813 research outputs found

    Fractal image compression and the self-affinity assumption : a stochastic signal modelling perspective

    Get PDF
    Bibliography: p. 208-225.Fractal image compression is a comparatively new technique which has gained considerable attention in the popular technical press, and more recently in the research literature. The most significant advantages claimed are high reconstruction quality at low coding rates, rapid decoding, and "resolution independence" in the sense that an encoded image may be decoded at a higher resolution than the original. While many of the claims published in the popular technical press are clearly extravagant, it appears from the rapidly growing body of published research that fractal image compression is capable of performance comparable with that of other techniques enjoying the benefit of a considerably more robust theoretical foundation. . So called because of the similarities between the form of image representation and a mechanism widely used in generating deterministic fractal images, fractal compression represents an image by the parameters of a set of affine transforms on image blocks under which the image is approximately invariant. Although the conditions imposed on these transforms may be shown to be sufficient to guarantee that an approximation of the original image can be reconstructed, there is no obvious theoretical reason to expect this to represent an efficient representation for image coding purposes. The usual analogy with vector quantisation, in which each image is considered to be represented in terms of code vectors extracted from the image itself is instructive, but transforms the fundamental problem into one of understanding why this construction results in an efficient codebook. The signal property required for such a codebook to be effective, termed "self-affinity", is poorly understood. A stochastic signal model based examination of this property is the primary contribution of this dissertation. The most significant findings (subject to some important restrictions} are that "self-affinity" is not a natural consequence of common statistical assumptions but requires particular conditions which are inadequately characterised by second order statistics, and that "natural" images are only marginally "self-affine", to the extent that fractal image compression is effective, but not more so than comparable standard vector quantisation techniques

    Image Compression Techniques: A Survey in Lossless and Lossy algorithms

    Get PDF
    The bandwidth of the communication networks has been increased continuously as results of technological advances. However, the introduction of new services and the expansion of the existing ones have resulted in even higher demand for the bandwidth. This explains the many efforts currently being invested in the area of data compression. The primary goal of these works is to develop techniques of coding information sources such as speech, image and video to reduce the number of bits required to represent a source without significantly degrading its quality. With the large increase in the generation of digital image data, there has been a correspondingly large increase in research activity in the field of image compression. The goal is to represent an image in the fewest number of bits without losing the essential information content within. Images carry three main type of information: redundant, irrelevant, and useful. Redundant information is the deterministic part of the information, which can be reproduced without loss from other information contained in the image. Irrelevant information is the part of information that has enormous details, which are beyond the limit of perceptual significance (i.e., psychovisual redundancy). Useful information, on the other hand, is the part of information, which is neither redundant nor irrelevant. Human usually observes decompressed images. Therefore, their fidelities are subject to the capabilities and limitations of the Human Visual System. This paper provides a survey on various image compression techniques, their limitations, compression rates and highlights current research in medical image compression

    Healing failures and improving generalization in deep generative modelling

    Get PDF
    Deep generative modeling is a crucial and rapidly developing area of machine learning, with numerous potential applications, including data generation, anomaly detection, data compression, and more. Despite the significant empirical success of many generative models, some limitations still need to be addressed to improve their performance in certain cases. This thesis focuses on understanding the limitations of generative modeling in common scenarios and proposes corresponding techniques to alleviate these limitations and improve performance in practical generative modeling applications. Specifically, the thesis is divided into two sub-topics: one focusing on the training and the other on the generalization of generative models. A brief introduction to each sub-topic is provided below. Generative models are typically trained by optimizing their fit to the data distribution. This is achieved by minimizing a statistical divergence between the model and data distributions. However, there are cases where these divergences fail to accurately capture the differences between the model and data distributions, resulting in poor performance of the trained model. In the first part of the thesis, we discuss the two situations where the classic divergences are ineffective for training the models: 1. KL divergence fails to train implicit models for manifold modeling tasks. 2. Fisher divergence cannot distinguish the mixture proportions for modeling target multi-modality distribution. For both failure modes, we investigate the theoretical reasons underlying the failures of KL and Fisher divergences in modelling certain types of data distributions. We propose techniques that address the limitations of these divergences, enabling more reliable estimation of the underlying data distributions. While the generalization of classification or regression models has been extensively studied in machine learning, the generalization of generative models is a relatively under-explored area. In the second part of this thesis, we aim to address this gap by investigating the generalization properties of generative models. Specifically, we investigate two generalization scenarios: 1. In-distribution (ID) generalization of probabilistic models, where the test data and the training data are from the same distribution. 2. Out-of-distribution (OOD) generalization of probabilistic models, where the test data and the training data can come from different distributions. In the context of ID generalization, our emphasis rests on the Variational Auto-Encoder (VAE) model, and for OOD generalization, we primarily explore autoregressive models. By studying the generalization properties of the models, we demonstrate how to design new models or training criteria that improve the performance of practical applications, such as lossless compression and OOD detection. The findings of this thesis shed light on the intricate challenges faced by generative models in both training and generalization scenarios. Our investigations into the inefficacies of classic divergences like KL and Fisher highlight the importance of tailoring modeling techniques to the specific characteristics of data distributions. Additionally, by delving into the generalization aspects of generative models, this work pioneers insights into the ID and OOD scenarios, a domain not extensively covered in current literature. Collectively, the insights and techniques presented in this thesis provide valuable contributions to the community, fostering an environment for the development of more robust and reliable generative models. It's our hope that these take-home messages will serve as a foundation for future research and applications in the realm of deep generative modeling

    Rate-Distortion with Side-Information at Many Decoders

    Full text link
    We present a new inner bound for the rate region of the tt-stage successive-refinement problem with side-information. We also present a new upper bound for the rate-distortion function for lossy-source coding with multiple decoders and side-information. Characterising this rate-distortion function is a long-standing open problem, and it is widely believed that the tightest upper bound is provided by Theorem 2 of Heegard and Berger's paper "Rate Distortion when Side Information may be Absent", \emph{IEEE Trans. Inform. Theory}, 1985. We give a counterexample to Heegard and Berger's result.Comment: 36 pages. Submitted to IEEE Transactions on Information Theory. In proc. ISIT 2010

    Object-based video representations: shape compression and object segmentation

    Get PDF
    Object-based video representations are considered to be useful for easing the process of multimedia content production and enhancing user interactivity in multimedia productions. Object-based video presents several new technical challenges, however. Firstly, as with conventional video representations, compression of the video data is a requirement. For object-based representations, it is necessary to compress the shape of each video object as it moves in time. This amounts to the compression of moving binary images. This is achieved by the use of a technique called context-based arithmetic encoding. The technique is utilised by applying it to rectangular pixel blocks and as such it is consistent with the standard tools of video compression. The blockbased application also facilitates well the exploitation of temporal redundancy in the sequence of binary shapes. For the first time, context-based arithmetic encoding is used in conjunction with motion compensation to provide inter-frame compression. The method, described in this thesis, has been thoroughly tested throughout the MPEG-4 core experiment process and due to favourable results, it has been adopted as part of the MPEG-4 video standard. The second challenge lies in the acquisition of the video objects. Under normal conditions, a video sequence is captured as a sequence of frames and there is no inherent information about what objects are in the sequence, not to mention information relating to the shape of each object. Some means for segmenting semantic objects from general video sequences is required. For this purpose, several image analysis tools may be of help and in particular, it is believed that video object tracking algorithms will be important. A new tracking algorithm is developed based on piecewise polynomial motion representations and statistical estimation tools, e.g. the expectationmaximisation method and the minimum description length principle

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    Classical-to-Quantum Sequence Encoding in Genomics

    Full text link
    DNA sequencing allows for the determination of the genetic code of an organism, and therefore is an indispensable tool that has applications in Medicine, Life Sciences, Evolutionary Biology, Food Sciences and Technology, and Agriculture. In this paper, we present several novel methods of performing classical-to-quantum data encoding inspired by various mathematical fields, and we demonstrate these ideas within Bioinformatics. In particular, we introduce algorithms that draw inspiration from diverse fields such as Electrical and Electronic Engineering, Information Theory, Differential Geometry, and Neural Network architectures. We provide a complete overview of the existing data encoding schemes and show how to use them in Genomics. The algorithms provided utilise lossless compression, wavelet-based encoding, and information entropy. Moreover, we propose a contemporary method for testing encoded DNA sequences using Quantum Boltzmann Machines. To evaluate the effectiveness of our algorithms, we discuss a potential dataset that serves as a sandbox environment for testing against real-world scenarios. Our research contributes to developing classical-to-quantum data encoding methods in the science of Bioinformatics by introducing innovative algorithms that utilise diverse fields and advanced techniques. Our findings offer insights into the potential of Quantum Computing in Bioinformatics and have implications for future research in this area.Comment: 58 pages, 14 figure

    Hadamard Coded Modulation for Wavelet based Radio Over Fiber Networks

    Get PDF
    With the advancements in the technology of communication, there has been an increase in demand of higher data rates for the services such as voice, multimedia and data over both wired and wireless links. Therefore there is the requirement of new modulation schemes to transfer the large amount of data that existing techniques may not be capable of supporting in future. OFDM so far has resulted in good performance on the implementation level but, these techniques must be able to provide high data rate, allowable Bit Error Rate (BER), and minimum delay. In this paper, PAPR, CCDF of OFDM is implemented using wavelet transform based Hadamard Coded Modulation (HCM) and discusses relationship between them for RoF networks. This paper also presents comparison of OFDM and DWT-HCM BER performance for different SNR values
    • 

    corecore