduce the
class of representable high-level policies as they mask certain potentially relevant
details of the environment from the upper levels. Carefully choosing the temporal
abstractions—which is exactly the objective of skill discovery—should allow
speeding up initial learning considerably while still allowing close-to-optimal
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long term performance. The empirical results suggest that the proposed skill
discovery approach handles this trade-off satisfyingly.

• The length of the developmental period is important: while a sufficiently long
developmental period allows improving task performance considerably, a too
short developmental period might even deteriorate the performance of an IMRL
agent compared to an agent which learns a monolithic policy from scratch (see
Section 6.4.1.2).

• Even skills which have not been learned completely during the developmental
period, i.e., whose policies are sub-optimal, can speed-up the learning of task
solutions considerably (see Section 6.4.1.2). This reinforces and extends results
of Kirchner (1999) to continuous domains and behavioral hierarchies that have
been built autonomously by the agent by means of skill discovery.

• Intrinsic motivation based on novelty allows acquiring better skills in a shorter
developmental period than prediction-error based intrinsic motivation. The skills
acquired under novelty motivation are preferable because they are executed
more often successfully and increase performance in external task compared
to prediction-error based motivation (see Section 6.4.1).

• The reason for the better performance of novelty-based intrinsic motivation is
that it is able to handle the trade-off between skill discovery and skill learning,
which is intrinsic to skill acquisition, better than prediction-error based intrinsic
motivation. This means, it adjusts the ratio of skill learning to exploration more
appropriate, cf. Figure 6.5.

• The proposed skill acquisition approach scales to the high-dimensional Octopus
arm problem and is able to discover skills in this problem which allow decompos-
ing a complex movement into simpler parts (see Section 6.4.2.2).

In summary, incremental graph-based skill discovery based on IFIGE and OGAHC as
outlined in Section 6.3.2 exhibits all desirable properties identified in Section 3.2.3: it
is incremental (P1), it identifies task-independent skills (P2), decides automatically how
many skills are created (P3), is suited for continuous domains (P4), and—as the empiri-
cal results show—is sample-efficient (P5). By combining this skill discovery approach
with means for intrinsic motivation, subgoal S3 stated in Section 1.2 has been achieved,
i.e., an intrinsic motivation mechanism has been developed that allows incremental skill
acquisition in the absence of external reward signals such as in developmental settings.

This work can be extended in numerous ways: for instance, instead of performing
skill discovery only in the developmental period, the agent could also discover novel
skills and learn based on intrinsic motivation while it is faced with an external task. This,
however, requires trading off intrinsic and external rewards and facing the exploration-
exploitation dilemma. This is left to future work; however, the author would like
to emphasize that the proposed skill discovery approach is in no way restricted to
developmental settings. A further direction of future work is to combine the proposed
skill discovery approach with more sophisticated intrinsic motivation mechanisms such
as competence progress intrinsic motivation (Stout and Barto, 2010) or other means for
empirically estimating the learning progress (see, e.g., Lopes et al. (2012)).
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Conclusion and Outlook

“Only those who have the patience to do simple things perfectly will acquire the
skill to do difficult things easily.”

Friedrich Schiller

7.1 SUMMARY

THIS thesis has proposed a novel approach for autonomous skill acquisition in artifi-
cial, lifelong learning agents. The central idea of this thesis is that structure, which

is inherent in an environment, can be used as basis for identifying reusable and versatile
skills. This idea was motivated by the observation that the structure of an environment
is typically independent of an agent’s task and is thus a good basis for the identification
of reusable skills. Moreover, the structure of a domain can be uncovered incrementally
and allows the agent thus to acquire an increasing repertoire of skills step-by-step. The
three main contributions of this thesis are the following:

1. Chapter 4 proposed the novel skill discovery approach OGAHC. OGAHC generates
a transition graph, which captures the dynamics of a discrete domain, based on
experience and discovers reusable and versatile skills by identifying bottlenecks of
this graph using agglomerative hierarchical clustering. OGAHC is fully incremental
and allows identifying bottlenecks of a domain robustly in the face of domain
stochasticity and different explorative behavior of the agent.

2. Chapter 5 presented FIGE, a new method for generating transition graphs from
experience that is is suited for continuous domains. FIGE is based on formalizing
the problem as a probabilistic generative model and using maximum likelihood
estimation for determining the transition graph. Using FIGE, graph-based skill
discovery and representation learning approaches developed for discrete domains
can be extended to continuous domains. An incremental version of FIGE denoted
IFIGE was proposed in Chapter 6.
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3. The third contribution presented in Chapter 6 consists of the development of
an intrinsic motivation mechanism based on novelty. This intrinsic motivation
mechanism allows incremental skill acquisition in the absence of external reward
signals, e.g., in developmental or lifelong learning settings. It governs the behavior
of an agent during skill acquisition such that the agent is able to allocate its time
dynamically between skill learning and skill discovery.

By integrating this novelty-based intrinsic motivation mechanism with OGAHC and
IFIGE, an incremental skill acquisition approach is obtained that achieves the goal that
was stated in Section 1.2:

Goal: Develop an incremental, self-motivated approach for skill acqui-
sition which is based on identifying and exploiting the structure of a
problem and which can be used in developmental and lifelong learning
settings in continuous and stochastic domains.

Our empirical evaluation of the resulting approach shows that: (1) OGAHC is able
to identify bottlenecks earlier and more reliable than other graph-based skill discovery
approaches which are non-incremental or based on repeated sampling (see Section 4.3).
(2) FIGE generates transition graphs which capture the dynamics of a continuous MDP
better than other heuristics proposed in prior work. Due to this, skill discovery and
representation learning based on FIGE outperform related approaches that are based
on other heuristics for transition graph generation (see Section 5.4). (3) The overall
skill acquisition approach allows an agent to acquire reusable and versatile skills in
developmental settings, which considerably improve task performance compared to
monolithic learning approaches (see Section 6.4). Moreover, the proposed approach is
able to scale to continuous, high-dimensional problems and multi-task settings.

7.2 INSIGHTS

The main insights that have been obtained based on the empirical evaluation of the
proposed approach are the following:

1. Domain structure is a good basis for discovering reusable and versatile skills.
Identifying and exploiting domain structure, e.g., in the form of bottlenecks, has proven
to be an effective basis for skill discovery. While some related works (cf. Section
3.3) have made similar observations in discrete and deterministic domains, this thesis
provides evidence that this finding remains valid in continuous, stochastic, and high-
dimensional problems. The resulting skills are reusable since they have been identified
solely based on properties of the domain and are independent of the tasks that have been
imposed onto the agent. Moreover, the discovered skills are versatile, i.e., they facilitate
learning solutions for different tasks.
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2. Skill discovery must be an incremental, open-ended endeavor. The experiments
have repeatedly shown that it is impractical to choose a single point in time at which the
agent shall discover all useful skills. If this point in time would be too early, some skills
might be missed and an incomplete set of skills might be harmful. Being conservative
by performing skill discovery very late during learning is undesirable since the skills
might be acquired too late to be useful for the agent. Thus, incremental skill discovery
is important since it allows discovering skills at any time during learning once enough
evidence is collected that the respective skill may be useful. Please refer to Chapter 4
for more details.

3. A behavioral hierarchy can benefit from suboptimal skills. While it is in general
considered to be desirable to form a behavioral hierarchy in which the policies of lower-
level skills have converged to (locally) optimal policies, also skills with suboptimal
policies can be beneficial for increasing learning performance on higher levels. This has
already been observed and discussed by Kirchner (1999), who showed that higher-level
behavior can benefit from suboptimal lower-level skills in a fixed behavioral hierarchy.
The empirical results of this thesis provide additional evidence that this finding extends
to continuous domains and behavioral hierarchies that have been built autonomously
by the agent by means of skill discovery. A possible explanation for this finding it that
also suboptimal skills offer a temporal abstraction that can be a useful explorative bias.
Please refer to Section 6.4.1.2 for more details.

4. Intrinsic motivation can guide skill acquisition in developmental settings. In
an incremental skill acquisition approach, there is an implicit trade-off between skill
discovery and skill learning: the agent might on the one hand focus on learning the
policy of an already discovered skill or on the other hand explore the domain to identify
its structure and discover further useful skills. In a developmental setting, in which
the agent is not constrained by external tasks, the agent is free to decide at any point
in time if it wants to engage in skill learning or skill discovery. In the experiments,
intrinsic motivation systems have proven to be an effective means for allocating the
agent’s time dynamically between skill learning and skill discovery: initially, they guide
the agent to explore the environment for discovering new skills. Once the first skills
have been discovered, intrinsic motivation encourages the agent to focus on learning
policies for these skills. As the skill policies converge, they guide the agent to increase
its explorative behavior again to discover further skills. Please refer to Section 6.4.1.1
for details.

5. The overhead of building a behavioral hierarchy pays off in multi-task prob-
lems. The experiments have shown that forming a behavioral hierarchy based on
autonomous skill acquisition becomes particularly useful in multi-task problems in
which the agent has to solve several different but related tasks. In single-task problems,
it is often more sample-efficient to learn a monolithic policy from scratch since skill
discovery and skill learning only make the learning task more complex in this case.
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However, if the agent is faced with a multi-task learning problem, the acquired skills
facilitate effective inter-task transfer of procedural knowledge. This overcompensates
for the overhead of skill acquisition already for a medium number of tasks. Similar
findings have been made in related works in small and discrete domains (cf. Section 3.3).
However, this thesis presents evidence that this result holds true also for continuous
domains where function approximation is required and intra-option Q-learning is not
feasible. Please refer to Section 5.4.2.3 for more details.

7.3 OUTLOOK

This thesis has focused on basic research in hierarchical RL in a definite theoretical
framework, namely in MDPs. This has allowed studying the proposed methods in
isolation, performing reproducible experiments, and systematically varying properties
of agent and environment. The thesis concludes by giving some possible routes for future
work that builds upon the presented approaches. The outlined topics are considered to
be essential for open-ended, lifelong learning of behavior in autonomous agents such as
robots. Please refer also to Barto et al. (2013) for a related discussion.

Complex Behavioral Hierarchies This thesis has focused on hierarchical architec-
tures consisting of three layers. These architectures contain the primitive actions on
the lowest layer, the acquired skills on the middle layer, and a high-level policy on the
top layer, which selects among the skills. Skill discovery changes the number of skills
on the middle layer. The number of layers, however, remains constant. The same is
true for most related work. Future work on learning deep architectures, in which skills
can invoke other skills, is desirable since the ability to form such deep architectures is
commonly considered to be a prerequisite for actual open-ended lifelong learning. The
dendrogram generated by the hierarchical clustering of the transition graph (see Section
2.4.3.3) could be an interesting starting point for this.

Intrinsic Motivation Lifelong learning does not only require an agent to know how
to learn but also to decide when and what to learn. Knowing when to learn is important
since learning of behavior involves exploration which may not be feasible in all situa-
tions, e.g., when an agent is in a dangerous situation or has to fulfill a time-critical task.
Deciding what to learn is important since complex and dynamic environments offer
such a multitude of experience that it becomes impossible for an agent to learn about
every aspect of the world. Thus, the agent must decide what aspects of the world are
relevant and which behavior is worth the effort of being learned. An intrinsic motivation
system can address these issues. However, a lifelong learning agent will require a
sophisticated motivation system that need not be redesigned for different problems anew.
The intrinsic motivation systems proposed in this thesis as well as related works are
typically problem-specific or focus solely on specific settings like the developmental
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one. Future work on more general intrinsic motivation systems will thus be important
for lifelong learning in robotics.

Parametrized Options This work has modeled skills as options, which are essentially
closed-loop policies. However, as pointed out by Barto et al. (2013), what is commonly
denoted as a skill is actually more flexible than an option: for instance, the skill
“throwing an object” would correspond to many different options whose policies depend
on “contextual information” such as the target positions, the type of object, or the
desired trajectory of the throw. As proposed by da Silva et al. (2012), skills can be
considered as family of options which are parameterized by the context. Transfer
learning can be used to generalize from contexts for which option policies have been
learned to novel but related contexts. Ongoing work by the author not covered in this
thesis extends these parameterized options to skill templates, which take the uncertainty
of the generalization into account during transfer, and aims at applying hierarchical RL
in robotic manipulation tasks (Metzen and Fabisch, 2013; Metzen et al., 2014).

Related to this is contextual policy search (Deisenroth et al., 2013), a multi-task
learning approach in which several options for different contexts are learned concurrently
and a high-level policy generalizes experience of these low-level options over different
contexts. Thus, there is some recent work on learning such “contextual” options.
However, we do not know any work on the discovery of such options. The work of
Daniel et al. (2012) could be an interesting starting point.

Undirected Behavior This thesis has focused on goal-directed skills, i.e., skills which
terminate once a specific region of the state space is reached. While such skills are
useful behavioral building blocks, for instance in the area of object manipulation, they
are not suited for all kinds of behavior. For instance, they are not applicable to rhythmic
and repetitive behavior such as walking, running, swimming, swinging, or stirring. For
such behavior, rather than identifying goal regions, it is important to identify specific
patterns in the dynamic behavior such as desired limit cycles. Future work on acquiring
reusable building blocks for this kind of behavioral would be an interesting complement
to the works discussed and proposed in this thesis.

Real-world Robotic Applications The most important future work will be to show
the potential of hierarchical RL in real-world problems, e.g., in robotic applications. In
this thesis—as in nearly all related work—the empirical evaluation has been conducted
in simulated environments. This has the advantage that strengths and weaknesses of
methods can be systematically explored, for instance by varying the stochasticity of a
domain or the explorative behavior of the agent. While some of the problems considered
in this thesis, e.g., the Octopus arm problem, should not be considered as “toy” problems
since they are challenging for both humans and conventional control approaches due
to their complex dynamics, future work that shows the potential of hierarchical RL in
important real-world tasks is much needed (Barto et al., 2013). The following list gives
some of the most severe challenges and how they could be addressed:



7. CONCLUSION AND OUTLOOK 138

• Real-world problems in robotics are noisy, partially observable, and potentially
non-Markovian. Furthermore, learning must not impair the robot. One way of
addressing these challenges is to integrate hierarchical RL into a robotic control
architecture such as the one shown in Figure 1.1. By this, the learning component
could be provided with a more abstracted and curated view onto the problem that
is more amenable to RL. For instance, adding low-level reflexes and behavior
supervision modules can reduce the risk that explorative behavior of the agent
impairs the system. Perception modules can reduce noise in the sensors and
estimate unobserved components of the environment’s state based on the sensory
input. By this, the level of noise and partial observability may be reduced.

• Real-world problems in robotics require learning in high-dimensional state and
action spaces. Traditional RL approaches like temporal difference learning suffer
from the curse of dimensionality and do not scale easily to this kind of problems.
Direct policy search approaches with problem-specific policy representations
are considered to be more promising (Deisenroth et al., 2013). However, the
combination of direct policy search with hierarchical RL is an area where further
research is required and promises considerable progress for robot learning.

• Real-world problems require that agents learn novel and adapt existing knowledge
with few trials. This implies that behavior is not learned from scratch but that
reusable, modular building blocks of procedural knowledge are acquired which
simplify learning of novel and adaptation of existing behavior. This thesis has
focused on and contributed to the discovery and learning of these building blocks.
Future work will require developing means which allow the efficient utilization
of the building blocks in robotic tasks.

7.4 CLOSING WORDS

Artificial agents with the capacity for lifelong learning of new behaviors would be
of considerable scientific and economical interest. Yet, the astounding capability of
biological beings for learning and adaptation is not easily reproduced in artificial systems.
Autonomous skill acquisition is considered to be one important component of the
capacity for lifelong learning. The author believes that the novel approach for skill
acquisition proposed in this thesis is one small step in the direction of artificial, lifelong
learning agents; albeit, there remain several further steps to be taken before we may see
artificial agents that come close to the capabilities of biological beings in this regard.
Alan Turing’s following words remain all too true:

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”
Alan Turing, Computing Machinery and Intelligence, 1950, pp.456
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Derivations

A.1 DERIVATION OF TRANSITION GRAPH WEIGHTS

We give a derivation of the off-policy and on-policy weights as the maximum likelihood
estimate w∗ = argmaxw LT (w) for a given set of transitions T = {(si,ai,s′i)}n

i=1 (see
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p(T |w) =
n

∏
i=1

p((vi,ai,v′i)|w) =
n

∏
i=1

p(vi|w)p(ai|vi,w)p(v′i|vi,ai,w)

GM
=

n

∏
i=1

1
|V |

1
|A|

wviv′i
=

1
|V |n

1
|A|n ∏

v,a,v′
(wvv′)

na
vv′

=
1
|V |n

1
|A|n ∏

v,v′∈V
(wvv′)

∑a na
vv′ ,

where the generative model proposed in Section 4.2.1 was used in step “GM”. Based
on this, we can now derive the following formula for the maximum likelihood estimate
(MLE) of the graph weights:

w∗ = argmax
w

p(T |w) = argmax
w

1
|V |

1
|A|n

n

∏
v,v′∈V

(wvv′)
∑a na

vv′ = argmax
w

∏
v,v′∈V

(wvv′)
∑a na

vv′

The only constraint on the weights is that ∑v′wvv′ = 1 ∀v ∈ V , which guarantees
that w encodes proper probabilities. Thus, we can maximize the likelihood for every
subset wv = {wvv0 , . . .wvvn} of w, which contains the weights for the edges starting in
vertex v, separately:

w∗v = argmax
wv

∏
v′∈V

(wvv′)
∑a na

vv′

By identifying this as the standard maximum likelihood formulation for the multi-
nomial distribution, where the different v′ are the possible outcomes of the multinomial
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trial, we obtain as maximum likelihood estimate for the weights (by using Lagrange
multipliers):

wvv′ = ∑
a

na
vv′/∑

ṽ
∑
a

na
vṽ =

1
nv

∑
a

na
vv′, (A.1)

where nv = ∑a na
v is the number of visits of vertex v. This solution corresponds to

the weights won proposed by Şimşek et al. (2005) where the additional normalization
constant 1

nv
ensures that the edge weights are proper probabilities. However, note that

the transitions are generated by an agent which typically does not explore uniform
randomly, i.e., π(v,a) = p(a|v) 6= 1/|V |. Thus, we have a sampling bias in T . We can
compensate for this sampling bias by importance sampling (Srinivasan, 2002), i.e.,
by assigning to each transition the weight Q(a|v)/P(a|v). Here, Q(a|v) is the target
distribution and P(a|v) is the proposal distribution under which the transitions have
been generated. Thus: Q(a|v) = 1/|A| and P(a|v) = π(v,a) = na

v/nv, where we have
estimated the agent’s policy based on statistics of T . Accordingly, the importance
weight of transition (v,a,v′) is nv/(|A|na

v). By inserting this in the MLE equation, we
obtain w∗v = argmaxwv ∏

v′∈V
(wvv′)

∑a na
vv′nv/(|A|na

v) = argmaxwv ∏
v′∈V

(wvv′)
nv/|A|∑a na

vv′/na
v and

correspondingly

wvv′ = ∑
a

na
vv′

na
v
/∑

a
∑
ṽ

na
vṽ

na
v
= ∑

a

na
vv′

na
v
/∑

a

na
v

na
v
=

1
|A|∑a

na
vv′

na
v
. (A.2)

These are exactly the “off-policy” weights woff used in Chapter 4.

A.2 DERIVATION OF FIGE’S UPDATE EQUATIONS

In this appendix, we give a derivation of FIGE’s update equations based on the likeli-
hood LT (G) of a graph G for a given set of transitions T = {(si,ai,s′i)}n

i=1 under two
simplifying assumptions. Please refer to Section 5.3.1 for a definition of the likeli-
hood LT (G) = p(T |G). We aim at finding a state transition graph G∗ with vnum nodes
such that G∗ = argmaxG LT (G). We derive the FIGE update equations as maximum
likelihood solutions for LT (G) under two simplifying assumptions:

(A1) For (s,a,s′) ∈ T , assume p(v′|v,a) = 1 if v = NNV (s)∧ v′ = NNV (s′) else 0.

Assumption A1 allows to effectively decouple the likelihood p(T |G) from the graph’s
edges and their weights wvv′ such that it depends solely on the graph node positions and
can thus be written as p(T |V ). By using assumption A1, we obtain:

log p(T |G) = log
1

|A|n|V |n
n

∏
i=1

[
∑
v∈V

p(si|v) ∑
v′∈V

p(v′|v,a)p(s′|v′,v,si)

]
A1
= log

1
|A|n|V |n

n

∏
i=1

p(si|NNV (si))p(s′i|NNV (s′i),NNV (si),si)=̂ log p(T |V )
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log p(T |V ) =−n log |A‖V |+
n

∑
i=1

[
log p(si|NNV (si))+ log p(s′i|NNV (s′i),NNV (si),si)

]
=−n log |A‖V |+n logNb−

1
b2 D

with D =
n
∑

i=1

[
‖si−NNV (si)‖2

2 +‖(NNV (s′i)−NNV (si))− (s′i− si)‖2
2
]
. For given V ,

we create two partitions of T : T→(v) = {(s,s′) | ∃(s,a,s′) ∈ T : NNV (s) = v} and
T←(v) = {(s,s′) | ∃(s,a,s′) ∈ T : NNV (s′) = v}. Furthermore, we create vnum sets SV

with SV (v) = {s | ∃(s,a,s′) ∈ T : NNV (s) = v}. For |V | = vnum = const, we can now
maximize the log-likelihood log p(T |V ) by minimizing D:

D =
n

∑
i=1

[
‖si−NNV (si)‖2

2 +2
1
2
‖(NNV (s′i)−NNV (si))− (s′i− si)‖2

2

]
= ∑

v

[
∑

s∈SV (v)

‖s− v‖2
2 +

1
2 ∑

s,s′∈T→(v)
‖NNV (s′)− v− s′+ s‖2

2

+
1
2 ∑

s,s′∈T←(v)
‖v−NNV (s)− s′+ s)‖2

2

]
Each term of the outer sum corresponds to the contribution of node v’s position to D;
however, the terms cannot be minimized separately since they are coupled via NNV (s)
and NNV (s′). Minimizing them jointly is difficult because of the discontinuities of the
nearest-neighbor terms. Thus, FIGE makes the following simplifying assumption:

(A2) Assume p(T |V ) = ∏v p(T |v)
This assumption implies that the couplings between the terms of D are not taken into
account and each v can be set greedily to the position where the respective term in
the outer sum would become minimal when all other ṽ ∈V would remain unchanged.
Finally, the greedy FIGE update equation which moves a node from position vold to
position vnew is

vnew = argmin
v

[
∑

s∈SV (vold)

‖s− v‖2
2 +

1
2 ∑

s,s′∈T→(vold)

‖(NNV (s′)− s′+ s)− v‖2
2

+
1
2 ∑

s,s′∈T←(vold)

‖v− (NNV (s)− s+ s′)‖2
2

]
In this, the first sum is minimized by choosing vnew = va = MEANs∈SV (vold)

(s), the
second sum by choosing vnew = vb = MEANs,s′∈T→(vold)(NNV (s′)− s′+ s), and the
third by vnew = vc = MEANs,s′∈T←(vold)(NNV (s)− s+ s′). By using forces that pull
vnew to va, vb, and vc with the respective weights, we obtain the FIGE update rule

vnew = vold +α

[
1
2
(va− vold)+

1
4
(vb− vold)+

1
4
(vc− vold)

]
. (A.3)
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Since A2 is oversimplifying, one sweep of the FIGE update equations will typically not
find the maximum likelihood solution. Thus, FIGE performs several update iterations to
account for couplings between nodes.
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