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Abstract

In this paper, we develop mixed integer linear programming models to
compute near-optimal policy parameters for the non-stationary stochastic
lot sizing problem under Bookbinder and Tan’s static-dynamic uncertainty
strategy. Our models build on piecewise linear upper and lower bounds of
the first order loss function. We discuss different formulations of the stochas-
tic lot sizing problem, in which the quality of service is captured by means
of backorder penalty costs, non-stockout probability, or fill rate constraints.
These models can be easily adapted to operate in settings in which unmet
demand is backordered or lost. The proposed approach has a number of
advantages with respect to existing methods in the literature: it enables
seamless modelling of different variants of the above problem, which have
been previously tackled via ad-hoc solution methods; and it produces an
accurate estimation of the expected total cost, expressed in terms of upper
and lower bounds. Our computational study demonstrates the effectiveness
and flexibility of our models.
keywords: stochastic lot sizing; static-dynamic uncertainty; first order
loss function; non-stockout probability; fill rate; penalty cost; piecewise lin-
earisation
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1 Introduction

Consider the non-stationary stochastic lot sizing problem — the stochastic exten-
sion of the well-known dynamic lot sizing problem [43]. This is a finite-horizon
periodic review single-item single-stocking location inventory control problem in
which demand is stochastic and non-stationary. Bookbinder and Tan [6] discuss
three main control strategies that can be adopted in stochastic lot sizing problem:
static, static-dynamic, and dynamic uncertainty. The static uncertainty strategy
is rather conservative. The decision maker determines both timing and size of
orders at the very beginning of the planning horizon. A less conservative strat-
egy is the static-dynamic uncertainty, in which inventory reviews are fixed at the
beginning of the planning horizon, while associated order quantities are decided
upon only when orders are issued. The dynamic uncertainty strategy allows the
decision maker to decide dynamically at each time period whether or not to place
an order and how much to order. Each of these strategies has different advan-
tages and disadvantages. For instance, the dynamic uncertainty strategy is known
to be cost-optimal [25]. The static uncertainty is appealing in material require-
ment planning systems, for which order synchronisation is a key concern [38]. The
static-dynamic uncertainty strategy has advantages in organising joint replenish-
ments and shipment consolidation [15, 29].

In this study, we focus our attention on the static-dynamic uncertainty strategy,
which offers a stable replenishment plan while effectively hedging against uncer-
tainty [13, 42]. An important question regarding the static-dynamic uncertainty
strategy is how to determine order quantities at inventory review periods when a
replenishment schedule is given. In this context, Özen et al. [16] showed that it
is optimal to determine order quantities by means of an order-up-to policy. This
result leads to the following characterisation of the static-dynamic uncertainty
strategy: at each review period, the decision maker observes the actual inventory
position (i.e. on-hand inventory, plus outstanding orders, minus backorder) and
places an order so as to increase the inventory position up to a given order-up-to
level. Key decisions for the static-dynamic uncertainty strategy include an in-
ventory review schedule and an order-up-to level for each review period — these
decisions must be fixed at the beginning of the planning horizon.

We build on recently introduced piecewise linear upper and lower bounds for
the first order loss function and its complementary function [24], which are based
on distribution independent bounding techniques from stochastic programming:
Jensen’s and Edmundson-Madanski’s inequalities [12, p. 167-168]. In contrast to
earlier works in the literature, we show that these bounds can be used to estimate
inventory holding costs, backorder costs and/or service levels, and that they trans-
late into readily available lower and upper bounds on the optimal expected total
costs. Furthermore, for the special case in which demand is normally distributed,
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the model relies on standard linearisation parameters provided in [24].
Our analysis leads to a unified modelling approach that captures several vari-

ants of the problem and that is based on standard mixed-integer linear program-
ming models. Some of these variants have been previously addressed in the lit-
erature, whereas some other have not. More specifically, we consider different
assumptions on the way unsatisfied demand is modelled: backorder and lost sales.
We also consider different service quality measures commonly employed in the in-
ventory control literature [see e.g. 29, pp. 244—246]: penalty cost per unit short
per period, non-stockout probability1 (α service level), cycle fill rate2 (βcyc service
level), and fill rate3 (β service level).

Our contributions to the inventory control literature are the following:

• we develop enhanced MILP formulations that enable seamless modelling of
the non-stationary stochastic lot sizing problem under each of the four mea-
sures of service quality discussed;

• in contrast to other approaches in the literature our MILP models bound
from above and below the cost of an optimal plan by using a piecewise linear
approximation of the loss function; by increasing the number of segments,
precision can be improved ad libitum;

• we discuss how to build these MILP models for the case in which demand in
each period follows a generic probability distribution;

• for the special case in which demand in each period is normally distributed,
we demonstrate how the MILP formulations can be conveniently constructed
via standard linearisation coefficients;

• we discuss for the first time in the literature how to handle the case in which
demand that occurs when the system is out of stock is lost, i.e. lost sales;

• we discuss the first MILP formulation in the literature that captures the case
in which service quality is modelled using a standard β service level in line
with the definition found in many textbooks on inventory control, such as
Axsäter [3], Hadley and Whitin [9], Silver et al. [29].

• we present an extensive computational study to show that (i) the optimality
gap shrinks exponentially fast as the number of segments in the piecewise

1a lower bound on the non-stockout probability in any period over the planning horizon
2a lower bound on the expected fraction of demand that is routinely satisfied from stock for

each replenishment cycle
3a lower bound on the expected fraction of demand that is routinely satisfied from stock over

the planning horizon
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linearisation increases, (ii) the number of segments adopted only marginally
affects computational efficiency.

2 Literature survey

Due to its practical relevance, a large body of literature has emerged on the static-
dynamic uncertainty strategy over the last decades. Here, we review some key
contributions which are of particular importance in the context of the current
work, and reflect upon our contribution.

To keep our discussion focused, since all the models we will discuss in the
following sections operate under a static-dynamic uncertainty strategy, in our lit-
erature review we do not survey works related to the static uncertainty [see e.g.
10, 37, 39, 40] and to the dynamic uncertainty strategy, [see e.g. 5].

Early works on the stochastic lot sizing problem concentrated on easy-to-
compute heuristics. Silver [26] and Askin [1] studied the problem under penalty
costs, and proposed simple heuristics based on the least period cost method. These
heuristics can be regarded as stochastic extensions of the well-known Silver-Meal
heuristic [28].

Bookbinder and Tan [6] studied the problem under α service level constraints
and introduced the terminology “static uncertainty,” “dynamic uncertainty,” and
“static-dynamic uncertainty.” They developed a method that sequentially deter-
mines the timing of replenishments and corresponding order-up-to levels for the
static-dynamic uncertainty strategy. Following this seminal work, a variety of
further studies — which significantly differ in terms of underlying service quality
measures and modeling approaches — aimed to determine the optimal replenish-
ment schedule and order-up-to levels simultaneously under Bookbinder and Tan’s
static-dynamic uncertainty strategy.

Tarim and Kingsman [31] discussed the first MILP formulation under α service
level constraints. In contrast to [6], this formulation simultaneously determines
the replenishment schedule and corresponding order-up-to levels. Efficient refor-
mulations operating under the same assumptions were discussed in [21, 35]. [21]
developed a state space augmentation approach; while [35] implemented a branch
and bound algorithm. In addition, Constraint Programming reformulations based
on a novel modelling tool, i.e. global chance constraints, were discussed in [33, 34].
Finally, an exact, although computationally intensive, Constraint Programming
approach was discussed in [18]. Extensions to the case of a stochastic delivery lead
time were discussed in [19, 20].

Tarim and Kingsman [32] developed the first MILP formulation for the case in
which service quality is modelled using a penalty cost scheme. Rossi et al. [23] dis-
cussed an efficient Constraint Programming reformulation exploiting optimization
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oriented global stochastic constraints.
Özen et al. [16] discussed a dynamic programming solution algorithm and

two ad-hoc heuristics named “approximation” and “relaxation” heuristics, respec-
tively; the authors analyse both the penalty cost and the α service level cases. The
“approximation” heuristic operates under the assumption that scenarios in which
the actual stock exceeds the order-up-to-level for a given review are negligible and
can be safely ignored; while the “relaxation” heuristics operates by relaxing those
constraints in Tarim and Kingsman’s model that force order sizes in each period
to be nonnegative.

Tempelmeier [36] introduced an MILP formulation for the case in which service
quality is modelled via βcyc service level constraints.

A key issue in all the aforementioned studies is the computation of the true
values of expected on-hand inventories and stock-outs, and thereby associated costs
and/or service levels. These values can only be derived from the (complementary)
first-order loss function of the demand [see 30, p. 338] — a non-linear function
that cannot be readily embedded into the proposed MILP models.

Tarim and Kingsman [31] — but also [18, 19, 20, 21, 33, 34, 35] — bypassed the
issue by approximating the expected on-hand inventory by the expected inventory
position. This approach could work well for inventory systems that operate under
a very high non-stockout probability. However, it may result in highly sub-optimal
solutions when the probability of observing a stock-out is not negligible.

Tarim and Kingsman [32] used a piecewise linear approximation of the standard
loss function to approximate expected holding and penalty costs. The piecewise
linear function is fitted to the nonlinear cost function by using an approach that
minimises the maximum absolute approximation error. The power of this approach
is that the piecewise linearisation is based on standard linearisation coefficients
that can be computed once and then reused for any normally distributed demand.
Unfortunately, the approximation proposed may either over or underestimate the
original cost therefore it becomes hard to assess how far a given solution may be
from the true optimal one, i.e. its optimality gap. Furthermore, this approximation
is not easily extended to demands following a generic distribution or to models
operating under service level measures rather than a penalty cost scheme.

Özen et al. [16] approximations require ad-hoc algorithms and cannot be easily
extended to handle β service level constraints or lost sales.

Tempelmeier [36] tabulates the complementary first order loss function and
then uses binary variables to retrieve the holding cost associated with a given
replenishment plan. A similar tabulation is employed to enforce the prescribed βcyc

service level. However, this tabulation is carried out by considering each possible
replenishment cycle4 independently. This strategy disregards cost and service level

4A replenishment cycle is the time interval between two successive inventory reviews.
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dependencies that may exist among successive replenishment cycles. For this very
same reason, it cannot be employed to model classic β service level constraints.
To the best of our knowledge, no formulation exists in the literature for the case in
which service quality is modelled via standard β service level constraints [3, 9, 29].

The issue of computing expected on-hand inventories and stock-outs is topical
in inventory control, as witnessed by a number of recent works [see e.g. 2, 27].
All approaches surveyed above address particular instances of the problem. The
contribution of this paper is unique and novel in the sense that it introduces
a unified modelling approach for static-dynamic uncertainty strategy based on
linear approximations of the first order loss function. Furthermore, this unified
modelling approach can be used to address the issue of computing static-dynamic
uncertainty policy parameters under lost sales, which has not been addressed yet
in the literature.

3 Piecewise linearisation of loss functions

For convenience, a list of all symbols used in the rest of the paper is provided in
Appendix I. Consider a random variable ω with expected value ω̃ and a scalar
variable x. The first order loss function is defined as L(x, ω) = E[max(ω − x, 0)],
where E denotes the expected value. The complementary first order loss function is
defined as L̂(x, ω) = E[max(x−ω, 0)]. It is know that there is a close relationship
between these two functions, as stated in the following lemma.

Lemma 1 ([30] p. 338, C.5).

L(x, ω) = L̂(x, ω)− (x− ω̃). (1)

The first order loss function and its complementary function play a key role in
inventory models, since they are essential to compute expected holding and penalty
costs, as well as a number of service measure such as the βcyc and β service levels.

A common approach in computing near-optimal control parameters of the
static-dynamic uncertainty strategy is to formulate the problem as a certainty
equivalent MILP. Unfortunately, the loss function is non-linear and cannot be
easily embedded in MILP models. To overcome this issue, we adopt a piecewise
linearisation approach similar to the one recently discussed in Rossi et al. [24]. This
approach is based on classical inequalities from stochastic programming: Jensen’s
and Edmundson-Madanski inequalities [12, p. 167-168] and can be applied to
random variables following a generic probability distribution.

It is known that both the first order loss function L(x, ω) and its complementary

function L̂(x, ω) are convex in x regardless of the distribution of ω. For this reason,
both Jensen’s lower bound and Edmundson-Madanski upper bound are applicable
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to the first order loss function and its complementary function. More formally, let
gω(·) denote the probability density function of ω and consider a partition of the
support Ω of ω into W disjoint compact subregions Ω1, . . . ,ΩW . We define, for all
i = 1, . . . ,W

pi = Pr{ω ∈ Ωi} =

∫

Ωi

gω(t) dt and E[ω|Ωi] =
1

pi

∫

Ωi

tgω(t) dt (2)

Lemma 2. For the complementary first order loss function the lower bound L̂lb(x, ω),
where

L̂(x, ω) ≥ L̂lb(x, ω) =
W∑

i=1

pi max(x− E[ω|Ωi], 0)

is a piecewise linear function with W + 1 segments. The i-th linear segment of
L̂lb(x, ω) is

L̂i
lb(x, ω) = x

i∑

k=1

pk −

i∑

k=1

pkE[ω|Ωk] E[ω|Ωi] ≤ x ≤ E[ω|Ωi+1], (3)

where i = 1, . . . , N ; furthermore, the 0-th segment is x = 0, −∞ ≤ x ≤ E[ω|Ω1].

This lower bound is a direct application of Jensen’s inequality. Let then eW
denote the maximum approximation error for the lower bound in Lemma 2 as-
sociated with a given partition comprising W regions. A piecewise linear upper
bound, i.e. Edmundson-Madanski’s bound, can be obtained by shifting up the
lower bound in Lemma 2 by a value eW .

Lemma 3. For the complementary first order loss function the upper bound L̂ub(x, ω),
where

L̂(x, ω) ≤ L̂ub(x, ω) =

W∑

i=1

pi max(x− E[ω|Ωi], 0) + eW

is a piecewise linear function with W + 1 segments. The i-th linear segment of
L̂ub(x, ω) is

L̂i
ub(x, ω) = x

i∑

k=1

pk −

i∑

k=1

pkE[ω|Ωk] + eW E[ω|Ωi] ≤ x ≤ E[ω|Ωi+1],

where i = 1, . . . , N ; furthermore, the 0-th segment is x = eW , −∞ ≤ x ≤ E[ω|Ω1].

Having established these two results, we must then decide how to partition the
support Ω in order to obtain good bounds. A number of works discussed how to
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obtain an optimal partitioning of the support under a framework that minimises
the maximum approximation error [8, 11]. In short, these works demonstrate that,
in order to minimise the maximum approximation error, one must find parameters
ensuring approximation errors at piecewise function breakpoints are all equal. This
result unfortunately does not hold when optimal linearisation parameters must be
found for a set of random variables.

Consider a set of random variables ω1, . . . , ωn, . . . , ωN and associated comple-
mentary first order loss functions L̂(x, ω1), . . . , L̂(x, ωN). From (2) it is clear that,
once all pi have been fixed, all E[ωn|Ωk] are uniquely determined. The particular
structure of (3) makes it, in principle, possible to compute standard pi coefficients
for the whole set of random variables and then select the E[ωn|Ωk] for a specific

L̂lb(x, ωn) via a binary selector variable yn, that is

L̂i
lb(x, ω) = x

i∑

k=1

pk −

i∑

k=1

pkE[ωn|Ωk]yn
E[ωn|Ωi] ≤ x ≤ E[ωn|Ωi+1]
1 ≤ n ≤ N

(4)

where
∑N

n=1 yn = 1. These expressions generalise those discussed in [24], which
only hold for normally distributed random variables, and they are particularly
useful, as we will see in Section 4, if one wants to develop an MILP model for
computing Bookbinder and Tan’s static-dynamic uncertainty policy parameters.

Unfortunately, computing probability masses p1, . . . , pW that minimise the
maximum approximation error over a set of random variables is a challenging
task. As shown in [17] this is not a problem of convex optimisation as the one
faced while computing optimal linearisation parameters for a single loss function.
In this work, we will adopt two approximate strategies to compute good proba-
bility masses p1, . . . , pW : a simple strategy that splits the support into W regions
with uniform probability mass; and a more refined local search strategy that uses a
combination of simple random sampling and coordinate descent. Implementation
details of these heuristic approaches are discussed in Appendix II.

4 Enhanced MILP reformulations

In this section we demonstrate how the results presented so far can be used to
derive enhanced a mixed integer programming formulations for the stochastic lot
sizing problem under static-dynamic uncertainty strategy. First, we introduce the
original stochastic programming formulation of the problem (Section 4.1). We then
present MILP models for the problem under α service level constraints (Section
4.2), a penalty cost scheme (Section 4.3), βcyc (Section 4.4) and β (Section 4.5)
service level constraints. Finally, we discuss how to extend these models to a lost
sales setting. For a complete overview of the models presented the reader may
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refer to Appendix III.

4.1 Stochastic lot-sizing

The stochastic programming formulation of the non-stationary stochastic lot-sizing
problem was originally presented in [6, pp. 1097–1098]. The formal problem
definition is as follows. Customer demand dt in each period t = 1, . . . , N is a
random variable with probability density function gt(·) and cumulative distribution
function Gt(·). There are fixed and variable replenishment costs: the fixed cost
is a per order; the variable cost is v per unit ordered. Negative orders are not
allowed. A holding cost of h is paid of each unit of inventory carried from one
period to the next. I0 denotes the initial inventory level. Delivery lead-time is not
incorporated in the model. When a stockout occurs, all demand is backordered
and filled as soon as an adequate supply arrives. There is a service level constraint
enforcing a non-stockout probability of at least α in each period — this is known
in the inventory control literature as “α service level” constraint [29]. They finally
also assume that the service level is set to a high value, i.e. α > 0.9 in order to
incorporate management’s perception of the cost of backorders, so that shortage
costs can be safely ignored. The objective is to minimise the expected total cost
E[TC], which comprises fixed/variable ordering and holding costs. The resulting
model is presented in Fig. 1. In this model It represents the inventory level
at the end of a period; δt takes value 1 if an order is placed in period t; and
Qt represents the order quantity in period t. Constraints (6) are the inventory
conservation constraints: inventory level at the end of period t must be equal to
the initial inventory I0, plus all order received, minus all demand realised up to
period t, since we assume — in line with the original model in the literature —
that inventory cannot be disposed or returned to the supplier; constraints (7) set
δt to one if an order is placed in period t; finally, (8) enforce the prescribed service
level in each period.

The above model can be easily modified to accommodate a penalty cost scheme,
in place of the original α service level constraints, [see e.g. 32]. All one has to do
is to drop (8) and to replace the original objective function with the following one

E[TC] = min

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(aδt + hmax(It, 0) + bmax(−It, 0) + vQt)× (10)

g1(d1)g2(d2) . . . gN(dN) d(d1)d(d2) . . . d(dN)

where b denotes the penalty cost per unit short per period. βcyc and β service level
formulations are obtained by replacing (8) with an alternative service measure.
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E[TC] = min

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(aδt + hmax(It, 0) + vQt)× (5)

g1(d1)g2(d2) . . . gN(dN) d(d1)d(d2) . . . d(dN)

subject to, for t = 1, . . . N

It = I0 +
t∑

i=1

(Qi − di) (6)

δt =

{
1 if Qt > 0,
0 otherwise

(7)

Pr{It ≥ 0} ≥ α (8)

Qi ≥ 0, δt ∈ {0, 1} (9)

Figure 1: Stochastic programming formulation of the non-stationary stochastic
lot-sizing problem.

4.2 α service level constraints

We now consider the mixed integer programming formulation of Tarim and Kings-
man [31] for computing near-optimal inventory control policy parameters under
Bookbinder and Tan’s static-dynamic uncertainty strategy. According to this
strategy, inventory review times as well as their respective order-up-to-levels must
be all fixed at the beginning of the planning horizon. However, actual order quan-
tities are determined only after demand has been observed.

In what follows, M denotes a very large number and x̃ denotes the expected
value of x. Tarim and Kingsman’s model is presented in Fig. 2. This certainty
equivalent model comprises three sets of decision variables: Ĩt, representing the
expected closing inventory level at the end of period t; δt, a binary variable repre-
senting the inventory review decision at period t; and Pjt, a binary variable which
is set to one if and only if the most recent inventory review before period t was
carried out in period j. By observing that, for a period t in which an order is
placed (i.e. δt = 1) the order-up-to-level St is simply St = Ĩt + d̃t, it follows that
by solving the above model policy parameters are immediately obtained.

Constraints in the certainty equivalent model neatly reflect those in the origi-
nal stochastic programming model. More specifically, (12) enforces the inventory
conservation constraints; (13) is the reordering condition; and (14), (15), and (16)
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E[TC] = −vI0 + v

N∑

t=1

d̃t+min

N∑

t=1

(aδt + hĨt) + vĨN (11)

subject to, for t = 1, . . .N

Ĩt + d̃t − Ĩt−1 ≥ 0 (12)

Ĩt + d̃t − Ĩt−1 ≤ δtM (13)

Ĩt ≥
t∑

j=1

(
G−1

djt
(α)−

t∑

k=j

d̃k

)
Pjt (14)

t∑

j=1

Pjt = 1 (15)

Pjt ≥ δj −
t∑

k=j+1

δk j = 1, . . . , t (16)

Pjt ∈ {0, 1} j = 1, . . . , t (17)

δt ∈ {0, 1} (18)

Figure 2: MILP formulation of the non-stationary stochastic lot-sizing problem
under the static-dynamic uncertainty strategy [31].

enforce the prescribed service level α. In (14), G−1
djt
(α) denotes the α-quantile of

the inverse cumulative distribution function of the random variable dj + . . . + dt.
Finally, the objective function is obtained by observing

E[v
N∑

t=1

Qt] = −vI0 + v
N∑

t=1

d̃t + vĨN , (19)

where −vI0 + v
∑N

t=1 d̃t is a constant.
Following an assumption originally introduced by Bookbinder and Tan [6],

Tarim and Kingsman [31] approximate the holding cost component in the original
objective function, which we recall was E[max(It, 0)], via the expression hĨt. To
overcome this limitation of the model, we introduce two new sets of decision vari-
ables: Ĩ lbt ≥ 0 and Ĩubt ≥ 0 for t = 1, . . . , N , which represent, respectively, a lower
and an upper bound to the true value of E[max(It, 0)]. The objective function
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then can be rewritten as

E[TC] = −vI0 + v
N∑

t=1

d̃t +min
N∑

t=1

(aδt + hĨ lbt ) + vĨN (20)

if our aim is to compute a lower bound for the cost of an optimal plan, or as

E[TC] = −vI0 + v
N∑

t=1

d̃t +min
N∑

t=1

(aδt + hĨubt ) + vĨN (21)

if our aim is to compute an upper bound for the cost of an optimal plan. We
next discuss how to constrain Ĩ lbt and Ĩubt . Our discussion applies to demand dk,
for k = 1, . . . , N following a generic distribution. Consider the random variable
djt representing the convolution dj + . . . + dt. We select a priori a number W of
adjacent regions Ωi into which the support of djt must be partitioned. As discussed,
this partitioning will produce a piecewise linear approximation comprising W + 1
segments. We also fix a priory the probability mass pi = Pr{djt ∈ Ωi} that must be
associated with each region Ωi. As discussed in Section 3, there are several possible
strategies to assign probability masses pi to regions. For instance, we may ensure
uniform coverage, i.e. all region must have the same probability mass, or we may
select regions — by using a heuristic or exact approach — in order to minimise the
maximum approximation error over all possible convolutions djt, for t = 1, . . . , N
and j = 1, . . . , t. Regardless of the strategy we adopt, once all pi are known, regions
Ωi are uniquely determined and the associated conditional expectation E[djt|Ωi]
can be immediately computed using off-the-shelf software. Finally, the maximum
approximation error ejtW associated with the linearisation of L̂(x, djt) can be found
by checking the linearisation error at the W possible breakpoints of the piecewise
linear function obtained. Having precomputed all these values for t = 1, . . . , N
and j = 1, . . . , t, we introduce the following constraints in the model

Ĩ lbt ≥ (Ĩt+
t∑

j=1

d̃jtPjt)
i∑

k=1

pk−
t∑

j=1

(
i∑

k=1

pkE[djt|Ωi]

)
Pjt t = 1, . . . , N ; i = 1, . . . ,W

(22)
This expression follows from Lemma 2 and closely resembles (4). Consider a
replenishment in period j covering periods j, . . . , t with associated order-up-to-level
S. Our aim is to enforce Ĩ lbt ≥ L̂i

lb (S, djt) for i = 1, . . . ,W , since Ĩ lbt represents
a lower bound for the expected positive inventory at the end of period t. By
observing that S = Ĩt + d̃jt, we obtain the above expression. We then obtain Ĩubt
from Ĩt, by noting that a piecewise linear upper bound can be derived by adding
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the maximum estimation error to the Jensen’s piecewise linear lower bound [24].

Ĩubt ≥ (Ĩt +

t∑

j=1

d̃jtPjt)

i∑

k=1

pk +

t∑

j=1

(
ejtW −

i∑

k=1

pkE[djt|Ωi]

)
Pjt

t = 1, . . . , N,
i = 1, . . . ,W ;

(23)
where Ĩubt ≥

∑t

j=1 e
jt
WPjt for t = 1, . . . , N . The special case in which demand in

each period follows a normal distribution is discussed in Appendix IV.

4.3 Penalty cost scheme

The model discussed in Section 4.2 can be easily modified to accommodate a
penalty cost b per unit short per period in place of the α service level constraints
discussed in Tarim and Kingsman [31]. This revised model resembles the one
discussed in Tarim and Kingsman [32]. However, as discussed in the previous
section, our formulation is more accurate, because the expected total cost of a
plan can be now bounded from above and below. It is also more general, since the
discussion in Tarim and Kingsman [32] is limited to normally distributed demand.

In the new model, we introduce two new sets of variables B̃lb
t ≥ 0 and B̃ub

t ≥ 0
for t = 1, . . . , N , which represent a lower and upper bound, respectively, for the
true value of E[−min(It, 0)] and thus allow us to compute lower and upper bounds
for the expected backorders in each period. The objective function then becomes

E[TC] = −vI0 + v
N∑

t=1

d̃t +min
N∑

t=1

(aδt + hĨ lbt + bB̃lb
t ) + vĨN (24)

if our aim is to compute a lower bound for the cost of an optimal plan, or

E[TC] = −vI0 + v
N∑

t=1

d̃t +min
N∑

t=1

(aδt + hĨubt + bB̃ub
t ) + vĨN (25)

if our aim is to compute an upper bound for the cost of an optimal plan. Finally,
we must remove constraints (14), since we are operating under a penalty cost
scheme and not under a service level constraints.

Once more, we assume that demand in each period follows a generic distribu-
tion; we obtain B̃lb

t and B̃ub
t from Ĩt by exploiting Lemma 1.

B̃lb
t ≥ −Ĩt + (Ĩt +

t∑

j=1

d̃jtPjt)
i∑

k=1

pk −
t∑

j=1

(
i∑

k=1

pkE[djt|Ωi]

)
Pjt

t = 1, . . . , N,
i = 1, . . . ,W ;

(26)
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where B̃ub
t ≥ −Ĩt and

B̃ub
t ≥ −Ĩt+(Ĩt+

t∑

j=1

d̃jtPjt)
i∑

k=1

pk+
t∑

j=1

(
ejtW −

i∑

k=1

pkE[djt|Ωi]

)
Pjt

t = 1, . . . , N,
i = 1, . . . ,W ;

(27)
where B̃ub

t ≥ −Ĩt +
∑t

j=1 e
jt
WPjt. The case in which demand in each period follows

a normal distribution is discussed in Appendix IV.

4.4 βcyc service level constraints

The model discussed in Section 4.3 can be modified to accommodate βcyc service
level constraints, defined in [36] as

1− max
i=1,...,m

[
E

{
Total backorders in replenishment cycle i

Total demand in replenishment cycle i

}]
. (28)

βcyc represents a lower bound on the expected fraction of demand that is routinely
satisfied from stock for each replenishment cycle. The revised model resembles the
one discussed in Tempelmeier [36]. However, we aim to stress that in this latter
work the author enforces the prescribed service level by precomputing order-up-to-
levels and cycle holding costs in a table, rather than using a piecewise linearisation
of the loss function as we do. One of the advantages of our approach is that it
is able to account for dependencies among opening stock levels and service levels
of consecutive cycles. As we will show in Section 4.5, the ability to capture these
dependencies is important if we aim to generalise the model to a more classical
definition of “fill rate”.

The discussion below is distribution independent; we modify the model dis-
cussed in Section 4.3 by introducing service level constraints

B̃lb
t ≤ (1− βcyc)

t∑

j=1

Pjtd̃jt t = 1, . . . , N, (29)

if our aim is to compute a lower bound for the cost of an optimal plan; or

B̃ub
t ≤ (1− βcyc)

t∑

j=1

Pjtd̃jt t = 1, . . . , N, (30)

if our aim is to compute an upper bound for the cost of an optimal plan. Con-
straints (29) and (30) directly follow from (28). Finally, the objective function is
(20) if our aim is to compute a lower bound for the cost of an optimal plan, or

14



(21) if our aim is to compute an upper bound.

4.5 β service level constraints

The model discussed in Tempelmeier [36] captures a definition of fill rate that
is not conventional in the inventory literature. This issue has been discussed in
Rossi et al. [22]. To date, no modelling strategy exists for the conventional fill rate
under a static-dynamic uncertainty control policy. In this section, we introduce an
alternative MILP reformulation that captures a definition of β service level that is
in line with the definition found in many textbooks on inventory control Axsäter
[3], Hadley and Whitin [9], Silver et al. [29].

In Axsäter [3], the author defines β service level as “the expected fraction of
demand satisfied immediately from stock on hand”. In the context of finite horizon
inventory models, e.g. Chen et al. [7], Thomas [41] this definition is formalized as

1− E

{
Total backorders within the planning horizon

Total demand within the planning horizon

}
, (31)

The static-dynamic uncertainty strategy divides the finite planning horizon into
a number, say m, of consecutive replenishment cycles. We can re-write (31) by
taking these into account as

1− E

{∑m

i=1Total backorders within the i’th replenishment cycle∑m

i=1Total demand within the i’th replenishment cycle

}
. (32)

However, in [36] the same β service level is imposed on each and every cycle within
the planning horizon. Clearly (32) is different from (28): the original definition
imposes a β service level throughout the planning horizon, whereas the definition
in [36] imposes a β service level on each replenishment cycle within the planning
horizon independently. This latter definition is thus more restrictive. Adopting the
original definition may therefore bring substantial cost benefits. To illustrate this,
one may consider instances discussed in [36, p. 191], for which the cost reduction
with respect to policies obtained via the model discussed in Section 4.4 ranges
from 0.4% to 6.4%.

We modify as follows the model in Section 4.4 to implement the classical mea-
sure outlined in (32). Also in this cases the changes discussed below are distribution
independent. We introduce two new set of nonnegative variables C̃ lb

t and C̃ub
t for

t = 0, . . . , N . These variables express a lower and an upper bound, respectively, to
the expected total backorders within the replenishment cycle that ends at period
t, if any exists. Hence, C̃ lb

t (resp. C̃ub
t ) should be equal to B̃lb

t (resp. B̃ub
t ), if t is

the last period of a replenishment cycle; otherwise C̃ lb
t (resp. C̃ub

t ) should be equal
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to 0. We enforce this fact as follows:

C̃ lb
t ≥ B̃lb

t − (1− δt+1)

t∑

k=1

d̃t t = 0, . . . , N − 1, (33)

C̃ub
t ≥ B̃ub

t − (1− δt+1)

t∑

k=1

d̃t t = 0, . . . , N − 1. (34)

where B̃lb
0 = B̃ub

0 = C̃ lb
0 = C̃ub

0 = I0. Finally, we must ensure that C̃ lb
N = B̃lb

N and
C̃ub

N = B̃ub
N . We then use these new variables to build constraint

N∑

t=1

C̃ lb
t ≤ (1− β)

N∑

t=1

d̃t (35)

which will replace (29), if our aim is to compute a lower bound for the cost of an
optimal plan; and constraint

N∑

t=1

C̃ub
t ≤ (1− β)

N∑

t=1

d̃t (36)

which will replace (30), if our aim is to compute an upper bound. Constraints 35
and 36 directly follow from 32.

5 Lost sales

In this section we briefly sketch the extension of the models discussed in the pre-
vious section to the case in which demand that occurs when the system is out of
stock is lost, i.e. lost sales setting. The discussion is purportedly short, since the
derived models are quite similar to those already presented and there are only few
adjustments that are necessary to adapt our models to this new settings.

Under lost sales we need to take into account the fact that if inventory drops
to zero, demand that occurs until the next order arrives will not be met. Under
a static-dynamic uncertainty control policy, this means the actual order quantity
will never exceed the order-up-to-level.

In this settings it is crucial to set up the model in such a way as to account
for the opportunity cost associated with units of demand that are not met by
a given control policy. For this reason, we must introduce a new parameter s
that represents the selling price of a product; we then let m = s − v be the
margin — i.e. unit selling price minus unit ordering cost — for an item sold. The
resulting stochastic programming model under lost sales is shown in Fig. 3. In

16



E[TP] = sI0+max

∫

d1

∫

d2

. . .

∫

dN

[
N∑

t=1

(mQt − aδt − hmax(It, 0))− smax(IN , 0)

]
×

(37)

g1(d1)g2(d2) . . . gN(dN) d(d1)d(d2) . . . d(dN)

subject to, for t = 1, . . . N

It + dt − It−1 ≥ 0 (38)

Qt = It + dt −max(It−1, 0) (39)

δt =

{
1 if Qt > 0,
0 otherwise

(40)

Pr{It ≥ 0} ≥ α (41)

Qt ≥ 0, δt ∈ {0, 1} (42)

Figure 3: Stochastic programming formulation of the non-stationary stochastic
lot-sizing problem under lost sales.

this model E[TP] represents the expected total profit, which we aim to maximise.
δt is a binary decision variable that is set to one if we order items at period t,
i.e. constraints (40). Qt represents the order quantity in period t, which must
be greater or equal to zero. It is a random variable that represents the inventory
level at the end of period t; despite lost sales, for convenience, we assume that It
may take negative values. In the objective function, we multiply the margin m by
the number of items Qt ordered in period t; we then subtract ordering cost a, if
an order is placed in period t (i.e. δt = 1), and the holding cost h on items that
remain in stock at the end of period t. There is a further term −smax(IN , 0) to
reflect the fact that items in stock at the end of the planning horizon will not be
sold and thus the associated selling price s should not be included in the total
profit. Term max(It−1, 0) in constraints (39) makes sure that the order quantity
does not include any lost sale from the previous period. Constraints (38) ensure
that the inventory level at the end of period t is greater or equal to the inventory
level at the end of period t − 1 plus the realised demand in period t; this makes
sure that items in stock in a period and not sold are brought to the next period.
Constraints (41) enforce an α service level and can be easily replaced by other
service measures such as a βcyc or a β service level. A formulation under a penalty
cost scheme is also easily obtained by removing the service level constraints and
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by modifying the objective function as illustrated in previous sections.
An MILP formulation of the problem in Fig. 3 under the static-dynamic un-

certainty strategy is shown in Fig. 4. In this model, by taking expectations,

E[TP] =sI0 +max

N∑

t=1

(mQ̃t − aδt − hĨ lbt )− sĨ lbN (43)

subject to, for t = 1, . . . N

Ĩt + d̃t − Ĩt−1 ≥ 0 (44)

Q̃t ≥ Ĩt + d̃t − Ĩ lbt−1 + (1− δt)M (45)

Q̃t ≤ Ĩt + d̃t − Ĩ lbt−1 − (1− δt)M (46)

Ĩt + d̃t − Ĩt−1 ≤ Q̃tM (47)

Q̃t ≤ δtM (48)

Ĩt ≥

t∑

j=1

(
G−1

djt
(α)−

t∑

k=j

d̃k

)
Pjt (49)

t∑

j=1

Pjt = 1 (50)

Pjt ≥ δj −
t∑

k=j+1

δk j = 1, . . . , t (51)

constraints (22)

Pjt ∈ {0, 1} j = 1, . . . , t (52)

Q̃t ≥ 0, δt ∈ {0, 1} (53)

Figure 4: MILP formulation of the non-stationary stochastic lot-sizing problem
under the static-dynamic uncertainty strategy and lost sales.

constraints (38) translate into (44). Constraints (39) translate into (45) and (46).
Terms max(It, 0) in the objective function and in constraints (39) can be handled
by using an auxiliary variable Ĩ lbt that represents a lower bound for E[max(It, 0)]
computed as before via a piecewise linearisation of the complementary first order
loss function, i.e. constraints (22). Constraints (47) ensures that the expected
inventory level at the end of period t is greater than the expected inventory level
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at the end of period t − 1 plus the expected demand in period t if and only if
an order has been placed in period t, i.e. Q̃t > 0. Constraints (40) translate
into (48). Finally, service level constraints (41) translate into (49), (50) and (51)
following a strategy similar to the one in [31], which we illustrated in Section 4.2.
The model presented can be used to compute an upper bound for E[TP] — note
that underestimating buffer stocks, i.e. Ĩ lbt leads to lower holding costs and to an
overestimation of the expected order quantity and associated margins mQ̃t in the
objective function. If we aim to compute a lower bound instead, all occurrences of
Ĩ lbt should be replaced by Ĩubt and constraints (22) should be replaced by constraints
(23). Other MILP formulations under βcyc and β service levels are obtained in a
similar fashion, since only the service level constraints of the model are affected by
this change. A penalty cost formulation is also easily obtained, by dropping the
service level constraints and by modifying the objective function as follows

E[TP] = sI0 +max
N∑

t=1

(mQ̃t − aδt − hĨ lbt − bB̃lb
t )− sĨ lbN (54)

A detailed overview of these models is given in Appendix III. Finally, a remark
that should be made is that the model presented in Section 4.3 charges penalty
cost on a “per unit short per unit time” basis. This might be not appropriate
under lost sales, since it is common practice to charge penalty cost on a “per unit
short” basis under this setting. This problem can be easily overcome by charging
the penalty cost b not on B̃lb

t , which bounds the expected units short at the end
of each period, but on C̃ lb

t , which bounds the expected units short at the end of
each replenishment cycle — as defined in Section 4.5.

6 Computational experience

In this section we present an extensive computational analysis of the models pre-
viously discussed. The experiments below were conducted by using CPLEX 12.3
on a 2.13 Ghz Intel Core 2 Duo with 4GB of RAM.

The aim of our computational analysis is twofold. First, we investigate the
behaviour of the optimality gap for all models presented when the number of seg-
ments adopted for the piecewise linear approximation of the loss function increases.
The term optimality gap is used here to denote the difference between the upper
and lower bounds for the expected total cost obtained via Edmundson-Madanski
and Jensen’s bounds, respectively. Second, we investigate the computational effi-
ciency of our models and how the number of segments adopted in the piecewise
linear approximation of the loss function impacts solution times.
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6.1 Test bed

We consider a test bed comprising 810 instances. More specifically, we carried out
a full factorial analysis under the following factors. We considered ten different
demand patterns illustrated in Fig. 5. The patterns include two life cycle patterns
(LCY1 and LCY2), two sinusoidal patterns (SIN1 and SIN2), stationary (STA) and
random (RAND) patterns, and four empirical patterns derived from demand data
in [14] (EMP1,. . . ,EMP4). Fixed ordering cost a takes values in {500, 1000, 2000};
while proportional unit cost v takes values in {2, 5, 10}. For models under service
level constraints, we let the prescribed service level range in {0.8, 0.9, 0.95}; for
model under a penalty cost scheme we let the penalty cost range in {2, 5, 10}.

6.2 Backorders

In this section, we concentrate on models presented in Section 4.1. Recall that
in these models, when a stockout occurs, all demand is backordered and filled
as soon as an adequate supply arrives. We first investigate the behaviour of the
optimality gap and of the solution time for normally distributed demand. We
then extend the analysis to the case in which demand in different periods follow
different probability distributions.

6.2.1 Normal distribution

In this section, we assume that demand dt in each period t to be normally dis-
tributed with mean d̃t and standard deviation σdt , and let the coefficient of vari-
ation c = d̃t/σdt ; we let c ∈ {0.10, 0.20, 0.30}. Expected values of the demand
in each period are illustrated in Fig. 5 for each of the ten patterns considered.
As discussed, when demand is normally distributed, general purpose linearisation
parameters can be precomputed and immediately used in our models [24].

In Fig. 6 we report, for each model discussed, boxplots illustrating the op-
timality gap trend for different number of segments used in the piecewise linear
approximation. It should be noted that the y-axis is displayed in logarithmic scale.
This shows that the optimality gap shrinks exponentially fast in the number of
segments regardless of the model or parameter setting considered.

It is interesting to observe that a number of instances were found infeasible
by the MILP model under βcyc service level when two segments for the piecewise
approximation were used — note the very large optimality gap. This is due to the
fact that with only two segments the approximation error for the βcyc service level
was too large and no order-up-to-level could be found to enforce a service level as
high as the prescribed one.
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Figure 5: Demand patterns in our computational analysis; the values presented
denote the expected demand d̃t in each period t of the planning horizon.
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Period Distribution

1,5,9,13 normal with mean d̃t and σdt = 0.3 · d̃t
2,6,10,14 Poisson with mean d̃t
3,7,11,15 exponential with mean d̃t
4,8,12 uniformly distributed in [0, 2d̃t]

Table 1: Probability distribution of the demand in each period of the planning
horizon.

In Fig. 7 we report, for each model discussed, boxplots illustrating the compu-
tational time trend for different number of segments used in the piecewise linear
approximation. Computational times are only slightly affected by the number of
segments in the approximation. Furthermore, all instances could be solved in just
a few seconds.

6.2.2 Generic distribution

We now extend the analysis to the case in which demand in different periods follow
different probability distributions. The test bed remains the same previously anal-
ysed. However, the probability distribution of the demand in each period is now
detailed in Table 1. To the best of our knowledge, this is the first study in which
a numerical analysis on demand that is not normally distributed is presented. We
limit our analysis to the model that operates under penalty cost scheme (Section
4.3). We do this for two reasons: firstly, because our local search procedure is com-
putationally quite intensive and a larger test bed would have taken considerable
time; secondly, because the model that operates under penalty cost scheme embeds
both the first order loss function — employed to compute expected shortages —
and the complementary first order loss function — employed to compute holding
costs; therefore we expect that results obtained for this model to be sufficiently
representative of the overall degree of approximation attained by our piecewise
linear approximation of these two functions.

As discussed in Section 3 when demand follows a generic probability distribu-
tion we must compute dedicated linearisation parameters for the piecewise first
order loss function. In Fig. 8 we consider two possible strategies for computing
these parameters. (Fig. 8 - a) illustrates results for the case in which we split the
support of the demand ω uniformly intoW disjoint compact subregions Ω1, . . . ,ΩW

such that pi = Pr{ω ∈ Ωi} = 1/W . (Fig. 8 - b) illustrates results for the case
in which a local search procedure involving a coordinate descent from the most
promising partition obtained via simple random sampling is employed to find a
good partition into W disjoint compact subregions that minimises the maximum
approximation error.

22



α service level β service level

β
cyc

 service level penalty cost

0
.0

0
5

0
.0

5
0

0
.5

0
0

5
.0

0
0

Segments

O
p

ti
m

a
li

ty
 g

a
p

 %

2 3 4 5 6 7 8 9 10 11

0
.0

5
0

.5
0

5
.0

0
5

0
.0

0

Segments

O
p

ti
m

a
li

ty
 g

a
p

 %

2 3 4 5 6 7 8 9 10 11

0
.1

1
0

.0
1

0
0

0
.0

Segments

O
p

ti
m

a
li

ty
 g

a
p

 %

2 3 4 5 6 7 8 9 10 11
0

.0
2

0
.2

0
2

.0
0

2
0

.0
0

Segments

O
p

ti
m

a
li

ty
 g

a
p

 %

2 3 4 5 6 7 8 9 10 11

Figure 6: Boxplots illustrating the optimality gap trend for different number of
segments used in the piecewise linear approximation.
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Figure 7: Boxplots illustrating the computational time trend for different number
of segments used in the piecewise linear approximation.
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a. uniform partitioning b. simple random sampling and coordinate descent
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Figure 8: Boxplots illustrating the optimality gap trend for different number of
segments used in the piecewise linear approximation.

The results presented reveal that a uniform partitioning of the support of the
demand provides acceptable results — optimality gap around 0.5% when the num-
ber of segments in the linearisation is low. However, as the number of segments
increases, the performance this strategy deteriorates exponentially — note that
axis are in logarithmic scale. Local search may help attaining better performances
when the number of segments increases. In our specific example, our simple local
search strategy, which used a population size S = 500W for the simple random
sampling and a step size ǫ = 0.002 in the coordinate descent, attained up to an
order of magnitude improvement in the optimality gap. However, as discussed
in [17], this problem is computationally challenging and future research should
investigate global optimisation algorithms to compute an optimal partitioning.

A final remark should be made on the computational efficiency of our approach
under a generic demand distribution. If one adopts a uniform partitioning of the
support then the computational efficiency of the model is essentially identical to
the case in which demand is normally distributed. In other words, most of the
instances can be solved in few seconds as shown in Fig. 7. If, however, a local search
procedure is used to partition the support of the demand then the computational
performance of our approach will of course depend on the efficiency of this local
search strategy. In our analysis, the local search strategy effectively became the
bottleneck, since finding good linearisation parameters for a specific instance took
a time that varied from few minutes up to an hour for large W . Also in this case
we believe that substantial improvements in computational performances may be
achieved via more effective global optimisation algorithms.
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6.3 Lost sales

We finally extended our analysis to the case in which demand that occurs when
the system is out of stock is lost. Models that operate under this settings were
discussed in Section 5. We analyse the case in which demand dt in each period t
is normally distributed with coefficient of variation c ∈ {0.10, 0.20, 0.30}.

As shown in Fig. 9 also in this case the optimality gap shrinks exponentially
fast for all models considered when the number of segments in the linearisation
increases. Furthermore, as shown in Fig. 10 also in this case all instances could be
solved in few seconds. We do not discuss models that operate under lost sales and
generic probability distributions since results obtained were comparable to those
already discussed.

7 Conclusions

We developed MILP formulations for the non-stationary stochastic lot sizing prob-
lem. Our formulations exploit a piecewise linearisation of the first order loss func-
tion and of its complementary function. We modelled a number of variants of
this problem under different service measures: α service level constraints in each
period; a penalty cost oriented formulation; a prescribed βcyc service level for each
replenishment cycle independently; and a classical β service level, as found in the
literature. Our models can be easily adapted to operate in a lost sales setting. Our
approach has a number of advantages with respect to other existing approaches in
the literature. It is versatile, as it enables seamless modelling of several variants
of this problem. It is fully linear and, for the special case in which demand in each
period is normally distributed, it does not require an offline evaluation of piecewise
linearisation coefficients, as these can be derived from a standard table [see e.g.
24]. As shown in our computational experience, viable linearisation parameters
for generic demand distributions can be derived by partitioning the support of the
demand uniformly or via local search. Another advantage with respect to other
existing approaches is that our models bound from above and below the cost of
an optimal plan; by increasing the number of segments in the piecewise linear
approximation precision can be improved ad libitum. In our extensive computa-
tional experience we demonstrated that optimality gaps shrink exponentially fast
in the number of segments used by the piecewise linearisation and that all models
developed can be generally solved in a few seconds when up to eleven segments
are used in the linearisation.
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Figure 9: Boxplots illustrating the optimality gap trend for different number of
segments used in the piecewise linear approximation.
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Figure 10: Boxplots illustrating the computational time trend for different number
of segments used in the piecewise linear approximation.
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[2] Sven Axsäter. A simple procedure for determining order quantities under a fill
rate constraint and normally distributed lead-time demand. European Journal
of Operational Research, 174(1):480–491, October 2006. ISSN 03772217. doi:
10.1016/j.ejor.2005.01.037.

[3] Sven Axsäter. Inventory Control (International Series in Operations Research
& Management Science). Springer, 2nd ed. edition, November 2010. ISBN
1441941185.
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Appendix

In Appendix I, we present a list of all symbols used in the paper; in Appendix II, we
briefly discuss the two approximate methods adopted in this work for computing
good linearisation parameters; in Appendix III, we provide an overview of the
MILP models discussed; in Appendix IV we discuss special cases that arise when
demand is normally distributed.

Appendix I

x a scalar value
ω a random variable
Ω support of ω
gω(x) probability density function of ω, where x ∈ Ω
ω̃ expected value of ω
σω standard deviation of ω
Z a standard normal random variable
φ(x) standard normal probability density function
Φ(x) standard normal cumulative probability distribution function
W number of regions in a partition of Ω
i region index ranging in 1, . . . ,W
Ωi a compact region of Ω
pi Pr{ω ∈ Ωi}
E[ω|Ωi] conditional expectation of ω in Ωi

L(x, ω) first order loss function

L̂(x, ω) complementary first order loss function

L̂lb(x, ω) piecewise linear lower bound of L̂(x, ω) with W + 1 segments

L̂ub(x, ω) piecewise linear upper bound of L̂(x, ω) with W + 1 segments

eW maximum approximation error for L̂lb(x, ω) and L̂ub(x, ω)
N periods in the planning horizon
t period index ranging in 1,. . . ,N
dt demand in period t

c demand coefficient of variation d̃t/σdt
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gt(·) probability density function of dt
Gt(·) cumulative distribution function of dt
a fixed ordering cost, $a per order
v proportional unit cost, $v per unit ordered
s selling price, $s per item
m margin, $s− v per item
h holding cost, $h per unit of inventory carried to the next period
E[TC] expected total cost
I0 initial inventory, a scalar
It inventory level at the end of period t
Qt order quantity issued (and received) at the beginning of period t
δt binary variable set to one if and only if Qt > 0.
α non stockout probability
β prescribed fill rate
βcycle prescribed cycle fill rate
b penalty cost $b per unit short per unit time
M a very large number
Pjt a binary variable which is set to one if and only if the most recent

inventory review before period t was carried out in period j
St order-up-to-level in period t
djt random variable representing the convolution dj + . . .+ dt
G−1

djt
(α) α-quantile of the inverse cumulative distribution function of djt

ejtW maximum approximation error associated with the piecewise lin-
earisation of L̂(x, djt)

Ĩ lbt a lower bound to the true value of E[max(It, 0)]

Ĩubt an upper bound to the true value of E[max(It, 0)]

B̃lb
t a lower bound to the true value of E[−min(It, 0)]

B̃ub
t an upper bound to the true value of E[−min(It, 0)]

C̃ lb
t a lower bound to the expected total backorders within the replen-

ishment cycle that ends at period t, if any exists. C̃ lb
t is equal to

B̃lb
t if t is the last period of a replenishment cycle

C̃ub
t an upper bound to the expected total backorders within the re-

plenishment cycle that ends at period t, if any exists. C̃ub
t is equal

to B̃ub
t if t is the last period of a replenishment cycle

Appendix II

We briefly discuss implementation details of the two approximate methods em-
ployed in this paper to determine linearisation parameters of the complementary
first order loss function for a set of random variables.
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The first strategy is quite simple. Consider a set of generic random variables
ω1, . . . , ωN with complementary first order loss functions L̂(x, ω1), . . . , L̂(x, ωN).
From (2) it is clear that, once all pi are fixed, all E[ω|Ωk] are uniquely determined

for each loss function L̂(x, ωn); this computation can be carried out numerically
by using off-the-shelf packages such as Mathematica5 or libraries such as SSJ.6 If
our aim is to derive a piecewise linearisation with W +1 segments, then a possible
strategy is to partition the support of each random variable ωn into W disjoint
compact subregions Ω1, . . . ,ΩW , such that Pr{ω ∈ Ωi} = 1/W . Once more, these
regions can be determined numerically with one of the aforementioned off-the-shelf
packages. By recalling that the complementary first order loss function is convex,
it follows that the maximum approximation error will be attained at one of the
breakpoints of its piecewise linear approximation. Since there are W breakpoints
the maximum approximation error associated with the above partitioning can be
easily determined for each L̂(x, ω1), . . . , L̂(x, ωN).

The second strategy is still simple, but slightly more refined than the first one.
A pseudocode for this strategy is presented in Fig. 3. Instead of simply partition-
ing the support of random variables ω1, . . . , ωN uniformly into compact subregions
associated with the same probability mass, we now first generate random partitions
via simple random sampling and then we try to improve the best of these parti-
tioning via a coordinate descent approach. More specifically, by observing that a
partitioning of the support of ω1, . . . , ωN is uniquely determined by a tuple of W
probabilities 〈p1, . . . , pW 〉 such that

∑W

i=1 pi = 1, we can generate S such tuples
(line 1) and then pick tuple 〈p∗1, . . . , p

∗

W 〉 associated with the minimum maximum
approximation error over the set of complementary first order loss functions under
scrutiny (line 2). Finally, we try to reduce this error by performing local moves
involving each p∗i separately, for i = 1, . . . ,W − 1 until no further improvement is
possible (line 3). Note that if we decrement/increment p∗i , since

∑W

i=1 pi = 1, then
one of the other probabilities must be modified accordingly, this explains why the
loops ends at W − 1; in other words, we have W − 1 degrees of freedom in the
search.

5http://www.wolfram.com/mathematica/
6http://www.iro.umontreal.ca/~simardr/ssj/
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Algorithm 1: Coordinate descent to determine a good partitioning of the
random variable supports

Data: random variables ω1, . . . , ωN ; size S of the population for simple
random sampling; step size ǫ in the coordinate descent.

Result: a tuple 〈p∗1, . . . , p
∗

W 〉
generate S tuples 〈pk1, . . . , p

k
W 〉;

for k = 1 to S do

1 determine the minimum maximum approximation error over

L̂(x, ω1), . . . , L̂(x, ωN) under partitioning 〈pk1, . . . , p
k
W 〉;

if partitioning 〈pk1, . . . , p
k
W 〉 ensures the best error so far then

2 record 〈pk1, . . . , p
k
W 〉 as 〈p∗1, . . . , p

∗

W 〉;

3 repeat

for i = 1 to W − 1 do
determine which partitioning between 〈p∗1, . . . , p

∗

i + ǫ, . . . , p∗W − ǫ〉
and 〈p∗1, . . . , p

∗

i − ǫ, . . . , p∗W + ǫ〉 leads to the best improvement for the

minimum maximum approximation error over L̂(x, ω1), . . . , L̂(x, ωN);
update 〈p∗1, . . . , p

∗

i , . . . , p
∗

W 〉 to reflect the best current partitioning;

until the minimum maximum approximation error cannot be improved ;
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Appendix III

An overview of the MILP models discussed; numbers refer to the respective equations in the text.

Lower bound Upper bound
Objective Subject to Objective Subject to

B
ac
ko
rd
er
s

α service level (20) (12) (13) (14) (15) (16) (17) (18)
(22)

(21) (12) (13) (14) (15) (16) (17) (18)
(23)

penalty cost (24) (12) (13) (15) (16) (17) (18) (22)
(26)

(25) (12) (13) (15) (16) (17) (18) (23)
(27)

βcyc service level (20) (12) (13) (15) (16) (17) (18) (22)
(26) (29)

(21) (12) (13) (15) (16) (17) (18) (23)
(27) (30)

β service level (20) (12) (13) (15) (16) (17) (18) (22)
(26) (33) (35)

(21) (12) (13) (15) (16) (17) (18) (23)
(27) (34) (36)

L
os
t
sa
le
s

α service level (43) (22) (44) (45) (46) (47) (48) (49)
(50) (51) (52) (53)

replace Ĩubt , (22) with Ĩ lbt , (23)

penalty cost (54) (22) (26) (44) (45) (46) (47) (48)
(50) (51) (52) (53)

replace Ĩubt , (22), (26), with Ĩ lbt ,
(23), (27)

βcyc service level (43) (22) (26) (29) (44) (45) (46) (47)
(48) (50) (51) (52) (53)

replace Ĩubt , (22), (26), (29) with
Ĩ lbt , (23), (27), (30)

β service level (43) (22) (26) (33) (35) (44) (45) (46)
(47) (48) (50) (51) (52) (53)

replace Ĩubt , (22), (26), (33), (35)
with Ĩ lbt , (23), (27), (34), (36)
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Appendix IV

In this appendix we discuss model variants for the case in which demand in each pe-
riod is normally distributed. The assumption that demand is normally distributed
plays a prominent role in inventory theory [see e.g. 4] and most of existing works
on stochastic lot sizing focus on this distribution. An important property of the
first order normal loss function is that it can be derived from its standard counter-
part. Let ω be a normally distributed random variable with mean µ and standard
deviation σ. Let φ(x) be the standard normal probability density function and
Φ(x) the respective cumulative distribution function.

Lemma 4. The complementary first order loss function of ω can be expressed in
terms of the standard normal cumulative distribution function as

L̂(x, ω) = σ

∫ x−µ

σ

−∞

Φ(t) dt = σL̂

(
x− µ

σ
, Z

)
, (55)

where Z is a standard normal random variable.

Rossi et al. [24] discussed how to obtain an optimal partitioning of the support
under a framework that minimises the maximum approximation error. The same
work reports standard linearisation parameters for the case in which ω is a standard
normal random variable.

α service level constraints

If demand in each period is normally distributed, we can exploit Lemma 4 to reduce
the number of linearisation parameters that are needed in the model. Consider
a partition of the support Ω of a standard normal random variable Z into W
adjacent regions Ωi. Recall that pi = Pr{Z ∈ Ωi}, by exploiting the Jensen’s
piecewise linear lower bound, we introduce the following constraints in the model

Ĩ lbt ≥ Ĩt

i∑

k=1

pk −
t∑

j=1

(
i∑

k=1

pkE[Z|Ωi]

)
Pjtσdjt t = 1, . . . , N ; i = 1, . . . ,W

where σdjt denotes the standard deviation of dj+ . . .+dt and Ĩ lbt ≥ 0. This expres-
sion follows immediately from Lemma 2 and Lemma 4: consider a replenishment
cycle covering periods j, . . . , t and associated order-up-to-level S. We aim to en-

force Ĩ lbt ≥ σL̂i
lb

(
(S − d̃jt)/σdjt , Z

)
for all i = 1, . . . ,W . Observe that S− d̃jt = Ĩt,
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the above expression follows immediately. We then derive Ĩubt from Ĩt

Ĩubt ≥ Ĩt

i∑

k=1

pk +
t∑

j=1

(
eW −

i∑

k=1

pkE[Z|Ωi]

)
Pjtσdjt

t = 1, . . . , N,
i = 1, . . . ,W ;

where Ĩubt ≥
∑t

j=1 eWPjtσdjt for t = 1, . . . , N ; and eW denotes the maximum
approximation error associated with a partition comprising W regions; linearisa-
tion parameters that minimise the maximum approximation error eW for a given
number W + 1 of segments, where W = 1, . . . , 10, can be found in [24].

A final remark that is worth making is the fact that it is possible to replace
eW with eW/2 in the above equations to obtain an approximation of the first
order loss function that minimises the maximum absolute error. However, this
approximation does not allow one to establish if the cost produced by the model
is an upper or a lower bound for the true cost of an optimal plan.

Penalty cost scheme

We discuss how to handle the case in which demand is normally distributed by
exploiting Lemma 1. We obtain B̃lb

t and B̃ub
t from Ĩt by exploiting the connection

between the Jensen’s piecewise linear lower bound and the piecewise linear upper
bound to the first order loss function (Lemma 1).

B̃lb
t ≥ −Ĩt + Ĩt

i∑

k=1

pk −
t∑

j=1

(
i∑

k=1

pkE[Z|Ωi]

)
Pjtσdjt

t = 1, . . . , N,
i = 1, . . . ,W ;

(56)

where B̃ub
t ≥ −Ĩt and

B̃ub
t ≥ −Ĩt + Ĩt

i∑

k=1

pk +

t∑

j=1

(
eW −

i∑

k=1

pkE[Z|Ωi]

)
Pjtσdjt

t = 1, . . . , N,
i = 1, . . . ,W ;

(57)

where B̃ub
t ≥ −Ĩt +

∑t

j=1 eWPjtσdjt .
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