2,187 research outputs found

    Lot-sizing with stock upper bounds and fixed charges

    Get PDF
    Here we study the discrete lot-sizing problem with an initial stock variable and an associated variable upper bound constraint. This problem is of interest in its own right, and is also a natural relaxation of the constant capacity lot-sizing problem with upper bounds and fixed charges on the stock variables. We show that the convex hull of solutions of the discrete lot-sizing problem is obtained as the intersection of two simpler sets, one involving just 0-1 variables and the second a mixing set with a variable upper bound constraint. For these two sets we derive both inequality descriptions and polynomial-size extended formulations of their respective convex hulls. Finally we carry out some limited computational tests on single-item constant capacity lot-sizing problems with upper bounds and fixed charges on the stock variables in which we use the extended formulations derived above to strengthen the initial mixed integer programming formulations.mixed integer programming, discrete lot-sizing, stock fixed costs, mixing sets

    Uncapacitated Lot-Sizing with Stock Upper Bounds, Stock Fixed Costs, Stock Overloads and Backlogging: A Tight Formulation

    Get PDF
    For an n-period uncapacitated lot-sizing problem with stock upper bounds, stock fixed costs, stock overload and backlogging, we present a tight extended shortest path formulation of the convex hull of solutions with O(n^2) variables and constraints, also giving an O(n^2) algorithm for the problem. This corrects and extends a formulation in [11] for the problem with just stock upper bounds

    Piecewise linear approximations for the static-dynamic uncertainty strategy in stochastic lot-sizing

    Get PDF
    In this paper, we develop mixed integer linear programming models to compute near-optimal policy parameters for the non-stationary stochastic lot sizing problem under Bookbinder and Tan's static-dynamic uncertainty strategy. Our models build on piecewise linear upper and lower bounds of the first order loss function. We discuss different formulations of the stochastic lot sizing problem, in which the quality of service is captured by means of backorder penalty costs, non-stockout probability, or fill rate constraints. These models can be easily adapted to operate in settings in which unmet demand is backordered or lost. The proposed approach has a number of advantages with respect to existing methods in the literature: it enables seamless modelling of different variants of the above problem, which have been previously tackled via ad-hoc solution methods; and it produces an accurate estimation of the expected total cost, expressed in terms of upper and lower bounds. Our computational study demonstrates the effectiveness and flexibility of our models.Comment: 38 pages, working draf

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research

    Meta-Heuristics for Dynamic Lot Sizing: a review and comparison of solution approaches

    Get PDF
    Proofs from complexity theory as well as computational experiments indicate that most lot sizing problems are hard to solve. Because these problems are so difficult, various solution techniques have been proposed to solve them. In the past decade, meta-heuristics such as tabu search, genetic algorithms and simulated annealing, have become popular and efficient tools for solving hard combinational optimization problems. We review the various meta-heuristics that have been specifically developed to solve lot sizing problems, discussing their main components such as representation, evaluation neighborhood definition and genetic operators. Further, we briefly review other solution approaches, such as dynamic programming, cutting planes, Dantzig-Wolfe decomposition, Lagrange relaxation and dedicated heuristics. This allows us to compare these techniques. Understanding their respective advantages and disadvantages gives insight into how we can integrate elements from several solution approaches into more powerful hybrid algorithms. Finally, we discuss general guidelines for computational experiments and illustrate these with several examples

    On EOQ cost models with arbitrary purchase and transportation costs

    Get PDF
    We analyze an economic order quantity cost model with unit out-of-pocket holding costs, unit opportunity costs of holding, fixed ordering costs, and general purchase-transportation costs. We identify the set of purchase-transportation cost functions for which this model is easy to solve and related to solving a one-dimensional convex minimization problem. For the remaining purchase-transportation cost functions, when this problem becomes a global optimization problem, we propose a Lipschitz optimization procedure. In particular, we give an easy procedure which determines an upper bound on the optimal cycle length. Then, using this bound, we apply a well-known technique from global optimization. Also for the class of transportation functions related to full truckload (FTL) and less-than-truckload (LTL) shipments and the well-known carload discount schedule, we specialize these results and give fast and easy algorithms to calculate the optimal lot size and the corresponding optimal order-up-to-level
    • …
    corecore